JP2585770B2 - Fuel cell and method of manufacturing the same - Google Patents

Fuel cell and method of manufacturing the same

Info

Publication number
JP2585770B2
JP2585770B2 JP63317662A JP31766288A JP2585770B2 JP 2585770 B2 JP2585770 B2 JP 2585770B2 JP 63317662 A JP63317662 A JP 63317662A JP 31766288 A JP31766288 A JP 31766288A JP 2585770 B2 JP2585770 B2 JP 2585770B2
Authority
JP
Japan
Prior art keywords
fuel cell
reaction gas
passage
gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63317662A
Other languages
Japanese (ja)
Other versions
JPH02165569A (en
Inventor
昇平 魚住
雅教 山口
武夫 山形
泰行 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63317662A priority Critical patent/JP2585770B2/en
Publication of JPH02165569A publication Critical patent/JPH02165569A/en
Application granted granted Critical
Publication of JP2585770B2 publication Critical patent/JP2585770B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 本発明は燃料電池に係り、特に電極内の温度分布を均
等にするに好適な電極の構造、その製造方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell, and more particularly to a structure of an electrode suitable for equalizing temperature distribution in the electrode and a method of manufacturing the electrode.

〔従来の技術〕[Conventional technology]

従来、燃料電池の性能向上、温度分布の一様化あるい
は長寿命化の施策として、第16図に示す特開昭56−1344
73号公報の技術、第17図に示す特開昭62−40168号公報
の技術が示すように、反応ガスを燃料電池電極の全域、
あるいは部分的に蛇行させ、前者はガス利用率の向上に
よる性能向上、後者は温度分布の一様化を図って来た。
Conventionally, as a measure for improving the performance of a fuel cell, making the temperature distribution uniform or extending the life, Japanese Patent Application Laid-Open No. 56-1344 shown in FIG.
As shown in the technology of No. 73, the technology of JP-A-62-40168 shown in FIG.
Alternatively, the gasket is partially meandered, and the former has attempted to improve the performance by improving the gas utilization rate, and the latter has attempted to make the temperature distribution uniform.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

これら従来技術において、前者はリブ2間で形成され
る流路50の入口側に多量のガスが導入されるので、反応
ガス分布が高く維持され、起電力が大きく大電流が流れ
るため、温度分布が拡大する。また、後者は流路50を直
線部と蛇行部に分け、両者が隣接するようにしている
が、等価的には電極を2分しているのみで、本質的な温
度分布の改善にはなっていない。燃料電池の開発動向と
しては、低コスト、コンパクト化のために、益々電極寸
法の大形化、大電流密度化が進む傾向にある。このため
温度分布の均等化を図り、電極面内の性能の均等化、電
池寿命の長期化を図る必要がある。
In these prior arts, in the former case, a large amount of gas is introduced into the inlet side of the flow path 50 formed between the ribs 2, so that the reactive gas distribution is maintained high, and the electromotive force is large and a large current flows. Expands. In the latter, the flow path 50 is divided into a straight section and a meandering section, and both are adjacent to each other. However, equivalently, only the electrode is divided into two, and the temperature distribution is essentially improved. Not. As the development trend of the fuel cell, there is a tendency that the size of the electrode is increased and the current density is increased in order to reduce the cost and the size of the fuel cell. Therefore, it is necessary to equalize the temperature distribution, equalize the performance in the electrode plane, and prolong the battery life.

本発明の目的は、上記問題点を解決し、温度分布が均
等で、長寿命を達成する燃料電池を提供し、燃料電池の
単純な工程で機能的な製造方法を提供し、温度分布をよ
り一層均等化する制御方法を提供することにある。
An object of the present invention is to solve the above problems, provide a fuel cell having a uniform temperature distribution and a long life, provide a functional manufacturing method with a simple process of the fuel cell, and improve the temperature distribution. It is an object of the present invention to provide a control method for further equalizing.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的は、反応ガスを導入する通路を電極面内部に
設けた燃料電池において、前記反応ガス通路が単一通路
で少なくとも2回前記反応ガスの流れ方向が反転する部
分を有し、その複数の反応ガス通路を隣接して前記電極
面内部に配置した燃料電池を提供し、電池反応により発
電を行う単位であるユニットセルの複数個を熱融着性樹
脂により溶着し冷却器を介して前記ユニットセルの複数
個を交互に積層する燃料電池の製造方法を提供し、反応
ガスの燃料電池出口温度と燃料電池負荷電流値を計測し
反応ガスの燃料電池入口温度を前記反応ガスの燃料電池
出口温度よりも低い値になるように前記反応ガスの燃料
電池入口に設けた熱交換器へ供給する冷媒または熱媒を
制御する燃料電池の制御方法を提供することにより達成
される。
The object is to provide a fuel cell in which a passage for introducing a reactant gas is provided inside an electrode surface, wherein the reactant gas passage has a portion in which a single gas passage reverses the flow direction of the reactant gas at least twice. Providing a fuel cell in which a reaction gas passage is disposed adjacent to the inside of the electrode surface, and a plurality of unit cells, which are units for generating power by a cell reaction, are welded with a heat-fusible resin and the unit is passed through a cooler. Provided is a method of manufacturing a fuel cell in which a plurality of cells are alternately stacked, measuring a fuel cell outlet temperature and a fuel cell load current value of a reactant gas, and adjusting a fuel cell inlet temperature of the reactant gas to a fuel cell outlet temperature of the reactant gas. This is achieved by providing a fuel cell control method for controlling a refrigerant or a heat medium to be supplied to a heat exchanger provided at a fuel cell inlet of the reaction gas so as to have a lower value.

〔作用〕[Action]

電極面内において反応ガス通路の入口では反応ガスの
濃度が高いので反応による発熱が多く温度は高くなる
が、隣接する反応ガス通路は反応ガスが流れ方向を反転
して戻る迄に消費され低濃度となっているので発熱が少
なく温度は低い。このように反応ガス通路の全ての部分
で濃度が高く温度の高い部分と濃度が低く温度の低い部
分が隣接するので、両反応ガス通路の温度は全ての部分
で平均化される。また反応ガス通路は電極面内に複数の
並列流として配置されるので電極面内全域にわたって平
均化される。
The reaction gas concentration is high at the entrance of the reaction gas passage in the electrode surface, so the heat generated by the reaction is high due to the high concentration of the reaction gas, and the temperature rises. The heat is low and the temperature is low. As described above, since the high-concentration high-temperature portion and the low-concentration low-temperature portion are adjacent to each other in all portions of the reaction gas passage, the temperatures of both reaction gas passages are averaged in all portions. In addition, the reaction gas passages are arranged as a plurality of parallel flows in the electrode surface, so that they are averaged over the entire area in the electrode surface.

また燃料電池を構成するユニットセルの電極、セパレ
ータを同様な構造とし複数のユニットセルを熱融着によ
り固定してブロック化し、そのブロックと冷却器とを相
互に積層することで高さ方向に位置ずれを生ずることが
なくなる。それによりユニットセル間の対向する位置の
反応ガスを異なる濃度として温度分布の均等化を図る事
ができる。更に、反応ガスの燃料電池入口温度を出口温
度よりも低い値になるように燃料電池入口に設けた温度
制御手段を制御することにより、反応ガス通路の入口付
近の温度の突出を抑え、更に温度上昇を平均化すること
が出来る。
Also, the electrodes and separators of the unit cells constituting the fuel cell have the same structure, a plurality of unit cells are fixed by heat fusion to form a block, and the block and the cooler are mutually laminated to position in the height direction. No deviation occurs. This makes it possible to equalize the temperature distribution by setting the reaction gas at the opposed position between the unit cells to different concentrations. Further, by controlling the temperature control means provided at the fuel cell inlet so that the fuel gas inlet temperature of the reaction gas is lower than the outlet temperature, the temperature protrusion near the inlet of the reaction gas passage is suppressed, and the temperature is further reduced. The rise can be averaged.

〔実施例〕〔Example〕

以下図面を参照しながら本発明の実施例を詳述する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の一実施例を示す例えばリン酸塩型
ユニットセルの構成を示す。ユニットセル1a、1bは、リ
ブ2を有するリブ付電極とガスシールを併用する周辺部
3とで構成される空気極4a、4bと、これとほぼ同様に構
成される燃料極5a、5bと、両極間に挾持された触媒6、
マトリックス7とで構成されている。実際の発電装置と
しての燃料電池は、ユニットセル1a、1bがセパレータ8
を介して交互に積層されている。
FIG. 1 shows a configuration of, for example, a phosphate type unit cell showing one embodiment of the present invention. The unit cells 1a and 1b include air electrodes 4a and 4b each including a ribbed electrode having a rib 2 and a peripheral portion 3 that uses a gas seal in combination, and fuel electrodes 5a and 5b each having substantially the same configuration as the above. Catalyst 6 sandwiched between both poles,
And a matrix 7. In a fuel cell as an actual power generation device, the unit cells 1a and 1b
Are alternately stacked.

このように構成して反応ガスを導入し発電を行うわけ
であるが、燃料側も同じ動作をするので、空気側で説明
する。ユニットセル1aに導入された空気9aは、矢印で示
すようにガス通路51a、52a、53aを経由し、セル内を2
回反転して系外に排出される。一方ユニットセル1bに導
入された空気9bは、セル内でのガス流の反転の向きがユ
ニットセル1aとは逆になるように構成されているので、
ユニットセル1aの出口側ガス通路53aと対応するガス通
路53bから入り、52b、51bを経由してセル外に排出され
るようになっている。なお、並列に配列している他のガ
ス通路も全て同様に構成されている。
With this configuration, the reaction gas is introduced to generate electric power, but the fuel side operates in the same manner. The air 9a introduced into the unit cell 1a passes through the gas passages 51a, 52a, 53a as indicated by arrows, and flows through the cell 2a.
It is inverted and discharged out of the system. On the other hand, the air 9b introduced into the unit cell 1b is configured such that the direction of reversal of the gas flow in the cell is opposite to that of the unit cell 1a,
The gas enters the gas passage 53b corresponding to the outlet gas passage 53a of the unit cell 1a, and is discharged out of the cell via 52b and 51b. The other gas passages arranged in parallel have the same configuration.

以上のようにして継続的に発電を行うと、電池反応に
伴なう発熱によりセルの温度が上昇する。一般には反応
ガス濃度の高い入口側ほど反応量が多いので多くの電流
が流れ、温度上昇が大きくなり、経時的な性能低下が大
きくなる。また、反応ガスの出口側は水素、酸素の反応
による生成水により水蒸気分圧が非常に高くなり、マト
リックス中のリン酸濃度を下げ、腐食性の高い状態とな
り、リブ付電極、セパレータ等の腐食を加速する。
When power is continuously generated as described above, the temperature of the cell rises due to the heat generated by the battery reaction. Generally, the higher the reaction gas concentration, the larger the amount of reaction on the inlet side, so that a large amount of current flows, the temperature rises greatly, and the performance decreases over time. In addition, at the outlet side of the reaction gas, the partial pressure of water vapor becomes extremely high due to the water generated by the reaction of hydrogen and oxygen, the concentration of phosphoric acid in the matrix is lowered, the state becomes highly corrosive, and corrosion of the electrode with ribs, separators, etc. To accelerate.

第1図の発明について、A−A、B−Bの位置で各ガ
ス通路部に対応する位置の温度上昇について検討する
と、A−Aと交差するガス通路51aの位置はガス濃度が
高く温度上昇が大きくなるが、隣接するガス通路52aで
はガス濃度が低下しているので、温度上昇が小さいた
め、互に平均化される。以下A−A上の各通路全てが同
様に動作する。つぎに、B−B上について見ると、最も
温度上昇の小さいガス通路53a上の温度は、隣接する比
較的ガス濃度の高いガス通路52aによって温度が高めら
れ平均化する。以下B−B上の各通路全てが同様に動作
する。
Considering the temperature rise at the positions corresponding to the gas passages at the positions AA and BB in the invention of FIG. 1, the position of the gas passage 51a crossing AA has a high gas concentration and the temperature rise. However, since the gas concentration in the adjacent gas passages 52a is low and the temperature rise is small, they are averaged together. Hereinafter, all the paths on AA operate in the same manner. Next, looking at BB, the temperature on the gas passage 53a where the temperature rise is the smallest is increased by the adjacent gas passage 52a having a relatively high gas concentration, and is averaged. Hereinafter, all of the passages on BB operate similarly.

また、空気極4a、4bのガス通路は、反転の向きが設料
極5a、5bと逆になっているので、空気極4aの最も温度の
高くなるガス通路51aとA−Aの交点部は、空気極4bの
比較的温度の低いガス通路51bとA−Aとの交点部によ
って温度が下げられる。一方空気極4aの最も温度の低い
ガス通路53aとB−Bの交点部は、空気極4bの比較的温
度の高いガス通路53bとB−Bとの交点部によって温度
が上げられる。従ってさらにセル内の温度分布が均等化
される。
In addition, since the gas passages of the air electrodes 4a and 4b are reversed in the reverse direction to the provision electrodes 5a and 5b, the intersection of the gas passage 51a and the A-A where the temperature of the air electrode 4a becomes the highest is The temperature is lowered by the intersection of AA with the gas passage 51b of the air electrode 4b having a relatively low temperature. On the other hand, the temperature at the intersection of the gas passage 53a having the lowest temperature of the air electrode 4a and BB is raised by the intersection of the gas passage 53b having a relatively high temperature of the air electrode 4b and BB. Therefore, the temperature distribution in the cell is further equalized.

本実施例の温度分布を第16図に示した従来例と比較す
ると、本実施例の温度分布を第2図、従来例第16図の温
度分布を第3図に示すようになり、温度幅は従来例の約
43%に低減した。
When the temperature distribution of this embodiment is compared with the conventional example shown in FIG. 16, the temperature distribution of this embodiment is shown in FIG. 2, and the temperature distribution of FIG. 16 of the conventional example is shown in FIG. Is about
Reduced to 43%.

また、マトリックス中のリン酸濃度はH3PO4比で、第1
6図の従来例では反応ガスの入口部においてH3PO4がP2O5
に変化するので103%、出口部92%であったが、本実施
例では、水蒸気分圧の異るガス通路が隣接することによ
り水蒸気が多孔質のガス通路壁を移動して平均化され99
〜96%の範囲となり、従来の濃度幅の約25%にできた。
Further, the phosphate concentration in the matrix in H 3 PO 4 ratio, the first
In the conventional example shown in FIG. 6, H 3 PO 4 is converted to P 2 O 5 at the inlet of the reaction gas.
However, in the present embodiment, since the gas passages having different partial pressures of the steam are adjacent to each other, the water vapor moves along the porous gas passage wall and is averaged.
The range was about 96%, which was about 25% of the conventional concentration range.

また、この電池の経時特性は第4図に示すように、電
圧低下率が従来例の約1/2にできることがわかった。
In addition, as shown in FIG. 4, the time-dependent characteristics of this battery were found to be able to reduce the voltage drop rate to about half that of the conventional example.

第5図は同じユニットセルを積層した例である。第6
図はその温度分布を示す。ユニットセル間の均等化効果
がないためガス通路51aとA−Aとの交差部の温度が高
く、ガス通路53aとB−Bとの交差部の温度が低くなる
傾向があるが、温度幅は従来例の55%に低減した。同時
にこの実施例では同じ形状の電極を重ねて用いることが
できるので安価に燃料電池を製造できる。また、リン酸
濃度については、主として反応ガス中の水蒸気分圧が支
配的になるので、第1図の実施例と同じ濃度幅にでき
た。
FIG. 5 shows an example in which the same unit cells are stacked. Sixth
The figure shows the temperature distribution. Since there is no equalizing effect between the unit cells, the temperature at the intersection between the gas passages 51a and AA tends to be high, and the temperature at the intersection between the gas passages 53a and BB tends to be low. Reduced to 55% of the conventional example. At the same time, in this embodiment, electrodes of the same shape can be overlapped and used, so that a fuel cell can be manufactured at low cost. In addition, the concentration of phosphoric acid was made the same as that of the embodiment shown in FIG. 1 because the partial pressure of water vapor in the reaction gas became dominant.

第7図はマニホルド10にガス流の反転機能を持たせた
実施例で、電極4に流入した空気9aは、マニホルド10に
固着された障壁11によって2回反転した後セル外に排出
される。従ってこの例は第4図と同じ効果が得られる上
に、電極4の形状が非常に単純化されているので製造が
容易となる効果がある。
FIG. 7 shows an embodiment in which the manifold 10 has a function of reversing the gas flow. The air 9a flowing into the electrode 4 is reversed twice by the barrier 11 fixed to the manifold 10, and then discharged out of the cell. Therefore, in this example, the same effect as that of FIG. 4 can be obtained, and the shape of the electrode 4 is very simplified, so that the production becomes easy.

第8図、第9図に本発明の燃料電池の製造方法を示
し、第1図の実施例のユニットセルを積層したものであ
る。積層電池は通常200〜300のユニットセルが積層され
るため、セパレータ8、電極4a、5a等の各パーツがばら
ばらであると積層時位置ずれが生じ、本発明のポイント
であるユニットセル間の対向する位置の反応ガスを異る
濃度として温度分布の均等化を図る目的が達成できない
ことがある。本実施例はこの点を解決したものである。
8 and 9 show a method of manufacturing a fuel cell according to the present invention, in which unit cells of the embodiment shown in FIG. 1 are stacked. Since a stacked battery usually has 200 to 300 unit cells stacked, if the parts such as the separator 8 and the electrodes 4a and 5a are disjointed, misalignment occurs during the stacking, and the opposition between the unit cells, which is the point of the present invention, is considered. It may not be possible to achieve the purpose of equalizing the temperature distribution by setting the reaction gas at different positions to different concentrations. This embodiment solves this point.

通常冷却器18間には5〜8個のユニットセルが積層さ
れるので、このユニットセル1a、1b及びセパレータ8を
ガス通路52a、53a、51b、52bのように積層端面に開口し
ていない部分を用い、四フッ化エチレン・パーフロロア
ルキルビニルエーテル共重合樹脂(以下PFAと略記)な
ど熱融着性樹脂により点付け溶着部16を熱融着し、ブロ
ック17を形成する。得られたブロック17を冷却器18と交
互に積層することで容易に電池の積層が行えるととも
に、点付け溶着によって、例えばガス通路51aと51bの位
置ずれを生じることがないので、所期の目的である温度
分布の均等化を阻害することがなく、単純化されかつ機
能的な燃料電池の製造方法を提供できる。
Normally, 5 to 8 unit cells are stacked between the coolers 18, so that the unit cells 1a, 1b and the separator 8 are not opened at the stacking end face like the gas passages 52a, 53a, 51b, 52b. The spot welding portion 16 is heat-fused with a heat-fusible resin such as a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer resin (hereinafter abbreviated as PFA) to form a block 17. By alternately stacking the obtained blocks 17 with the cooler 18, the batteries can be easily stacked, and the spot welding does not cause displacement of the gas passages 51a and 51b, for example. Thus, a simplified and functional fuel cell manufacturing method can be provided without obstructing the equalization of the temperature distribution.

第10図〜第14図に、ガス流の反転機能を有するリブ付
電極、リブ付セパレータ、及びその製造方法を示す。第
10図にリブ付電極、第11図にリブ付セパレータを示す。
いずれも製造方法はほぼ同様なので、リブ付電極の例に
ついては第12図〜第14図によって説明する。
10 to 14 show a ribbed electrode having a function of reversing a gas flow, a ribbed separator, and a method of manufacturing the same. No.
FIG. 10 shows a ribbed electrode, and FIG. 11 shows a ribbed separator.
Since the manufacturing methods are almost the same in each case, examples of the ribbed electrode will be described with reference to FIGS.

第10図のリブ付電極19はその周辺に延長部22を設けて
おき、これと同じ厚みの額縁状周辺部3cを配置する。こ
の際額縁状周辺部3cの内寸法はリブ付電極19の外寸法よ
り若方大きい方が良い。ついでこれに、周辺部3a、3bを
接着用フィルム20を介して配置し、接着部分を温度320
〜350℃に加熱し、圧力5〜10kg/cm2で加圧し一体に成
形する。
The ribbed electrode 19 in FIG. 10 is provided with an extended portion 22 around its periphery, and a frame-shaped peripheral portion 3c having the same thickness as this is provided. At this time, it is preferable that the inner dimension of the frame-shaped peripheral portion 3c is younger than the outer dimension of the ribbed electrode 19. Then, the peripheral portions 3a and 3b are arranged via the bonding film 20, and the bonded portion is heated to a temperature of 320.
Heat to ~ 350 ° C and pressurize at a pressure of 5-10 kg / cm 2 to form a single piece.

第11図のリブ付セパレータ21は、平板状のセパレータ
8の両面に多孔質のリブ2が直交するように固着され、
かつセパレータ8の寸法はリブ2の長さよりも大きくし
延長部22を設ける。この延長部22に前記リブ付電極の場
合と同様周辺部3a、3bを接着用フィルム20によって熱融
着し一体に成形する。
The ribbed separator 21 of FIG. 11 has a porous rib 2 fixed to both surfaces of a flat separator 8 so as to be orthogonal to each other.
In addition, the dimension of the separator 8 is made larger than the length of the rib 2 and an extension 22 is provided. As in the case of the electrode with ribs, the peripheral portions 3a and 3b are heat-sealed with the adhesive film 20 to the extension portion 22 to be integrally formed.

第10図のA部、B部を拡大し第12図、第13図に示す。
周辺部3a、3b、3cには熱膨張係数の小さいポリイミドフ
ィルムが好適で、これによって熱融着時の反りなどの変
形が非常に小さくできる。また接着用フィルム20は中央
部がポリイミドフィルム、両側がPFAフィルムのサンド
イッチ構造が好適で、これによって熱融着時、変形を生
じることなく確実に一体化できる。また周辺部3bは、小
なさチップ状のものを装置することは困難であるので、
第14a図、第14b図に示すように、接着用フィルム20に長
尺の周辺部3bを所定数貼合わせたものを所定寸法Wで切
断して用いると便利である。
The parts A and B in FIG. 10 are enlarged and shown in FIGS. 12 and 13.
For the peripheral portions 3a, 3b, 3c, a polyimide film having a small coefficient of thermal expansion is preferable, whereby deformation such as warpage at the time of thermal fusion can be extremely reduced. The bonding film 20 preferably has a sandwich structure of a polyimide film at the center and a PFA film at both sides, so that it can be surely integrated without deformation at the time of heat fusion. In addition, since it is difficult to mount the peripheral portion 3b in a small chip shape,
As shown in FIG. 14a and FIG. 14b, it is convenient to use a bonding film 20 to which a predetermined number of long peripheral portions 3b are attached and cut to a predetermined size W.

以上のように製造すると熱安定性の良い反転機能を備
えたリブ付電極、リブ付セパレータが得られる。
When manufactured as described above, a ribbed electrode and a ribbed separator having a reversal function with good thermal stability can be obtained.

第15図は温度分布の均等化を図る制御方法を示すもの
で、第5図の発明のように同一の向きにガス流が反転す
るタイプの燃料電池に適用すると好適である。
FIG. 15 shows a control method for equalizing the temperature distribution, which is preferably applied to a fuel cell of the type in which gas flows are reversed in the same direction as in the invention of FIG.

すなわち、制御用計算機264に電池出口ガス温度を計
測する温度センサ23の信号及び負荷信号を取込み、導入
側の空気及び燃料の温度が電池出口ガス温度よりも低
く、かつ負荷の小さい時は温度幅が小さく、大きい時は
温度幅が大きくなるように熱交換器25へ供給する冷媒又
は熱媒を制御するものである。これによって、第6図、
位置A−Aに示したような温度の突出がなくなり、より
温度分布を均等化できる。
That is, the signal of the temperature sensor 23 for measuring the battery outlet gas temperature and the load signal are taken into the control computer 264, and when the temperature of the air and fuel on the introduction side is lower than the battery outlet gas temperature and the load is small, the temperature range is reduced. When the value is small and large, the refrigerant or the heat medium supplied to the heat exchanger 25 is controlled so that the temperature width becomes large. This results in FIG. 6,
The protrusion of the temperature as shown at the position AA is eliminated, and the temperature distribution can be further equalized.

〔発明の効果〕〔The invention's effect〕

本発明によれば反応ガスの流れを反転させる通路を設
けることにより、反応ガス濃度の異なる反応ガス通路を
隣接させてセル内の温度分布と電解液の濃度分布を平均
化出来るので、セルの寿命を向上させる効果が得られ
る。
According to the present invention, by providing a passage for inverting the flow of the reaction gas, the reaction gas passages having different reaction gas concentrations can be adjacent to each other to average the temperature distribution in the cell and the concentration distribution of the electrolytic solution. Can be obtained.

また、複数のセルを固定しブロック化して製造出来る
ので、温度分布の平均化を確実に行なえセルの積層が容
易になるという効果が得られる。
In addition, since a plurality of cells can be fixed and manufactured in a block, the temperature distribution can be averaged reliably, and the cells can be easily stacked.

更に、反応ガスの入口温度を適正に制御出来るので、
セルの温度分布が一様となる効果が得られる。
Furthermore, since the inlet temperature of the reaction gas can be properly controlled,
The effect that the temperature distribution of the cell becomes uniform can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示すセル斜視図、第2図は
本実施例の温度分布図表、第3図は従来技術の温度分布
図表、第4図は電池性能経時特性図表、第5図は本発明
の他の実施例を示す斜視図、第6図は第5図に示すセル
の温度分布図表、第7図は本発明の他の実施例を示す平
面図、第8図、第9図は本発明の電池の製造方法を示す
正面図、第10図乃至第13図は本発明の部品の製造法を示
す斜視図、第14a図は本発明の部品を平面図、第14b図は
第14a図の正面図、第15図は本発明の制御方法の実施例
を示す線図、第16図、第17図は従来例を示す平面図であ
る。 1a、1b……ユニットセル、2……リブ、3……周辺部、
4a、4b……空気極、 5a、5b……燃料極、9a、9b……空気、51a〜53a、 51b〜53b……ガス通路、10……マニホルド、11……障
壁、 12……出口サブマニホルド、13……入口サブマニホル
ド、14……ブロア、 16……点付け溶着部、17……ブロック、18……冷却器、
19……リブ付電極、 20……接着用フィルム、21……リブ付セパレータ、22…
…延長部、 23……温度センサ、24……制御用計算機、25……熱交換
器。
FIG. 1 is a perspective view of a cell showing one embodiment of the present invention, FIG. 2 is a temperature distribution chart of the present embodiment, FIG. 3 is a temperature distribution chart of the prior art, FIG. FIG. 5 is a perspective view showing another embodiment of the present invention, FIG. 6 is a temperature distribution chart of the cell shown in FIG. 5, FIG. 7 is a plan view showing another embodiment of the present invention, FIG. FIG. 9 is a front view showing a method of manufacturing the battery of the present invention, FIGS. 10 to 13 are perspective views showing a method of manufacturing the component of the present invention, FIG. 14a is a plan view of the component of the present invention, and FIG. FIG. 14 is a front view of FIG. 14a, FIG. 15 is a diagram showing an embodiment of the control method of the present invention, and FIGS. 16 and 17 are plan views showing a conventional example. 1a, 1b ... unit cell, 2 ... rib, 3 ... peripheral part,
4a, 4b… air electrode, 5a, 5b… fuel electrode, 9a, 9b… air, 51a-53a, 51b-53b… gas passage, 10… manifold, 11… barrier, 12… exit sub Manifold, 13… Inlet sub-manifold, 14… Blower, 16… Spot welding, 17… Block, 18… Cooler,
19 ... Ribbed electrode, 20 ... Adhesive film, 21 ... Ribbed separator, 22 ...
... Extension, 23 ... Temperature sensor, 24 ... Control computer, 25 ... Heat exchanger.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堤 泰行 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (56)参考文献 特開 昭58−164157(JP,A) 特開 平1−134869(JP,A) 特開 平2−86070(JP,A) 特開 昭56−134473(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Yasuyuki Tsutsumi 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. (56) References JP-A-58-164157 (JP, A) JP-A-1- 134869 (JP, A) JP-A-2-86070 (JP, A) JP-A-56-134473 (JP, A)

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】反応ガスを導入する通路を電極面内部に設
けた燃料電池において、前記反応ガス通路が単一通路で
少なくとも2回前記反応ガスの流れ方向が反転する部分
を有し、その複数の反応ガス通路を隣接して前記電極面
内部に配置したことを特徴とする燃料電池。
1. A fuel cell in which a passage for introducing a reaction gas is provided inside an electrode surface, wherein the reaction gas passage has a single passage and a portion in which a flow direction of the reaction gas is reversed at least twice. Wherein the reaction gas passages are disposed adjacent to each other inside the electrode surface.
【請求項2】反応ガスを導入する通路を電極面内部に設
けた燃料電池において、互いに隣接する反応ガスの流れ
方向が相異なる前記反応ガス通路と、互いに隣接する反
応ガスの流れ方向が同じ方向で反応ガスの濃度が相異な
る前記反応ガス通路との組合せを前記電極面内部に少な
くとも1つ以上設けたことを特徴とする燃料電池。
2. A fuel cell in which a passage for introducing a reactant gas is provided inside an electrode surface, wherein the reactant gas passages having mutually different reactant gas flow directions are different from each other and the reactant gas flow directions adjacent to each other are in the same direction. A fuel cell, wherein at least one or more combinations with the reaction gas passages having different concentrations of the reaction gas are provided inside the electrode surface.
【請求項3】流入する前記反応ガスの流れ方向が互いに
異なる前記電極を交互に積層したことを特徴とする請求
項1に記載の燃料電池。
3. The fuel cell according to claim 1, wherein the electrodes having different flow directions of the inflowing reactant gas are alternately stacked.
【請求項4】前記各反応ガス通路供給側に前記反応ガス
を同時に供給するマニホールドと、前記各反応ガス通路
排気側に前記反応ガスを同時に排気するマニホールドと
を前記電極に設けたことを特徴とする請求項1に記載の
燃料電池。
4. The electrode is provided with a manifold for simultaneously supplying the reaction gas to each of the reaction gas passage supply sides and a manifold for simultaneously exhausting the reaction gas to each of the reaction gas passage exhaust sides. The fuel cell according to claim 1, wherein
【請求項5】前記電極が板状で一方の平面に複数のリブ
を設けて前記反応ガス通路を形成し、該リブの一部を切
り欠いて前記反応ガスの流れを反転させる反転部を形成
し、更に板状平面の周辺部を延長して延長部を設けたも
のであることを特徴とする請求項1に記載の燃料電池。
5. The electrode is plate-shaped, a plurality of ribs are provided on one plane to form the reaction gas passage, and a part of the rib is cut off to form a reversing part for reversing the flow of the reaction gas. 2. The fuel cell according to claim 1, wherein a peripheral portion of the plate-shaped flat surface is further extended to provide an extended portion.
【請求項6】電池反応により発電を行う単位であるユニ
ットセルとユニットセルとの間に平板状のセパレータを
有する燃料電池において、該平板状のセパレータの両面
に一方の面のリブと他方の面のリブが互いに直交するよ
うに複数のリブを設けて反応ガスの通路をセパレータの
両面に形成し、該反応ガス通路を形成している前記リブ
の一部を切り欠いて前記反応ガスの流れを反転させる反
転部を単一通路で複数個形成し、更に前記平板状のセパ
レータの周辺部を前記リブより外側に延長して延長部を
設けたことを特徴とする燃料電池。
6. A fuel cell having a flat separator between unit cells, which are units for generating power by a battery reaction, wherein a rib on one surface and a rib on the other surface are provided on both surfaces of the flat separator. A plurality of ribs are provided so that the ribs are orthogonal to each other, and a passage for the reaction gas is formed on both surfaces of the separator, and a part of the rib forming the reaction gas passage is cut out to flow the reaction gas. A fuel cell, wherein a plurality of reversing portions are formed in a single passage and a peripheral portion of the flat separator is extended outward from the rib to provide an extension.
【請求項7】電池反応を行う反応ガスを導入する通路を
電極面内部に設け、前記反応ガス通路が単一通路で少な
くとも2回前記反応ガスの流れ方向が反転する部分を有
し、その複数の反応ガス通路を隣接して前記電極面内部
に配置したユニットセルの複数個を熱融着性樹脂により
溶着してブロックとし、該ブロックと冷却器を交互に積
層することを特徴とする燃料電池の製造方法。
7. A passage for introducing a reaction gas for performing a battery reaction is provided inside the electrode surface, wherein the reaction gas passage has a single passage and a portion where the flow direction of the reaction gas is reversed at least twice at least. A fuel cell comprising a plurality of unit cells arranged adjacent to each other in the electrode surface adjacent to each other by a heat-fusible resin to form a block, and the block and the cooler are alternately stacked. Manufacturing method.
【請求項8】請求項5に記載の燃料電池の板状平面周辺
部を延長したリブ付電極の延長部と周辺部とをフッ化エ
チレン・パーフロロアルキルビニルエーテル共重合樹脂
フィルム/ポリイミド/フッ化エチレン・パーフロロア
ルキルビニルエーテル共重合樹脂フィルムからなる接着
用フィルムを用いて熱融着により一体化することを特徴
とする燃料電池の製造方法。
8. A fuel cell according to claim 5, wherein the extension and the periphery of the ribbed electrode extending from the plate-shaped planar peripheral portion and the peripheral portion are made of an ethylene fluoride / perfluoroalkyl vinyl ether copolymer resin film / polyimide / fluoride. A method for producing a fuel cell, comprising: using a bonding film made of an ethylene / perfluoroalkylvinyl ether copolymer resin film to be integrated by heat fusion.
【請求項9】請求項6に記載の平板状のセパレータの周
辺部を外側に延長した延長部と周辺部とをフッ化エチレ
ン・パーフロロアルキルビニルエーテル共重合樹脂フィ
ルム/ポリイミド/フッ化エチレン・パーフロロアルキ
ルビニルエーテル共重合樹脂フィルムからなる接着用フ
ィルムを用いて熱融着によって一体化することを特徴と
する燃料電池の製造方法。
9. An extension of the plate-shaped separator according to claim 6, wherein the extension is extended outward and the periphery is an ethylene fluoride / perfluoroalkyl vinyl ether copolymer resin film / polyimide / ethylene fluoride A method for producing a fuel cell, comprising: using a bonding film made of a fluoroalkyl vinyl ether copolymer resin film to be integrated by heat fusion.
【請求項10】電池反応を行う反応ガスを導入する通路
を電極面内部に設け、前記反応ガス通路が単一通路で少
なくとも2回前記反応ガスの流れ方向が反転する部分を
有し、流入する前記反応ガスの流れ方向が互いに同じで
ある前記電極を交互に複数積層した燃料電池の燃料電池
出口ガス温度信号と負荷信号を計算機へ入力し、該計算
機が燃料電池入口側の反応ガス温度が前記燃料電池出口
ガス温度より低く、かつ負荷の小さい時は温度幅が小さ
く、負荷が大きい時は温度幅が大きくなるように前記反
応ガスの燃料電池入口側に設けた熱交換器へ供給する冷
媒または熱媒を制御することを特徴とする燃料電池の制
御方法。
10. A passage for introducing a reaction gas for performing a battery reaction is provided inside the electrode surface, and the reaction gas passage has a portion where a single passage reverses the flow direction of the reaction gas at least twice and flows thereinto. A fuel cell outlet gas temperature signal and a load signal of a fuel cell in which a plurality of the electrodes having the same flow direction of the reactant gas are alternately stacked are input to a computer, and the computer detects the reactant gas temperature on the fuel cell inlet side. The refrigerant supplied to the heat exchanger provided on the fuel cell inlet side of the reaction gas such that the temperature width is smaller than the fuel cell outlet gas temperature, and when the load is small, the temperature width is small, and when the load is large, the temperature width is large. A method for controlling a fuel cell, comprising controlling a heat medium.
JP63317662A 1988-12-16 1988-12-16 Fuel cell and method of manufacturing the same Expired - Lifetime JP2585770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63317662A JP2585770B2 (en) 1988-12-16 1988-12-16 Fuel cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63317662A JP2585770B2 (en) 1988-12-16 1988-12-16 Fuel cell and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02165569A JPH02165569A (en) 1990-06-26
JP2585770B2 true JP2585770B2 (en) 1997-02-26

Family

ID=18090636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63317662A Expired - Lifetime JP2585770B2 (en) 1988-12-16 1988-12-16 Fuel cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2585770B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101238886B1 (en) * 2010-12-28 2013-03-04 주식회사 포스코 Fuel cell system and stack

Also Published As

Publication number Publication date
JPH02165569A (en) 1990-06-26

Similar Documents

Publication Publication Date Title
US4582765A (en) Fuel cell system with coolant flow reversal
US8518601B2 (en) Gas separator for fuel cells and fuel cell equipped with gas separator
JPH10308227A (en) Solid high molecular electrolyte type fuel cell
JP3570669B2 (en) Solid polymer electrolyte fuel cell and manufacturing method thereof
JP2002260710A (en) Solid polymer cell assembly, fuel cell stack and supply method of reactive gas for fuel cell
JP2002260709A (en) Solid polymer cell assembly, fuel cell stack and operation method of fuel cell
TWI474548B (en) Polar plate and polar plate unit using the same
JP3078235B2 (en) Polymer electrolyte fuel cell stack and method for producing gas separator plate
JPH07235314A (en) Cell for solid high polymer fuel cell and its manufacture
JPH03266365A (en) Separator of solid electrolytic type fuel cell
JP4259041B2 (en) Fuel cell
JPS61128469A (en) Fuel cell
JP2585770B2 (en) Fuel cell and method of manufacturing the same
JP3555215B2 (en) Method of manufacturing fuel cell and flow path forming member used therein
JP2007335255A (en) Fuel cell stack and fuel cell system
JPS6386270A (en) Stacked structure type fuel cell
JPS6280972A (en) Improvement of temperature distribution of fuel cell
JP4595282B2 (en) Polymer electrolyte fuel cell
JP2002124274A (en) Fuel cell
JP6214342B2 (en) Fuel cell separator structure
JP2803288B2 (en) Cooling method of phosphoric acid type fuel cell
JP2000067885A (en) Fuel cell
JPH07118330B2 (en) Gas header for fuel cell and fuel cell using the same
JP2021516846A (en) Fuel cell, single cell and cell stack structure
JPS6255873A (en) Fuel cell