JP2583165B2 - Manufacturing method of cold rolled steel sheet with excellent press formability - Google Patents

Manufacturing method of cold rolled steel sheet with excellent press formability

Info

Publication number
JP2583165B2
JP2583165B2 JP3306757A JP30675791A JP2583165B2 JP 2583165 B2 JP2583165 B2 JP 2583165B2 JP 3306757 A JP3306757 A JP 3306757A JP 30675791 A JP30675791 A JP 30675791A JP 2583165 B2 JP2583165 B2 JP 2583165B2
Authority
JP
Japan
Prior art keywords
temperature
coil
present
rolling
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3306757A
Other languages
Japanese (ja)
Other versions
JPH05117757A (en
Inventor
波田芳治
大宮良信
馬場有三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3306757A priority Critical patent/JP2583165B2/en
Publication of JPH05117757A publication Critical patent/JPH05117757A/en
Application granted granted Critical
Publication of JP2583165B2 publication Critical patent/JP2583165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、プレス成形時に肌荒れ
を起こさない極めて加工性に優れた冷延鋼板の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a cold-rolled steel sheet which does not cause roughening during press forming and has extremely excellent workability.

【0002】[0002]

【従来の技術】プレス成形性に優れた冷延鋼板は、Ti
やNbなどの炭窒化物形成元素を添加した極低炭素鋼を
連続焼鈍することにより大量に生産されている。近年、
高加工性冷延鋼板の適用は、例えば、自動車用部品を例
に挙げると、従来より形状がより複雑になった小物部品
に止まらず、複数の部品を溶接して組み合せていたもの
を、プレス時から一体部品として成形する大物部品へと
広がっている。更に、自動車車体軽量化の観点からは、
従来以上に板厚の薄ゲージ化が要求されている。
2. Description of the Related Art Cold rolled steel sheets having excellent press formability are manufactured by using Ti.
It is mass-produced by continuously annealing ultra-low carbon steel to which carbonitride forming elements such as Nb and Nb are added. recent years,
The application of high-workability cold-rolled steel sheet, for example, taking automotive parts as an example, does not stop at small parts that have become more complex in shape than before. From time to time, it has spread to large parts that are molded as an integral part. Furthermore, from the viewpoint of reducing the weight of automobile bodies,
There is a demand for a thinner gauge than ever before.

【0003】このような薄くて幅の広い冷延鋼板を連続
焼鈍で製造する場合には、焼鈍炉内で鋼板が破断し易い
ため、ラインスピードを遅くする、焼鈍温度を低下させ
るなどの対応が必要となり、操業上、また材質の上から
も、連続焼鈍の長所が十分に活かせなくなる。
[0003] When such a thin and wide cold-rolled steel sheet is manufactured by continuous annealing, since the steel sheet is easily broken in an annealing furnace, measures such as reducing the line speed and lowering the annealing temperature are taken. This is necessary, and the advantages of continuous annealing cannot be fully utilized in terms of operation and material.

【0004】[0004]

【発明が解決しようとする課題】一方、従来から用いら
れている箱焼鈍の場合は、連続焼鈍のような鋼板のサイ
ズ制約が殆どなく、長時間焼鈍のため、再結晶温度が低
下し、連続焼鈍ほどの高温焼鈍は必ずしも必要でない。
On the other hand, in the case of box annealing, which has been conventionally used, there is hardly any size restriction of the steel sheet as in continuous annealing. High-temperature annealing such as annealing is not always necessary.

【0005】TiやNbを添加した極低炭素鋼を箱焼鈍で
製造する方法については、例えば、特開昭63−210
243号公報、特公平2−29728号公報にてTi添
加極低炭素鋼板について提案されている。
A method for producing ultra-low carbon steel to which Ti or Nb is added by box annealing is described in, for example, Japanese Patent Application Laid-Open No. 63-210.
No. 243 and Japanese Patent Publication No. 29728/1990 propose a Ti-added ultra low carbon steel sheet.

【0006】しかし、実際に極低炭素冷延鋼板を箱焼鈍
によって製造すると、次のような問題点があることが、
本発明者らの研究により明らかになった。
However, when a very low carbon cold rolled steel sheet is actually manufactured by box annealing, there are the following problems.
This has been clarified by the study of the present inventors.

【0007】鋼の純度が高いために粒成長性が良く、
焼鈍温度が高すぎると容易に結晶粒が粗大化し、プレス
時の肌荒れが懸念される。特に雰囲気ガス温度が高すぎ
ると焼鈍コイル内部は整細粒でも、コイル表面或いは端
部に粗大粒が生成し易い。また長時間高温域に曝される
と、二次粒成長による異常粗大粒(粒度番号で2〜4番)
が発生し易い。
[0007] Due to the high purity of the steel, the grain growth is good,
If the annealing temperature is too high, the crystal grains are easily coarsened, and there is a concern about roughening during pressing. In particular, if the ambient gas temperature is too high, coarse particles are likely to be generated on the coil surface or end even if the inside of the annealing coil is fine and fine. In addition, when exposed to a high temperature range for a long time, abnormally coarse grains due to secondary grain growth (particle number 2 to 4)
Is easy to occur.

【0008】通常、箱焼鈍を実施する際はHNXガス
と呼ばれるN2主体のガスを雰囲気ガスとするが、極低
炭素鋼、特にTiを添加した極低炭素鋼では、焼鈍中に
鋼板が窒化して、著しく加工性を劣化させる。
Normally, when box annealing is performed, a gas mainly composed of N 2, which is called HNX gas, is used as an atmosphere gas. As a result, the workability is significantly deteriorated.

【0009】通常、箱焼鈍では、生産性向上のため、
2コイル以上の複数のコイルを同時に同一炉内で焼鈍す
ることが多いが、その際、同時に装入された冷延コイル
が低炭素鋼の場合には、極低炭素鋼中のC量が焼鈍後に
上昇し、加炭による加工性の劣化が認められる。
Usually, in box annealing, to improve productivity,
In many cases, a plurality of coils of two or more coils are simultaneously annealed in the same furnace. In this case, when the cold-rolled coil inserted at the same time is a low-carbon steel, the C content in the extremely low-carbon steel is annealed. It rises later, and deterioration of workability due to carburization is observed.

【0010】本発明は、上記従来技術の問題点を解決
し、TiやNbなどの炭窒化物形成元素を添加した極低炭
素冷延鋼板の箱焼鈍による製造に伴う結晶粒の粗大化、
窒化、加炭等の品質上の問題点を効果的に解決し得る方
法を提供することを目的とするものである。
[0010] The present invention solves the above-mentioned problems of the prior art, and increases the crystal grain coarseness accompanying the production by box annealing of an ultra-low carbon cold rolled steel sheet to which a carbonitride forming element such as Ti or Nb is added.
It is an object of the present invention to provide a method capable of effectively solving quality problems such as nitriding and carburizing.

【0011】[0011]

【課題を解決するための手段】前記課題を解決するため
に、本発明者らは、鋼の成分組成と共に従来の箱焼鈍の
条件について鋭意研究を重ねた結果、ここに本発明を完
成したものである。
Means for Solving the Problems In order to solve the above problems, the present inventors have conducted intensive studies on the conditions of conventional box annealing together with the composition of steel, and as a result, have completed the present invention. It is.

【0012】すなわち、本発明は、C≦0.005%、
N≦0.005%、Mn≦0.30%、P≦0.020
%、Al:0.010〜0.100%、及びTiを4C
+3.42N≦Ti≦0.100%を満たすように含
み、必要に応じて更にNb≦0.030%を含み、残部
がFe及び不可避的不純物よりなる鋼を熱延、冷延し、
複数のコイルを同一炉内で同時に処理する箱焼鈍におい
て、雰囲気ガスとしてH 若しくは30%以下のN
含むH+Nを用い、雰囲気ガス温度が800℃以下
で、コイル最冷点が再結晶温度以上の温度に5時間以下
の条件で加熱を行うことを特徴とするプレス成形性に優
れる冷延鋼板の製造法を要旨とするものである。
That is, according to the present invention, C ≦ 0.005%;
N ≦ 0.005%, Mn ≦ 0.30%, P ≦ 0.020
%, Al: 0.010 to 0.100%, and 4C
+ 3.42N ≦ Ti ≦ 0.100%, and if necessary, further contain Nb ≦ 0.030%, with the balance consisting of Fe and inevitable impurities hot rolled and cold rolled,
At a plurality of coils in a box annealing to process simultaneously in the same furnace
H 2 + N 2 containing H 2 or 30% or less of N 2 is used as the atmosphere gas, and the temperature of the atmosphere gas is 800 ° C. or less and the coldest point of the coil is equal to or higher than the recrystallization temperature for 5 hours or less. The gist of the present invention is a method for producing a cold-rolled steel sheet having excellent press formability, characterized by heating.

【0013】以下に本発明を更に詳述する。Hereinafter, the present invention will be described in more detail.

【0014】[0014]

【作用】[Action]

【0015】まず、本発明における化学成分の限定理由
について述べる。
First, the reasons for limiting the chemical components in the present invention will be described.

【0016】C:Cは延性を劣化させるので、その量は
少ないほど好ましく、また本発明においては、CはTi
により炭化物として析出させるが、Ti量低減によるコ
ストダウンの点からもC量は少ない方がよく、その上限
を0.005%とする。
C: Since C deteriorates ductility, the smaller the amount, the more preferable. In the present invention, C is Ti
However, from the viewpoint of cost reduction by reducing the Ti content, the C content is preferably as small as possible, and the upper limit is made 0.005%.

【0017】N:Nも、Cと同様、延性を劣化させるの
で、その量は少ないほど好ましく、また本発明において
はTiにより窒化物として析出させるが、Ti量低減によ
るコストダウンの点からもN量は少ない方がよく、その
上限を0.005%とする。
N: Since N also deteriorates ductility similarly to C, the smaller the amount, the more preferable. Also, in the present invention, N is precipitated as a nitride by Ti. The smaller the amount, the better. The upper limit is 0.005%.

【0018】Mn:Mnは深絞り性を劣化させ、また鋼を
硬化させるので、少ないほどよく、その上限を0.30
%とする。
Mn: Since Mn deteriorates deep drawability and hardens steel, the smaller the better, the better the upper limit is 0.30.
%.

【0019】P:Pは、Tiを多量に含有した極低炭素
鋼を箱焼鈍により高温に長時間曝す場合には、FeとTi
のリン化合物を形成し、延性を劣化させ、加工性を著し
く損うので少ないほど好ましく、その上限を0.020
%とする。なお、延性を更に向上させる意味からも少な
いほどよく、特に高延性を確保する場合には0.010
%以下とするのがよい。
P: In the case of exposing extremely low carbon steel containing a large amount of Ti to a high temperature by box annealing for a long time, P: P
Is preferred because it forms a phosphorus compound, deteriorates ductility, and significantly impairs processability. The upper limit is 0.020.
%. In addition, from the viewpoint of further improving ductility, the smaller the better, the better. Particularly when securing high ductility, 0.010 is preferred.
% Or less.

【0020】Al:Alは脱酸のために少なくとも0.0
10%を添加することが必要である。しかし、0.10
0%を超えて添加しても鋼が硬化するので、Al量は0.
010〜0.100%の範囲とする。
Al: Al is at least 0.0 for deoxidation.
It is necessary to add 10%. However, 0.10
Even if added in excess of 0%, the steel will harden, so the Al content should be less than 0.1%.
The range is 010 to 0.100%.

【0021】Ti:Tiは鋼中のC、Nを析出物として固
定し、深絞り性を改善するために、少なくともC及びN
のそれぞれの当量、(48/12)×C、(48/14)×Nの和以上
の添加を必要とし、したがって、Ti量の下限は4C+
3.42N(%)とする。一方、過剰に添加しても効果が
飽和するばかりでコストアップになるので、上限を0.
100%とする。
Ti: Ti fixes at least C and N in order to fix C and N in the steel as precipitates and to improve deep drawability.
Requires the addition of at least the equivalent of (48/12) × C and (48/14) × N. Therefore, the lower limit of the Ti amount is 4C +
3.42 N (%). On the other hand, even if it is added excessively, the effect is only saturated and the cost increases, so the upper limit is set to 0.1.
100%.

【0022】Nb:Nbも炭化物形成元素であり、Tiと
同様、深絞り性を向上させるので、必要に応じて添加し
てもよい。特に異方性の改善を目的とする場合やプレス
時の肌荒れを防止すべく細粒化を一層図る場合には、積
極的に添加するのがよい。但し、あまり過量で添加する
と再結晶温度を上昇させるので、Nb量は0.030%を
上限とする。
Nb: Nb is also a carbide-forming element and, like Ti, improves deep drawability, and may be added as necessary. In particular, when the purpose is to improve the anisotropy or when the grain size is to be further reduced in order to prevent roughening at the time of pressing, it is better to add positively. However, if the Nb content is too large, the recrystallization temperature rises. Therefore, the upper limit of the Nb content is 0.030%.

【0023】不純物は少ないほどよく、例えば、Si、
SなどをそれぞれSi≦0.10%、S≦0.020%に
低減しておくのが望ましい。
The smaller the impurity, the better. For example, Si,
It is desirable to reduce S and the like to Si ≦ 0.10% and S ≦ 0.020%, respectively.

【0024】次に本発明における製造方法について説明
する。
Next, the manufacturing method of the present invention will be described.

【0025】上記化学成分を有する鋼は、常法にて連続
鋳造或いは造塊によってスラブとするが、スラブは加熱
炉内で十分均熱した後、熱間圧延に供される。この際、
スラブは一旦常温まで冷却してからでも、或いは高温の
まま加熱炉内へ装入しても、どちらでもよい。また、加
熱炉内に装入せず、高温のまま直接熱間圧延を行っても
よい。スラブ加熱温度は特に制限されず、常法に従い、
例えば1000〜1300℃に加熱すればよいが、低温
ほど析出物が粗大化し、材質が向上するので留意するの
が好ましい。
The steel having the above-mentioned chemical components is formed into a slab by continuous casting or ingot making in a conventional manner, and the slab is subjected to hot rolling after being uniformly heated in a heating furnace. On this occasion,
The slab may be either cooled once to normal temperature or charged into a heating furnace at a high temperature. Further, hot rolling may be performed directly at a high temperature without being charged into the heating furnace. The slab heating temperature is not particularly limited.
For example, heating may be performed at 1000 to 1300 ° C., but it is preferable to pay attention to the fact that the lower the temperature, the larger the precipitates are and the better the material is.

【0026】粗圧延、仕上圧延は常法通り行えばよい
が、端部と中心部との温度差をできるだけ小さくするた
め、誘導加熱或いはガスを用いて局所的にエッジ部を加
熱することは板厚精度の向上、材質の均一化の点から望
ましい。焼鈍板の結晶粒径は図1に示すように熱延板の
結晶粒径とよく対応し、熱延板の結晶粒度が細かいと焼
鈍板の結晶粒度も細かい傾向にある。本発明において
は、熱間圧延は常法に従えば基本的にはよいことは上述
のとおりであるが、特に鋼が高純度で結晶粒粗大化防止
を図るためには、熱間仕上温度及び熱延後の冷却を以下
の条件で行うと効果的である。 熱間圧延仕上温度:880〜930℃ 冷却:圧延後、直ちに40〜100℃/secで800℃
以下まで冷却。
Rough rolling and finish rolling may be performed in the usual manner, but in order to minimize the temperature difference between the end and the center, it is not possible to locally heat the edge using induction heating or gas. It is desirable from the viewpoint of improving the thickness accuracy and uniforming the material. As shown in FIG. 1, the crystal grain size of the annealed sheet corresponds well to the crystal grain size of the hot-rolled sheet. When the crystal grain size of the hot-rolled sheet is small, the crystal grain size of the annealed sheet tends to be small. In the present invention, as described above, hot rolling is basically good according to a conventional method, but in particular, in order to prevent steel from having high purity and coarse grains, the hot finishing temperature and It is effective to perform cooling after hot rolling under the following conditions. Hot rolling finishing temperature: 880-930 ° C Cooling: 800 ° C at 40-100 ° C / sec immediately after rolling
Cool down to below.

【0027】すなわち、仕上温度は通常、集合組織を熱
延板の段階でランダムにしておくことにより、焼鈍後の
集合組織が深絞り性により好ましくなるので、Ar3変態
点がほぼ890〜900℃であるから、仕上温度として
880〜930℃とした時に熱延板結晶粒が最も細粒と
なり、したがって、焼鈍板結晶粒も細粒となり(図2参
照)、r値もAr3変態点以下でも急激な劣化はなく、む
しろ変態点を大きく上回った時の方が低い(図3参照)。
これはr値に対する熱延板集合組織と、熱延板細粒の影
響の大小が関係していると考えられ、仕上温度930℃
以上では、熱延板細粒粗大化の効果が著しいため、r値
が劣化し、880℃以下では細粒と集合組織の悪影響が
共に効いてくるため、r値が劣化するものと考えられ
る。
That is, the finishing temperature is usually made random at the stage of hot-rolled sheet, so that the texture after annealing becomes more preferable due to the deep drawability, so that the Ar 3 transformation point is approximately 890 to 900 ° C. Therefore, when the finishing temperature is 880 to 930 ° C., the hot-rolled sheet crystal grains are the finest grains, and therefore, the annealed sheet crystal grains are also fine grains (see FIG. 2), and even when the r value is equal to or less than the Ar 3 transformation point, There is no rapid deterioration, but rather lower when the temperature greatly exceeds the transformation point (see FIG. 3).
This is considered to be related to the r-value of the texture of the hot-rolled sheet and the magnitude of the effect of the fine grains of the hot-rolled sheet.
Above, it is considered that the r value is degraded because the effect of coarsening the hot-rolled sheet fine grains is remarkable, and that the r value is degraded at 880 ° C. or lower because the adverse effects of the fine grains and the texture are both effective.

【0028】また、圧延後の冷却は、圧延後できるだけ
短かい時間で冷却水による強冷却を行うことが細粒化の
ためには効果的である。冷却速度は40℃/sec以下で
は細粒化効果が弱い。また100℃/sec以上では設備
費の問題、またコイルにスプレーされる冷却水量が多
く、ホットランテーブル上での通板性に問題が生じる。
なお、強冷却終了温度は800℃以下にすると、緩冷却
に伴い高温域での滞留時間が長くなることによる結晶粒
成長が抑制できるのでよい。巻取り温度は特に制限され
ないが、高い深絞り性を得るためには630〜730℃
の高温巻取りが好ましい。
For the cooling after rolling, it is effective to carry out strong cooling with cooling water in a time as short as possible after rolling, in order to reduce the grain size. When the cooling rate is 40 ° C./sec or less, the effect of grain refinement is weak. At 100 ° C./sec or more, there is a problem of equipment cost, and a large amount of cooling water is sprayed on the coil.
The strong cooling end temperature is preferably set to 800 ° C. or less, because crystal growth can be suppressed due to a longer residence time in a high temperature region with slow cooling. The winding temperature is not particularly limited, but 630 to 730 ° C.
High temperature winding is preferred.

【0029】熱延後、冷延を行うが、冷延率も特に制限
されず、常法に従えばよいが、65〜85%の圧下率が
深絞り性の観点からは望ましい。
After hot rolling, cold rolling is performed. The cold rolling rate is not particularly limited, and a conventional method may be used. A rolling reduction of 65 to 85% is desirable from the viewpoint of deep drawability.

【0030】冷延後に施す箱焼鈍の条件については、以
下に示すように、本発明で最も重要である。なお、本発
明ではオープンコイルでも箱焼鈍であれば適用可能であ
る。
The conditions of box annealing performed after cold rolling are the most important in the present invention as described below. In the present invention, an open coil is applicable as long as box annealing is performed.

【0031】加熱速度:加熱速度は特に規定しないが、
箱焼鈍の細粒化をより積極的に図るためには、図4に示
すように、平均加熱速度、すなわち、(最冷点均熱温度
−加熱前温度)/(最冷点均熱温度に達するまでに要し
た時間)を50℃/hr以上とするのがよい。なお、加熱
速度の上限は設備的な制約から300℃/hrである。
Heating rate: The heating rate is not particularly specified.
In order to more positively reduce the grain size of the box annealing, as shown in FIG. 4, the average heating rate, that is, (the coldest soaking temperature-the temperature before heating) / (the coldest soaking temperature). (Time required to reach the temperature) is preferably 50 ° C./hr or more. The upper limit of the heating rate is 300 ° C./hr due to facility restrictions.

【0032】均熱温度、時間: 均熱では、コイル最冷点が再結晶温度以上に加熱される
ことが必要である。しし、5時間を越える均熱は結晶粒
の2次粒成長による異常粗大化を招きやすいので、均熱
時間は5時間以下とする。
Soaking temperature, time: In soaking, it is necessary that the coldest point of the coil is heated above the recrystallization temperature. Lion, the soaking of more than 5 hours so easily lead to abnormal coarsening due to secondary grain growth of crystal grains, soaking time is not more than 5 hours.

【0033】雰囲気ガスの組成、温度:雰囲気ガスは実
質的にH2とするが、N2を含有させることができる。す
なわち、N2が多いと窒化が起こり易いので30%以下
であればN2を含有させることができる。H2量は高いほ
ど望ましいが、70%H2+30%N2で実用上、窒化に
よる材質劣化は問題にならないレベルまで低減できるの
で、N2の上限を30%とする。なお、H2の代わりにA
rなどの不活性ガスを用いても窒化は防止できる。ま
た、雰囲気ガスの温度は800℃以下にしないと、特に
焼鈍コイルの表面、端部など直接雰囲気ガスと接触する
部位で結晶粒の粗大化が起こりやすい。
Composition and temperature of atmosphere gas: The atmosphere gas is substantially H 2 , but may contain N 2 . That is, if N 2 is large, nitridation is likely to occur, so N 2 can be contained if it is 30% or less. The higher the amount of H 2, the better, but it is 70% H 2 + 30% N 2. In practice, the material degradation due to nitridation can be reduced to a level that does not cause a problem. Therefore, the upper limit of N 2 is set to 30%. In addition, instead of H 2 , A
Even if an inert gas such as r is used, nitriding can be prevented. If the temperature of the atmosphere gas is not set to 800 ° C. or lower, the crystal grains are likely to be coarsened particularly at a portion directly in contact with the atmosphere gas, such as the surface and the end of the annealing coil.

【0034】同時装入コイル:本発明における箱焼鈍で
は、同一炉内で複数のコイルを同時に処理するが、その
態様としては、複数のコイルがいずれも本発明範囲内
の化学成分を有するコイルである場合と、複数のコイ
ルのうち、いずれかのコイルは本発明範囲内の化学成分
を有するコイルであるが、他のコイル(本発明範囲外の
コイル)は本発明範囲内の成分含有量(但し、Cを除く)
を満たしていなくとも、C含有量が本発明範囲内である
コイルの場合である。の態様のように、本発明範囲内
の化学成分のコイルと同時に本発明範囲外の化学成分の
コイルを装入することができるが、後者のコイルのC量
は0.005%以下とする必要がある。これは、後者の
コイルのC量が0.005%を超えると、本発明範囲内
の化学成分のコイルへの加炭量が多くなり、材質の劣化
が無視し得ないレベルに達するからである。なお、加炭
の機構について詳細は必ずしも明らかでないが、高温域
での雰囲気ガスとの化学反応、及び本発明範囲内の化学
成分の鋼にはCと結び付き易いTiが含有されているこ
とが加炭の原因になっていると考えている。
Simultaneous charging coil: In the box annealing according to the present invention, a plurality of coils are simultaneously processed in the same furnace. In an embodiment, the plurality of coils have a chemical component within the scope of the present invention. In some cases, among the plurality of coils, any one of the coils has a chemical component within the scope of the present invention, while the other coil (coil outside the scope of the present invention) has a component content within the scope of the present invention ( (Except C)
This is the case for the coil whose C content is within the scope of the present invention even if the above condition is not satisfied. As in the above embodiment, a coil having a chemical component outside the scope of the present invention can be inserted simultaneously with a coil having a chemical component within the scope of the present invention, but the latter has a C content of 0.005% or less. There is. This is because when the C content of the latter coil exceeds 0.005%, the amount of carburizing of the coil with the chemical components within the scope of the present invention increases, and the deterioration of the material reaches a level that cannot be ignored. . Although the details of the mechanism of carburization are not necessarily clear, it is important to note that the chemical reaction with atmospheric gas in a high temperature range and that the steel having a chemical composition within the scope of the present invention contains Ti which is easily linked to C. We think that it causes charcoal.

【0035】焼鈍後は、粒度調整のため、必要に応じて
調質圧延を行ってもよい。但し、延性確保の点からはで
きるだけ0.5%以下程度の軽圧下のスキンパスがよ
い。また、後工程として、亜鉛めっき、クロムめっきな
ど種々のめっきを用途に応じて行っても本発明の効果は
何ら損われない。
After annealing, temper rolling may be performed as necessary to adjust the grain size. However, from the viewpoint of ensuring ductility, a skin pass under light pressure of about 0.5% or less is preferable. Further, even if various platings such as zinc plating and chromium plating are performed according to the application as a post-process, the effect of the present invention is not impaired at all.

【0036】次に本発明の実施例を示す。Next, examples of the present invention will be described.

【0037】[0037]

【実施例】【Example】

【表1】 [Table 1]

【表2】 表1に示す科学成分を有する鋼スラブを1100〜12
00℃に加熱し、仕上温度915℃で板厚4.0mmの
熱延鋼板とした後、70℃/secの速度で750℃ま
で冷却し、以降30℃/secで冷却し、700℃で巻
取った。酸洗後、板厚0.8mmまで冷間圧延し、表2
に示す条件でそれぞれ箱焼鈍を行った。0.3%のスキ
ンパス圧延を行った後、材料特性を調査した結果を表2
に示す。表2中、同時装入コイルのC量は同時装入コイ
ルの最大C量を示しており、焼鈍板粒度番号は幅、長さ
方向中央部板厚中心部で測定した。加炭量、窒化量はそ
れぞれ焼鈍前後のC、N量の変化量を示している。
[Table 2] Steel slabs having the scientific composition shown in Table 1
After heating to 00 ° C. to form a hot-rolled steel sheet having a thickness of 4.0 mm at a finishing temperature of 915 ° C., it is cooled to 750 ° C. at a rate of 70 ° C./sec, then cooled at 30 ° C./sec, and wound at 700 ° C. I took it. After pickling, cold rolling to a thickness of 0.8 mm, Table 2
Each was subjected to box annealing under the following conditions. After performing skin pass rolling of 0.3%, the results of examining the material properties are shown in Table 2.
Shown in In Table 2, the C amount of the simultaneously charged coil indicates the maximum C amount of the simultaneously charged coil, and the grain size number of the annealed sheet was measured at the center of the sheet thickness in the width and length directions. The carburizing amount and the nitriding amount indicate the amounts of change in the amounts of C and N before and after annealing, respectively.

【0038】表2より明らかなように、本発明例では5
0%以上の高い伸び、2.0以上の高いr値を有し、プ
レス時に肌荒れを起こさないレベルの整細粒(7番以上)
を示している。一方、比較例では、化学成分が本発明範
囲内であっても、焼鈍条件が本発明範囲外(No.2、
3、5、7)であると、加炭、窒化による材質劣化、或
いは結晶粒の粗大化が認められる。また、化学成分が本
発明範囲外(No.8、9、10、11、12)であると、
r値、伸び、或いはYPのレベルが本発明例に比べ悪く
なっている。
As is clear from Table 2, in the present invention example, 5
High elongation of 0% or more, high r-value of 2.0 or more, fine-grained granules with a level that does not cause roughening during pressing (No. 7 or more)
Is shown. On the other hand, in the comparative example, even if the chemical component is within the range of the present invention, the annealing conditions are out of the range of the present invention (No. 2,
In the case of 3, 5, 7), deterioration of the material due to carburization or nitriding or coarsening of crystal grains are recognized. Further, when the chemical component is out of the range of the present invention (No. 8, 9, 10, 11, 12),
The r value, elongation, or level of YP are worse than those of the present invention.

【0039】[0039]

【発明の効果】以上詳述したように、本発明によれば、
TiやNbなどの炭窒化物形成元素を添加した極低炭素冷
延鋼板の箱焼鈍において、結晶粒の粗大化、窒化、加炭
等の品質上の問題がなく、プレス時に肌荒れを発生する
ことのない極めて加工性に優れた冷延鋼板を製造するこ
とができる。
As described in detail above, according to the present invention,
In box annealing of ultra-low carbon cold rolled steel sheets to which carbonitride forming elements such as Ti and Nb are added, there is no quality problem such as grain coarsening, nitriding, carburizing, etc. It is possible to manufacture a cold-rolled steel sheet which is extremely excellent in workability and free of any problem.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱延板結晶粒度と焼鈍板結晶粒度との関係を示
す図である。
FIG. 1 is a diagram showing the relationship between the grain size of a hot-rolled sheet and the grain size of an annealed sheet.

【図2】熱延仕上温度と熱延板結晶粒度との関係を示す
図である。
FIG. 2 is a diagram showing a relationship between a hot-rolling finishing temperature and a hot-rolled sheet crystal grain size.

【図3】熱延仕上温度と焼鈍板結晶粒度及びr値との関
係を示す図である。
FIG. 3 is a graph showing the relationship between the hot-rolling finishing temperature and the grain size and r-value of an annealed plate.

【図4】焼鈍加熱速度と焼鈍板結晶粒度との関係を示す
図である。
FIG. 4 is a diagram showing the relationship between the annealing heating rate and the grain size of an annealed plate.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で(以下、同じ)、C≦0.005
%、N≦0.005%、Mn≦0.30%、P≦0.020
%、Al:0.010〜0.100%、及びTiを4C+
3.42N≦Ti≦0.100%を満たすように含み、残
部がFe及び不可避的不純物よりなる鋼を熱延、冷延
し、複数のコイルを同一炉内で同時に処理する箱焼鈍に
おいて、雰囲気ガスとしてH2若しくは30%以下のN2
を含むH2+N2を用い、雰囲気ガス温度が800℃以下
で、コイル最冷点が再結晶温度以上の温度に5時間以下
の条件で加熱を行うことを特徴とするプレス成形性に優
れる冷延鋼板の製造法。
1. In terms of% by weight (the same applies hereinafter), C ≦ 0.005.
%, N ≦ 0.005%, Mn ≦ 0.30%, P ≦ 0.020
%, Al: 0.010 to 0.100%, and Ti as 4C +
In the case of box annealing in which 3.42N ≦ Ti ≦ 0.100% is included and the balance is Fe and unavoidable impurities, steel is hot-rolled and cold-rolled, and a plurality of coils are simultaneously processed in the same furnace. H 2 or 30% or less N 2 as gas
Using H 2 + N 2 containing at least an atmosphere gas temperature of 800 ° C. or lower and a coil coldest point at a temperature higher than the recrystallization temperature for 5 hours or less. Manufacturing method of rolled steel sheet.
【請求項2】 前記鋼が更にNb≦0.030%を含むも
のである請求項1に記載の方法。
2. The method of claim 1 wherein said steel further comprises Nb ≦ 0.030%.
【請求項3】 箱焼鈍の平均加熱速度が50℃/hr以
上である請求項1又は2に記載の方法。
3. The method according to claim 1, wherein an average heating rate of the box annealing is 50 ° C./hr or more.
【請求項4】 熱間圧延に際し、圧延仕上温度が880
〜930℃で、圧延後直ちに40〜100℃/secで8
00℃以下まで冷却する請求項1、2又は3に記載の方
法。
4. A hot-rolling machine in which a rolling finish temperature is 880.
-930 ° C, immediately after rolling at 40-100 ° C / sec
The method according to claim 1, 2 or 3, wherein the method is cooled to not more than 00 ° C.
【請求項5】 同一炉内に装入する複数のコイルのう
ち、少なくとも1種を除く他のコイルが請求項1又は2
に記載の成分含有量(但し、Cを除く)を満たしていない
がC含有量を満たしているコイルである請求項1又は2
に記載の方法。
5. A coil other than at least one of a plurality of coils to be charged in the same furnace.
The coil which does not satisfy the component content (except for C) described in (1), but satisfies the C content.
The method described in.
JP3306757A 1991-10-25 1991-10-25 Manufacturing method of cold rolled steel sheet with excellent press formability Expired - Fee Related JP2583165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3306757A JP2583165B2 (en) 1991-10-25 1991-10-25 Manufacturing method of cold rolled steel sheet with excellent press formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3306757A JP2583165B2 (en) 1991-10-25 1991-10-25 Manufacturing method of cold rolled steel sheet with excellent press formability

Publications (2)

Publication Number Publication Date
JPH05117757A JPH05117757A (en) 1993-05-14
JP2583165B2 true JP2583165B2 (en) 1997-02-19

Family

ID=17960941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3306757A Expired - Fee Related JP2583165B2 (en) 1991-10-25 1991-10-25 Manufacturing method of cold rolled steel sheet with excellent press formability

Country Status (1)

Country Link
JP (1) JP2583165B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587027A (en) * 1994-02-17 1996-12-24 Kawasaki Steel Corporation Method of manufacturing canning steel sheet with non-aging property and superior workability

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168228A (en) * 1990-10-30 1992-06-16 Sumitomo Metal Ind Ltd Method for annealing dead soft steel strip

Also Published As

Publication number Publication date
JPH05117757A (en) 1993-05-14

Similar Documents

Publication Publication Date Title
KR100221349B1 (en) Method of manufacturing canning steel sheet with non-aging property and workability
JPH0555586B2 (en)
JPH05255804A (en) Cold rolled steel sheet excellent in formability and rigidity and its manufacture
JP3596398B2 (en) Manufacturing method of cold rolled steel sheet with excellent bake hardenability and normal temperature aging resistance
JP2583165B2 (en) Manufacturing method of cold rolled steel sheet with excellent press formability
JP2995526B2 (en) Manufacturing method of cold rolled steel sheet which has excellent formability, has paint bake hardenability, and has little fluctuation in paint bake hardenability in the width direction
JP3466298B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JPH02232316A (en) Production of cold rolled steel sheet for working having good baking hardenability and cold non-aging property
JPH06179922A (en) Production of high tensile strength steel sheet for deep drawing
JP3911075B2 (en) Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability
JP3194120B2 (en) Manufacturing method of cold-rolled steel sheet for non-aging deep drawing excellent in material uniformity in coil by continuous annealing
JP3562410B2 (en) Bake-hardened galvannealed steel sheet with excellent workability and surface properties with small fluctuation in coil material and manufacturing method thereof
JP3449258B2 (en) Method of manufacturing cold rolled steel strip with good material uniformity in the longitudinal direction of steel strip
JPS6230259B2 (en)
JP3814865B2 (en) Manufacturing method of steel plate for battery outer cylinder with excellent material uniformity and corrosion resistance
JP3292033B2 (en) Manufacturing method of steel sheet for battery outer cylinder with excellent material uniformity and corrosion resistance
JPH10152728A (en) Production of cold rolled steel sheet excellent in workability and surface property
JP2814818B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing with excellent material stability
JPS583923A (en) Manufacture of cold-rolled aluminum killed steel plate with superior suitability to enameling
JPH07242948A (en) Production of cold rolled steel sheet for deep drawing excellent in baking hardenability
JP4332960B2 (en) Manufacturing method of high workability soft cold-rolled steel sheet
JP3551105B2 (en) Cold rolled steel sheet with less material variation in coil and method of manufacturing the same
JP2002003951A (en) Method for manufacturing cold rolled steel sheet having small anisotropy
JPH05222460A (en) Production of cold rolled steel sheet excellent in press formability
JP3238460B2 (en) Manufacturing method of non-aged cold-rolled steel sheet for deep drawing

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees