JP2590357B2 - Multilayer ceramic capacitors - Google Patents
Multilayer ceramic capacitorsInfo
- Publication number
- JP2590357B2 JP2590357B2 JP63043333A JP4333388A JP2590357B2 JP 2590357 B2 JP2590357 B2 JP 2590357B2 JP 63043333 A JP63043333 A JP 63043333A JP 4333388 A JP4333388 A JP 4333388A JP 2590357 B2 JP2590357 B2 JP 2590357B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- dielectric
- ceramic capacitor
- internal
- internal electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003985 ceramic capacitor Substances 0.000 title claims description 29
- 239000004020 conductor Substances 0.000 claims description 3
- 230000015556 catabolic process Effects 0.000 description 28
- 239000003990 capacitor Substances 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 5
- 230000005684 electric field Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052573 porcelain Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 229910052839 forsterite Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- -1 steatite Chemical compound 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/30—Stacked capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Ceramic Capacitors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、積層磁器コンデンサに関する。更に、詳し
くは、絶縁破壊電圧を高めることのできる構造の積層磁
器コンデンサに関する。Description: TECHNICAL FIELD The present invention relates to a laminated ceramic capacitor. More specifically, the present invention relates to a laminated ceramic capacitor having a structure capable of increasing a dielectric breakdown voltage.
[従来の技術] 最近、電子機器の小型化に伴い、積層磁器コンデンサ
の小型化が進んでいるために、多くの技法により積層磁
器コンデンサが作製されている。[Prior Art] Recently, multilayer ceramic capacitors have been manufactured by many techniques because electronic devices have been miniaturized and multilayer ceramic capacitors have been miniaturized.
従来の積層磁器コンデンサは、誘電体層と導電体層と
を積層し、誘電体層の高誘電率を利用して、コンデンサ
とするものである。このようなコンデンサの絶縁破壊電
圧(耐電圧)は、その誘電体層の間隔と誘電体の特性に
より決まる。In a conventional laminated ceramic capacitor, a dielectric layer and a conductive layer are laminated, and a capacitor is formed by utilizing the high dielectric constant of the dielectric layer. The dielectric breakdown voltage (withstand voltage) of such a capacitor is determined by the distance between the dielectric layers and the characteristics of the dielectric.
従って、積層磁器コンデンサの絶縁破壊電圧を高める
ためには、コンデンサの内部電極の間隔を広げることし
かできなかった。Therefore, the only way to increase the dielectric breakdown voltage of the laminated ceramic capacitor is to increase the distance between the internal electrodes of the capacitor.
[発明が解決しようとする問題点] 本発明の目的は、積層磁器コンデンサの内部電極間の
間隔を増大せずに、耐電圧、即ち、絶縁破壊電圧を高め
ることができる積層磁器コンデンサの構造を提供するこ
とである。従って、本発明は、コンデンサ耐電圧性能を
向上させ、小型で絶縁破壊電圧の高い積層磁器コンデン
サを提供することを目的とする。[Problems to be Solved by the Invention] An object of the present invention is to provide a laminated ceramic capacitor having a structure capable of increasing a withstand voltage, that is, a dielectric breakdown voltage, without increasing a distance between internal electrodes of the laminated ceramic capacitor. To provide. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a small-sized laminated ceramic capacitor having a high withstand voltage, improving the withstand voltage performance of the capacitor.
[発明の構成] [問題点を解決するための手段] 本発明の要旨とするものは、誘電体層と導電体電極層
を積層し、配置し、静電容量を形成するための複数個の
内部電極を有し、各内部電極は、一対の外部電極に交互
に接続しており、各々の内部電極は、交互に、一方及び
他方の外部電極から他方及び一方の外部電極に向かっ
て、互いに接続しないように、且つ重なり部分を形成す
るように対状に形成されている積層磁器コンデンサにお
いて、交互に延びている内部電極の間にある誘電体層中
に、前記の外部電極のどちらとも接続されていなく、前
記の交互に延びている内部電極の重なり部分の末端部周
辺に相当する位置に形成された環状フロート電極層を、
前記内部電極間に設けてなることを特徴とする前記積層
磁器コンデンサである。[Constitution of the Invention] [Means for Solving the Problems] The gist of the present invention is to form a plurality of layers for stacking and arranging a dielectric layer and a conductor electrode layer and forming a capacitance. It has an internal electrode, and each internal electrode is alternately connected to a pair of external electrodes, and each internal electrode is alternately connected from one and the other external electrode toward the other and the one external electrode. In a laminated ceramic capacitor formed in pairs so as not to connect to each other and to form an overlapped portion, both of the external electrodes are connected to the dielectric layer between the internal electrodes extending alternately. Not having, the annular float electrode layer formed at a position corresponding to the periphery of the end portion of the overlapping portion of the alternately extending internal electrode,
The multilayer ceramic capacitor is provided between the internal electrodes.
本発明の積層磁器コンデンサの構造は、磁器誘電体
層、内部電極層及び外部に接続するための外部電極で構
成され、その内部電極層の間に、他のいかなる電極、導
電体にも接続していないフロート電極を、該内部電極の
末端部周辺に相当する位置に設けたものである。The structure of the multilayer ceramic capacitor of the present invention is composed of a ceramic dielectric layer, an internal electrode layer and an external electrode for connection to the outside, and any other electrode or conductor is connected between the internal electrode layers. The floating electrode not provided is provided at a position corresponding to the periphery of the end of the internal electrode.
一般的に云えば、積層磁器コンデンサの内部電極構造
と絶縁破壊電圧の関係は、次のようなものである。Generally speaking, the relationship between the internal electrode structure of a multilayer ceramic capacitor and the breakdown voltage is as follows.
第1図に積層磁器コンデンサの代表的なものの構造を
示す。1は誘電体であり、2及び2′は内部電極層であ
り、3は外部電極層である。このような構造において、
内部電極層間隔をd、誘電体の絶縁破壊電界強度をE、
絶縁破壊電圧をVとすれば、一般的に、 V=Ed=Adn+1 ……(1) が成立しる。ここでA、nっは誘電体の有する定数であ
り、n=−0.7〜0.0の範囲であることが知られている。FIG. 1 shows the structure of a typical laminated ceramic capacitor. 1 is a dielectric, 2 and 2 'are internal electrode layers, and 3 is an external electrode layer. In such a structure,
The internal electrode layer interval is d, the dielectric breakdown electric field strength of the dielectric is E,
Assuming that the dielectric breakdown voltage is V, V = Ed = Ad n + 1 (1) is generally satisfied. Here, A and n are constants of the dielectric, and it is known that n is in the range of -0.7 to 0.0.
この式(1)により、dが大きくなれば絶縁破壊電圧
は高くなる。従って、絶縁破壊電圧を高めるための最も
簡単な方法は内部電極間隔を大きくすることである。According to the equation (1), as d increases, the dielectric breakdown voltage increases. Therefore, the easiest way to increase the breakdown voltage is to increase the internal electrode spacing.
亦、このような積層磁器コンデンサ構造においては絶
縁破壊は、内部電極構造の電極末端部に電荷が集中し、
不平等電界が誘電体層中に生じるために、その電極末端
部で生じることが多い。Also, in such a laminated ceramic capacitor structure, the electric breakdown concentrates on the electrode end of the internal electrode structure,
Since an unequal electric field is generated in the dielectric layer, it often occurs at the end of the electrode.
このように構造の内部電極では、内部電極間隔dを大
きくするほど、内部電極末端部に電荷が集中するように
なり、内部電極末端部とこれに対向する内部電極との間
で絶縁破壊が生じ易い。In the internal electrode having such a structure, as the interval d between the internal electrodes is increased, the electric charge is concentrated on the terminal of the internal electrode, and the dielectric breakdown occurs between the terminal of the internal electrode and the internal electrode opposed thereto. easy.
この点に鑑みて、本発明では、内部電極の間のうち、
電極末端部に当る誘電体層内に、“フロート電極”を設
けることにより、効率よく、絶縁破壊電圧を高めたもの
である。In view of this point, in the present invention, among the internal electrodes,
By providing a "float electrode" in the dielectric layer corresponding to the terminal of the electrode, the dielectric breakdown voltage is efficiently increased.
一般的には、絶縁破壊電圧を高めようとして、内部電
極間隔をa倍にしたとしても、絶縁破壊電圧は、式
(1)により増加するために、a倍とはならなく、それ
より低い値となる。そのために、所定の耐電圧性能を得
るためには更に内部電極間隔を広げなければならない。
一方、内部電極間隔を広げるほどに、容量に対する誘電
体の体積比率が大きくなる。従って、内部電極構造では
絶縁破壊電圧を高くするためには、コンデンサ寸法は著
しく大きくならざるを得ない。In general, even if the interval between the internal electrodes is increased by a times in order to increase the breakdown voltage, the breakdown voltage is increased by the equation (1), so that the breakdown voltage does not become a times, but a lower value. Becomes Therefore, in order to obtain a predetermined withstand voltage performance, the interval between the internal electrodes must be further increased.
On the other hand, the volume ratio of the dielectric to the capacitance increases as the interval between the internal electrodes increases. Therefore, in order to increase the dielectric breakdown voltage in the internal electrode structure, the size of the capacitor must be significantly increased.
特に、積層磁器コンデンサにおいて、内部電極の末端
部に電荷が集中するために、この内部電極末端部の周辺
で絶縁破壊が起こり易い。そのために、本発明により、
この内部電極末端周辺部に相当する誘電体層の中に“フ
ロート電極”を設けることにより、絶縁破壊が生じにく
い構造が得られる。In particular, in a laminated ceramic capacitor, electric charges are concentrated on the terminal portions of the internal electrodes, so that dielectric breakdown easily occurs around the terminal portions of the internal electrodes. Therefore, according to the present invention,
By providing the "float electrode" in the dielectric layer corresponding to the peripheral portion of the end of the internal electrode, a structure in which dielectric breakdown hardly occurs can be obtained.
即ち、本発明では、外部電極とは全く接続されない内
部電極(これを“フロート電極”と名ずける)を、コン
デンサ内部電極の間の内部電極末端部周辺、周辺部に相
当する誘電体層内に挿入設置することにより、次に説明
するようにコンデンサ絶縁破壊電圧を高めることができ
る。That is, in the present invention, an internal electrode that is not connected to the external electrode at all (referred to as a “float electrode”) is formed in the dielectric layer corresponding to the periphery of the internal electrode end between the capacitor internal electrodes and the peripheral portion. , The capacitor breakdown voltage can be increased as described below.
積層磁器コンデンサの2つの内部電極の間隔dの誘電
体層にt個の“フロート電極”を挿入設置する。そうす
ると、誘電体層がt+1個の層に分割されるので、式
(1)より、 V=A(t+1)×(d/(t+1))n+1=(t+1)×(1/(t+1))n+1Adn+1 従って、“フロート電極”を挿入することにより絶縁
破壊電圧は、 (t+1)×(1/(t+1))n+1倍になるが、n=−0.7〜0である
から、 (t+1)×(1/(t+1))n+1>1 となり絶縁破壊電圧を内部電極間隔を広げることなく、
高めることができる。T "float electrodes" are inserted and installed in the dielectric layer at a distance d between two internal electrodes of the laminated ceramic capacitor. Then, since the dielectric layer is divided into t + 1 layers, from equation (1), V = A (t + 1) × (d / (t + 1)) n + 1 = (t + 1) × (1 / (t + 1)) n + 1 Ad n + 1 Therefore, by inserting a “float electrode”, the breakdown voltage becomes (t + 1) × (1 / (t + 1)) n + 1 However, since n = −0.7 to 0, (t + 1) × (1 / (t + 1)) n + 1 > 1 and the breakdown voltage is increased without increasing the distance between the internal electrodes.
Can be enhanced.
更に、“フロート電極”を挿入することにより内部電
極末端部での不平等電界を緩和することが可能である。Furthermore, by inserting a “float electrode”, it is possible to reduce the uneven electric field at the end of the internal electrode.
この“フロート電極”挿入の位置は、積層磁器コンデ
ンサにおいて、絶縁破壊は主にその内部電極の末端部及
びその周辺部において、生じるものである。即ち、電極
末端部及びその周囲部においては電界密度が高まり易
く、電荷も集中するところである。そのために、“フロ
ート電極”は、この電極末端部及びその周囲部にのみ設
けるだけで、絶縁破壊電圧の向上という目的が達成られ
ることを見出した。This "float electrode" insertion position is such that in a laminated ceramic capacitor, dielectric breakdown mainly occurs at the end of the internal electrode and its peripheral portion. That is, the electric field density tends to increase at the electrode end portion and its peripheral portion, and the charges are also concentrated. Therefore, it has been found that the purpose of improving the dielectric breakdown voltage can be achieved only by providing the “float electrode” only at the end portion of the electrode and its peripheral portion.
本発明に用いられ誘電体材料としては、好適には、ア
ルミナ、ムライト、ステアタイト、フォルステライト、
ベリリア、チタニア、窒化アルミニウム、チタン酸バリ
ウムに代表されペロブスカイト構造を有する物質などを
用いる。As the dielectric material used in the present invention, preferably, alumina, mullite, steatite, forsterite,
A substance having a perovskite structure, such as beryllia, titania, aluminum nitride, and barium titanate, is used.
フロート電極層形成に用いる材料としては、金、銀、
銅、ニッケル、白金、パラジウム又はその組合わせなど
導電性金属であり、そのペーストをスクリーン印刷法な
どにより磁器基板表面上に或いは磁器形成のときにその
中に形成することができる。Materials used for forming the float electrode layer include gold, silver,
It is a conductive metal such as copper, nickel, platinum, palladium or a combination thereof, and its paste can be formed on the surface of a porcelain substrate by screen printing or the like or in porcelain when forming.
本発明により得られる積層磁器コンデンサは、例え
ば、電子機器等に使用される混成集積回路用、その他に
使用され得る。The laminated ceramic capacitor obtained by the present invention can be used for, for example, a hybrid integrated circuit used in electronic equipment and the like.
次に本発明の積層磁器コンデンサについて実施例によ
り説明するが、本発明は、次の実施例のものに限定され
るものではない。Next, the laminated ceramic capacitor of the present invention will be described with reference to examples, but the present invention is not limited to the following examples.
[実施例] 本発明による“フロート電極”を用いた積層磁器コン
デンサの内部構造を、第2図に示す。1は誘電体、2、
2′は内部電極、3は外部電極、4は“フロート電極”
である。電極層2と2′との間隔を46μmで、誘電体層
をPLZT系誘電体により作製した。第2図に示すようにそ
の内部電極2と2′との間で、各内部電極の末端部に相
当する位置すべてにわたり、誘電体層内に、“フロート
電極”を挿入設置した場合(第2図)と、“フロート電
極”を設けない場合(第1図)について、その静電容量
(pF)と誘電正接(%)、絶縁抵抗(×1011Ω)と絶縁
破壊電圧(V)を測定した。Embodiment FIG. 2 shows the internal structure of a laminated ceramic capacitor using a “float electrode” according to the present invention. 1 is a dielectric, 2
2 'is an internal electrode, 3 is an external electrode, 4 is a "float electrode"
It is. The distance between the electrode layers 2 and 2 'was 46 μm, and the dielectric layer was made of a PLZT-based dielectric. As shown in FIG. 2, a "float electrode" is inserted and installed in the dielectric layer over the entire position corresponding to the end of each internal electrode between the internal electrodes 2 and 2 '(see FIG. 2). Figure) and the case without the “float electrode” (Figure 1), measure the capacitance (pF), dielectric loss tangent (%), insulation resistance (× 10 11 Ω), and dielectric breakdown voltage (V) did.
“フロート電極”がない場合は、静電容量7.12pFで、
誘電正接が0.11%、絶縁抵抗が2.79×1012Ωが、絶縁破
壊電圧910Vであった。これに対して、“フロート電極"4
を電極層間に図示のように、ほぼ真ん中に挿入した場合
は、静電容量6.45pFで、誘電正接が0.09%、絶縁抵抗2.
75×1012Ωで、絶縁破壊電圧は1410Vであった。If there is no “float electrode”, the capacitance is 7.12pF,
The dielectric loss tangent was 0.11%, the insulation resistance was 2.79 × 10 12 Ω, and the dielectric breakdown voltage was 910V. In contrast, the “float electrode” 4
When inserted between the electrode layers almost in the middle as shown in the figure, the capacitance is 6.45 pF, the dielectric loss tangent is 0.09%, and the insulation resistance is 2.
It was 75 × 10 12 Ω and the dielectric breakdown voltage was 1410V.
以上の測定結果から、本発明の積層磁器コンデンサに
よる“フロート電極”構造を用いることにより、絶縁破
壊電圧が著しく向上したものであることが認められる。From the above measurement results, it is recognized that the use of the “float electrode” structure using the laminated ceramic capacitor of the present invention significantly improves the dielectric breakdown voltage.
[発明の効果] 本発明の積層磁器コンデンサは、上記のような構成を
とることにより、 第1に、“フロート電極”を用いるので、内部電極層間
の間隔を変えることなく、絶縁破壊電圧を高め、電気的
な弱点を強化する効果が得られた。[Effects of the Invention] The multilayer ceramic capacitor of the present invention has the above-described configuration. First, since the "float electrode" is used, the dielectric breakdown voltage can be increased without changing the interval between the internal electrode layers. The effect of strengthening the electrical weakness was obtained.
第2に、更に、“フロート電極”を挿入する枚数を増
やすことで高耐電圧が得られる積層磁器コンデンサの製
造が可能になったこと、 などの技術的効果が得られた。Secondly, technical effects such as the fact that it is possible to manufacture a laminated ceramic capacitor capable of obtaining a high withstand voltage by increasing the number of insertable "float electrodes" are obtained.
第1図は、従来の積層磁器コンデンサの構造を示す平面
図、断面図及び端面図である。 第2図は、本発明の積層磁器コンデンサの構造を示す平
面図、断面図及び端面図である。 [主要部分の符号の説明] 1……誘電体 2、2……内部電極層 3……端面外部電極 4……“フロート電極”FIG. 1 is a plan view, a sectional view and an end view showing the structure of a conventional laminated ceramic capacitor. FIG. 2 is a plan view, a sectional view, and an end view showing the structure of the laminated ceramic capacitor of the present invention. [Description of Signs of Main Parts] 1... Dielectric 2, 2... Internal electrode layer 3... End face external electrode 4.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 石口 功 埼玉県秩父郡横瀬町大字横瀬2270番地 三菱鉱業セメント株式会社セラミックス 工場内 (56)参考文献 実開 昭54−5755(JP,U) 実開 昭60−99522(JP,U) ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Isao Ishiguchi 2270 Yokoze, Yokoze-cho, Chichibu-gun, Saitama Prefecture Mitsubishi Mining Cement Co., Ltd. Ceramics Factory Showa 60-99522 (JP, U)
Claims (1)
し、静電容量を形成するための複数個の内部電極を有
し、各内部電極は、一対の外部電極に交互に接続してお
り、各々の内部電極は、交互に、一方及び他方の外部電
極から他方及び一方の外部電極に向かって、互いに接続
しないように、且つ重なり部分を形成するように対状に
形成されている積層磁器コンデンサにおいて、 交互に延びている内部電極の間にある誘電体層中に、前
記の外部電極のどちらとも接続されていなく、前記の交
互に延びている内部電極の重なり部分の末端部内外周辺
に相当する位置に形成された環状フロート電極層を、前
記内部電極間に設けてなることを特徴とする前記積層磁
器コンデンサ。1. A dielectric layer and a conductor electrode layer are stacked and arranged, and a plurality of internal electrodes for forming a capacitance are provided. Each internal electrode is alternately connected to a pair of external electrodes. Each of the internal electrodes is alternately formed in pairs from one and the other external electrode toward the other and the one external electrode so as not to be connected to each other and to form an overlapping portion. In the laminated ceramic capacitor, the end portion of the overlapping portion of the alternately extending internal electrodes is not connected to any of the external electrodes in the dielectric layer between the alternately extending internal electrodes. The multilayer ceramic capacitor, wherein an annular float electrode layer formed at a position corresponding to the inner and outer periphery is provided between the internal electrodes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63043333A JP2590357B2 (en) | 1988-02-27 | 1988-02-27 | Multilayer ceramic capacitors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63043333A JP2590357B2 (en) | 1988-02-27 | 1988-02-27 | Multilayer ceramic capacitors |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01220422A JPH01220422A (en) | 1989-09-04 |
JP2590357B2 true JP2590357B2 (en) | 1997-03-12 |
Family
ID=12660907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63043333A Expired - Lifetime JP2590357B2 (en) | 1988-02-27 | 1988-02-27 | Multilayer ceramic capacitors |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2590357B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007139165A1 (en) | 2006-05-31 | 2007-12-06 | Soshin Electric Co., Ltd. | Film capacitor |
US7929271B2 (en) | 2006-04-28 | 2011-04-19 | Soshin Electric Co., Ltd. | Film capacitor |
CN101211693B (en) * | 2006-12-29 | 2012-06-27 | 三星电机株式会社 | Capacitor and multi-layer board embedding the capacitor |
KR20200054996A (en) * | 2017-09-15 | 2020-05-20 | 알레그로 마이크로시스템스, 엘엘씨 | Signal isolator integrated circuit package |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7215530B2 (en) * | 2005-06-30 | 2007-05-08 | Intel Corporation | High ESR low ESL capacitor |
US9646766B2 (en) * | 2012-06-14 | 2017-05-09 | Uchicago Argonne, Llc | Method of making dielectric capacitors with increased dielectric breakdown strength |
JP7032916B2 (en) | 2017-12-04 | 2022-03-09 | 太陽誘電株式会社 | Ceramic capacitors and their manufacturing methods |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS545755U (en) * | 1977-06-15 | 1979-01-16 | Murata Manufacturing Co | The multilayer capacitor for high voltage |
JPS6099522U (en) * | 1983-12-13 | 1985-07-06 | 株式会社村田製作所 | multilayer capacitor |
-
1988
- 1988-02-27 JP JP63043333A patent/JP2590357B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7929271B2 (en) | 2006-04-28 | 2011-04-19 | Soshin Electric Co., Ltd. | Film capacitor |
WO2007139165A1 (en) | 2006-05-31 | 2007-12-06 | Soshin Electric Co., Ltd. | Film capacitor |
CN101211693B (en) * | 2006-12-29 | 2012-06-27 | 三星电机株式会社 | Capacitor and multi-layer board embedding the capacitor |
KR20200054996A (en) * | 2017-09-15 | 2020-05-20 | 알레그로 마이크로시스템스, 엘엘씨 | Signal isolator integrated circuit package |
KR102519567B1 (en) | 2017-09-15 | 2023-04-10 | 알레그로 마이크로시스템스, 엘엘씨 | Signal Isolator Integrated Circuit Package |
Also Published As
Publication number | Publication date |
---|---|
JPH01220422A (en) | 1989-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3863777B2 (en) | Low-capacity multilayer varistor | |
US7420795B2 (en) | Multilayer capacitor | |
US6760215B2 (en) | Capacitor with high voltage breakdown threshold | |
JP2012248882A (en) | Improved high voltage capacitor | |
JP4462194B2 (en) | Multilayer feedthrough capacitor array | |
JP2008251628A (en) | Penetration type laminated layer capacitor | |
JP2590357B2 (en) | Multilayer ceramic capacitors | |
US7012501B2 (en) | Electrical multi-layer component | |
US7535694B2 (en) | Feedthrough multilayer capacitor | |
JP2000114005A (en) | Ceramic electronic component | |
CN112530699A (en) | Multilayer capacitor | |
US8098477B2 (en) | Feedthrough multilayer capacitor with capacitance components connected in parallel | |
JPH01220421A (en) | Laminated ceramic capacitor | |
JP2004194170A (en) | Noise filter | |
JP3031957B2 (en) | Noise filter | |
US10432165B2 (en) | Balanced/unbalanced converter | |
JP4412386B2 (en) | Feed-through multilayer capacitor | |
JPH08273977A (en) | Stacked layer capacitor | |
JP2018129435A (en) | Multilayer feed-through capacitor and electronic component device | |
KR20180112647A (en) | Multilayered electronic component | |
KR20160058509A (en) | Multi-layer ceramic capacitor | |
JPH0496401A (en) | Delay line | |
JPH11186100A (en) | Nonlinear dielectric element | |
JPH0640562B2 (en) | Hybrid integrated circuit device | |
JP2002313674A (en) | Lamination type capacitor |