JP2582145B2 - Ultrasonic linear motor and driving method thereof - Google Patents

Ultrasonic linear motor and driving method thereof

Info

Publication number
JP2582145B2
JP2582145B2 JP63318254A JP31825488A JP2582145B2 JP 2582145 B2 JP2582145 B2 JP 2582145B2 JP 63318254 A JP63318254 A JP 63318254A JP 31825488 A JP31825488 A JP 31825488A JP 2582145 B2 JP2582145 B2 JP 2582145B2
Authority
JP
Japan
Prior art keywords
vibration
vibrating
axis
vibrating member
linear motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63318254A
Other languages
Japanese (ja)
Other versions
JPH02164286A (en
Inventor
一正 大西
浩一 内藤
徹 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP63318254A priority Critical patent/JP2582145B2/en
Priority to GB8926830A priority patent/GB2228627B/en
Publication of JPH02164286A publication Critical patent/JPH02164286A/en
Priority to US07/639,396 priority patent/US5216313A/en
Application granted granted Critical
Publication of JP2582145B2 publication Critical patent/JP2582145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/026Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors by pressing one or more vibrators against the driven body
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/003Driving devices, e.g. vibrators using longitudinal or radial modes combined with bending modes

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、圧電素子の超音波振動を駆動源として直
線的変位を得るための超音波リニアモータに関する。
Description: TECHNICAL FIELD The present invention relates to an ultrasonic linear motor for obtaining a linear displacement by using ultrasonic vibration of a piezoelectric element as a driving source.

[従来の技術] 近年、圧電セラミックスを素材とする圧電素子の超音
波振動を駆動源とした超音波モータが開発され、種々の
機器のアクチュエータとして利用されている。このよう
な超音波モータは、小型で高トルクが期待され、また、
電磁波の発生がないので電磁媒体等への影響がないなど
の長所を有している。
[Related Art] In recent years, ultrasonic motors using ultrasonic vibration of a piezoelectric element made of piezoelectric ceramics as a driving source have been developed and used as actuators for various devices. Such an ultrasonic motor is expected to be small and have high torque,
Since there is no generation of electromagnetic waves, there is an advantage that there is no influence on an electromagnetic medium or the like.

超音波モータは、振動する駆動体と被駆動体とを近接
させ、駆動体の送り方向への振動を摩擦を介して被駆動
体に伝達させるようにしている。駆動体は互いに直交す
る向きの振動を合成した斜めの直線振動あるいは楕円振
動をするもので、これを構造的に分類すると、振動片
型、捩り振動子型進行波型の三つの型がある。
The ultrasonic motor brings a vibrating driving body and a driven body close to each other, and transmits vibration in a feed direction of the driving body to the driven body via friction. The driving body performs oblique linear vibration or elliptical vibration obtained by combining vibrations in directions orthogonal to each other. When structurally classified, there are three types of vibrating piece type and torsional vibrator type traveling wave type.

振動片型の超音波モータは、第8図に示すように、縦
に振動する圧電振動子11及びこれに付設した振動片12を
被駆動体13の接触面に対して斜めに設置して、被駆動体
13を一定方向に押すことにより駆動するもので、変換効
率が高く、高速作動をさせることができる。 また、捩
り振動子型の超音波モータは、第9図に示すように圧電
振動子14に岑り結合素子15を付設したことにより、振動
片型のような直線的振動ではなく、楕円振動を起こすよ
うにしたものである。
As shown in FIG. 8, a vibrating piece type ultrasonic motor is provided with a vertically vibrating piezoelectric vibrator 11 and a vibrating piece 12 attached to the piezoelectric vibrator 11, which are arranged obliquely with respect to a contact surface of a driven body 13, Driven body
It is driven by pushing 13 in a certain direction, has high conversion efficiency, and can operate at high speed. Further, the torsional vibrator type ultrasonic motor has an elliptical vibration instead of a linear vibrator of a vibrating reed type by providing a piezoelectric vibrator 14 with a coil coupling element 15 as shown in FIG. It is intended to wake up.

進行波型の超音波モータは第10図に示すように、円環
状または円板状に形成した振動体16に圧電素子17を接合
し、振動体16に周方向に進行する撓み振動波を与えるこ
とにより、ロータ18との接触面を楕円振動させるもの
で、接触面積が多いために摩耗が少ないなどの利点を有
している。
As shown in FIG. 10, the traveling wave type ultrasonic motor joins a piezoelectric element 17 to a vibrating body 16 formed in an annular or disk shape, and gives a bending vibration wave traveling in the circumferential direction to the vibrating body 16. Thus, the contact surface with the rotor 18 is caused to perform an elliptical vibration, and there are advantages such as a small abrasion due to a large contact area.

[発明が解決しようとする課題] しかしながら、上記のような従来の技術においては、
いずれも次のような解決すべき課題があった。
[Problems to be Solved by the Invention] However, in the above-described conventional technology,
In each case, there were the following issues to be solved.

まず、振動片型の超音波モータにおいては、振動片12
と被駆動体13の接触が間欠的であるために、回転が不安
定であり、また、被駆動体の送りの方向も一定である。
さらに、ロータ振動片12の先端の摩耗が激しいなどの問
題がある。
First, in a vibrating piece type ultrasonic motor, the vibrating piece 12
The rotation of the driven body is unstable because the contact between the driven body and the driven body 13 is intermittent, and the direction of feed of the driven body is also constant.
Further, there is a problem that the tip of the rotor vibrating piece 12 is severely worn.

捩り振動子型超音波リニアモータはリニアモータとし
て使用するには、直線運動変換機構を必要とすることな
どの欠点があった。
The use of the torsional vibrator type ultrasonic linear motor as a linear motor has a drawback that a linear motion conversion mechanism is required.

そして、進行波型超音波モータは、エネルギー変換効
率が低い上、上記と同じように直線運動変換機構が必要
になるという欠点がある。また、進行波型の超音波リニ
アモータとして、円環または円板状の振動体16の替わり
に直線状の振動体を設置し、これに進行波を与えて振動
を被駆動体に伝達することが考えられるが、この場合に
は、レール全体に進行波を励振させるために一層エネル
ギーの損失が大きくなり、効率が低下するという欠点が
ある。
The traveling wave type ultrasonic motor has a drawback that the energy conversion efficiency is low and a linear motion conversion mechanism is required as described above. In addition, as a traveling wave type ultrasonic linear motor, a linear vibrating body may be installed instead of the ring or disk shaped vibrating body 16, and a traveling wave may be given to this to transmit vibration to a driven body. However, in this case, since the traveling wave is excited in the entire rail, the energy loss is further increased, and the efficiency is reduced.

本発明は前記事情に鑑みてなされたもので、簡単な構
成でエネルギー的に効率の良い駆動を行って直線運動変
換ができる超音波リニアモータとその駆動方法を提供す
ることを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an ultrasonic linear motor capable of performing linear motion conversion by performing energy-efficient driving with a simple configuration and a driving method thereof.

[課題を解決するための手段] 上記のような課題を解決するために、この発明は、弾
性体から柱状に形成した振動部材に、この振動部材の軸
線に対して斜めに取り付けられて該振動部材の軸線に交
差する方向に振動する振動素子を設けて構成した超音波
リニアモータを提案するとともに、更に、上記振動部材
の一端に上記振動部材に対して軸線に交差する方向に相
対移動自在な被駆動体を当接させて構成した超音波リニ
アモータを提案し、また、そのように構成した超音波リ
ニアモータを、振動素子の振動により上記振動部材に撓
み振動と縦振動を励起し、振動部材の被駆動体との当接
面に撓み振動と縦振動の合成による楕円振動をさせて被
駆動体を直線的に移動するようにした駆動方法を提案す
るものである。
[Means for Solving the Problems] In order to solve the above-described problems, the present invention relates to a vibration member formed in a column shape from an elastic body, which is attached obliquely with respect to the axis of the vibration member. In addition to proposing an ultrasonic linear motor provided with a vibration element that vibrates in a direction intersecting the axis of the member, the ultrasonic linear motor is further movable at one end of the vibration member in a direction intersecting the axis with respect to the vibration member. The present invention proposes an ultrasonic linear motor constituted by bringing a driven body into contact with the ultrasonic linear motor, and the ultrasonic linear motor constituted as above is excited by bending vibration and longitudinal vibration of the vibrating member by vibration of a vibration element. The present invention proposes a driving method in which an elliptical vibration is generated by combining bending vibration and longitudinal vibration on a contact surface of a member with a driven body to move the driven body linearly.

[作用] このような超音波リニアモータ及びその駆動方法にお
いては、振動素子を振動部材の軸線に対して斜めに取り
付けたので、1つの振動素子の振動が振動部材に対して
その軸線方向に平行な成分と直交する成分とに分解され
て伝達される。このうち、軸線に垂直な分力は振動部材
に撓み振動を与え、平行な振動は縦振動を与え、これら
は結果として振動部材の材質、形状及び寸法に応じて適
度に増幅された定在波を付与する。振動部材の端部の被
駆動体への当接面においては、これらの振動の位相差に
よって先端面において斜めの直線状または楕円状の振動
が生じ、この振動が振動部材の一端の当接された被駆動
体に伝達されて被駆動体または振動部材が一方向に直線
運動する。
[Operation] In such an ultrasonic linear motor and its driving method, the vibration element is mounted obliquely to the axis of the vibration member, so that the vibration of one vibration element is parallel to the vibration member in the axial direction. And the orthogonal component is transmitted. Of these, the component force perpendicular to the axis gives bending vibration to the vibrating member, and the parallel vibration gives longitudinal vibration, and as a result, these standing waves are appropriately amplified according to the material, shape and dimensions of the vibrating member. Is given. On the contact surface of the end of the vibrating member with the driven body, an oblique linear or elliptical vibration is generated on the distal end surface due to the phase difference of these vibrations, and this vibration is brought into contact with one end of the vibrating member. The driven body or the vibrating member is linearly moved in one direction by being transmitted to the driven body.

[実施例] 以下、図面を参照してこの発明の実施例を説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図は、この発明の一実施例を示すもので、平滑な
レール(被駆動体)1の上に、柱状の振動部材2とこの
振動部材2の上端に固着された縦振動素子3とから構成
された走行体4が移動自在に載置されて構成されてい
る。
FIG. 1 shows an embodiment of the present invention, in which a columnar vibration member 2 and a vertical vibration element 3 fixed to the upper end of the vibration member 2 are placed on a smooth rail (driven body) 1. The traveling body 4 composed of is configured to be movably mounted.

上記振動部材2は、適度の剛性と弾性とを有する弾性
体から形成されており、通常はアルミニウム等の金属が
使用されるが、その他、セラミックス、樹脂等が適宜選
択されてよい。振動部材2は断面が矩形(図示例では正
方形)に形成され、下端は軸線に直交する平滑な当接面
5に、上端は走行方向(レールの向き)に向かうに従い
上昇する傾斜面6(図示例では軸線に対して45度傾斜し
ている)に形成されている。その寸法は、後述するよう
に縦振動素子3の加振により振動部材2の軸方向に励起
される縦振動と、軸に直交する方向の加振により励起さ
れる撓み振動とのバランスを考慮して設定される。縦振
動素子3は振動部材2の傾斜面6の中央に接着剤を用い
て固定されている。この縦振動素子3は、厚さ方向に分
極した圧電セラミックス板を電極を挟んで積層し、交番
電圧を付与することにより縦振動をするようにした周知
のものである。
The vibrating member 2 is formed of an elastic body having appropriate rigidity and elasticity. Usually, metal such as aluminum is used, but ceramics, resin, and the like may be appropriately selected. The vibrating member 2 has a rectangular cross section (square in the illustrated example), a lower end on a smooth abutment surface 5 perpendicular to the axis, and an upper end on an inclined surface 6 rising in the running direction (rail direction) (see FIG. In the example shown, it is inclined at 45 degrees with respect to the axis). The dimensions thereof are determined in consideration of the balance between the longitudinal vibration excited in the axial direction of the vibration member 2 by the vibration of the longitudinal vibration element 3 and the bending vibration excited by the vibration in the direction perpendicular to the axis, as described later. Is set. The longitudinal vibration element 3 is fixed to the center of the inclined surface 6 of the vibration member 2 using an adhesive. The longitudinal vibration element 3 is a well-known element in which piezoelectric ceramic plates polarized in the thickness direction are laminated with electrodes interposed therebetween, and longitudinal vibration is caused by applying an alternating voltage.

図示する実施例の振動部材2は、素材がアルミニウム
で、寸法は、断面が5mm□、高さ12.5mmであり、縦振動
素子は寸法が、5mm□、高さ9mmになっている。なお、振
動部材2のレール1への当接面にポリイミド系の複合材
などからなる摩擦材を貼付することにより、摩擦量を低
減させて円滑な走行を図るようにしてもよい。
The vibrating member 2 of the illustrated embodiment is made of aluminum, has a dimension of 5 mm square in cross section and 12.5 mm in height, and has a vertical vibration element of 5 mm square and 9 mm in height. In addition, by applying a friction material made of a polyimide-based composite material or the like to the contact surface of the vibration member 2 with the rail 1, the amount of friction may be reduced to achieve smooth running.

レール1の面には、走行体の走行方向を規制するガイ
ド溝7が形成された例が図示されているが、このような
ガイド溝7は結果的に走行体4とレール1の間の摩擦を
増やすので必ずしも好ましくない。また、上記例では、
走行体4の自重により走行体4がレール1に押し付けら
れているが、通常はこの圧接力では不足であり、また、
この圧接力は負荷などに応じて適宜制御するのが好まし
い。そこで、走行体とレールの間に、走行体の姿勢をレ
ールに対して一定に保持するとともに、走行体をレール
に対して一定の圧力で押圧するための機構を付設するこ
とが考えられる。
Although an example in which a guide groove 7 for regulating the traveling direction of the traveling body is formed on the surface of the rail 1 is shown, such a guide groove 7 results in friction between the traveling body 4 and the rail 1. Is not always preferred because it increases In the above example,
The running body 4 is pressed against the rail 1 by the weight of the running body 4, but this pressing force is usually insufficient.
It is preferable that the pressing force is appropriately controlled according to the load or the like. In view of this, it is conceivable to provide a mechanism between the traveling body and the rail to keep the posture of the traveling body constant with respect to the rail and to add a mechanism for pressing the traveling body against the rail with a constant pressure.

この構造体Aの一例を第2図に示す。これは、走行体
4を取り囲む支持体11と、レール1の下面に沿って転動
する前後一対のローラ12を備えた車枠13と、上記支持体
11と車枠13とを弾性部材(コイルばね)14を介して連結
する連結部材15とからなっている。上記支持体11は、下
方が開口した箱体16の側壁17に、振動部材2の四壁に当
接して振動部材2の姿勢を支えるガイド腕18が設けられ
るとともに、箱体16の天板19からは振動部材2を上方か
ら押圧する押圧部材20が垂下して設けられた構成となっ
ており、走行体4を保護するとともに、走行体4をレー
ル1に対して一定の姿勢に保持し、かつレール1に沿っ
て移動自在に支持するようになっている。ガイド腕18の
先端にはボールベアリング(図示略)が埋設されて振動
部材2の振動に対する摩擦抵抗を軽減するようにしてい
る。また、連結部材15にはコイルばね14のばね受け21の
位置を調整するナット22が設けられ、これを回動してコ
イルばね14の付勢圧力を調整することにより、一定の圧
力で振動部材2の当接面5をレール2に押圧するように
している。
An example of this structure A is shown in FIG. This comprises a support 11 surrounding the traveling body 4, a vehicle frame 13 having a pair of front and rear rollers 12 rolling along the lower surface of the rail 1,
A connecting member 15 connects the 11 and the vehicle frame 13 via an elastic member (coil spring) 14. The supporting body 11 is provided with a guide arm 18 for supporting the posture of the vibration member 2 by contacting the four walls of the vibration member 2 on a side wall 17 of the box body 16 opening downward, and a top plate 19 of the box body 16. From below, a pressing member 20 for pressing the vibration member 2 from above is provided so as to hang down, protecting the traveling body 4 and holding the traveling body 4 in a constant posture with respect to the rail 1, Further, it is movably supported along the rail 1. A ball bearing (not shown) is embedded at the tip of the guide arm 18 so as to reduce the frictional resistance of the vibration member 2 against vibration. Further, the connecting member 15 is provided with a nut 22 for adjusting the position of the spring receiver 21 of the coil spring 14. By rotating the nut 22 to adjust the biasing pressure of the coil spring 14, the vibration member 2 is pressed against the rail 2.

以下、上記のように構成された超音波リニアモータの
作用について、主にFEM(有限要素法を用いたコンピュ
ータによるシミュレーション)の結果に基づいて説明す
る。
Hereinafter, the operation of the ultrasonic linear motor configured as described above will be described based mainly on the results of FEM (computer simulation using the finite element method).

第3図及び第4図は、縦振動素子3に振動部材2の共
振振動数に近い交番電圧を付与したときのシミュレーシ
ョンの結果を示すものである。
FIGS. 3 and 4 show simulation results when an alternating voltage close to the resonance frequency of the vibration member 2 is applied to the longitudinal vibration element 3.

縦振動素子3に共振振動数の交番電圧を印加すること
によって縦振動と撓み振動の合成された振動が励起され
る。振動成分を分解して考え、その概略を説明する。
By applying an alternating voltage having a resonance frequency to the longitudinal vibration element 3, a combined vibration of the longitudinal vibration and the bending vibration is excited. The vibration component will be decomposed and the outline will be described.

第3図(イ)ないし(ニ)はこの過程を示すもので、
図中細線は原形を示している。(イ)は縦振動素子3が
最も伸びた状態、(ロ)は(イ)の状態よりやや縮んだ
状態、(ハ)は原形よりやや縮んだ状態、(ニ)は最も
縮んだ状態であり、(ニ)から逆の過程で(イ)に戻
り、以下これを繰り返す。これにより、下端部は前後方
向と同時に縦方向に振動するので、下端部はその合成の
結果として、第4図に示すように楕円振動をする。
FIGS. 3 (a) to 3 (d) show this process.
The thin line in the figure indicates the original shape. (A) is a state where the longitudinal vibration element 3 is most expanded, (B) is a state where it is slightly contracted from the state of (A), (C) is a state where it is slightly contracted from the original shape, and (D) is a state where it is most contracted. , (D) return to (b) in the reverse process, and thereafter repeat this. As a result, the lower end vibrates in the vertical direction simultaneously with the front-rear direction, and as a result of the synthesis, the lower end vibrates as shown in FIG.

この楕円振動は、縦振動及び撓み振動の位相差に応じ
て傾斜したものとなる。また、振動部材2の下端の位置
においてそれぞれ異なる振動をするとともに、縦振動素
子3の振動周波数によっても異なる形状となる。楕円は
その偏平度が、主に次の2点により決定される。
The elliptical vibration is inclined according to the phase difference between the longitudinal vibration and the bending vibration. In addition, different vibrations occur at the position of the lower end of the vibration member 2, and the vibration member 2 has a different shape depending on the vibration frequency of the longitudinal vibration element 3. The flatness of an ellipse is determined mainly by the following two points.

縦振動と撓み振動の位相の差異 縦振動と撓み振動の振幅の差異 そして、これらの位相と振幅の差異は、振動部材2の
材質、寸法及び形状と、縦振動素子3自体の寸法、形
状、重量、材質及びその振動周波数などの条件により変
化する。
Difference in phase between longitudinal vibration and bending vibration Difference in amplitude between longitudinal vibration and bending vibration The difference between these phases and amplitude depends on the material, size and shape of vibration member 2 and the size and shape of vertical vibration element 3 itself. It changes depending on conditions such as weight, material and its vibration frequency.

振動の周波数を変化させると、縦振動及び撓み振動の
モードが変わり、位相差が変化するので、楕円の向きを
変えることもできる。第5図は、振動周波数を82.0kHz
に設定したときのシミュレーション結果を示すもので、
92.7kHzのときとは逆の方向に進行することが分かる。
When the frequency of the vibration is changed, the modes of the longitudinal vibration and the bending vibration change, and the phase difference changes, so that the direction of the ellipse can be changed. Fig. 5 shows that the vibration frequency is 82.0kHz
This shows the simulation results when set to
It can be seen that the light travels in the opposite direction to that at 92.7 kHz.

振動部材2の材質については、弾性率が大きい程内部
摩耗によるエネルギー損失が少ないが、縦振動及び撓み
振動の変位は小さくなるので、総合的に最もエネルギー
効率のよい材質を選択する。また、寸法及び形状につい
ては、振動部材2の高さが大きく、断面が小さく、断面
が走行方向に直交する方向に偏平である程、撓み振動の
振幅が大きくなる。なお、振動の解析は振動部材と振動
素子とが一体となった構造でなされる。
As for the material of the vibration member 2, the energy loss due to internal wear decreases as the elastic modulus increases, but the displacement of longitudinal vibration and bending vibration decreases. Therefore, a material with the highest energy efficiency is selected overall. As for the size and shape, the amplitude of the bending vibration increases as the height of the vibration member 2 increases, the cross section decreases, and the cross section is flattened in a direction perpendicular to the running direction. The analysis of the vibration is performed with a structure in which the vibration member and the vibration element are integrated.

(実施例) 第1図に示す実施例の縦振動素子3に、駆動電圧を12
Vとして、圧接力3kg、負荷0〜0.3kgとしたときの負荷
と速度の相関を第6図に示す。無負荷での最大速度は0.
4m/sec、最大推進力0.8kgであった。
(Embodiment) A drive voltage of 12 was applied to the longitudinal vibration element 3 of the embodiment shown in FIG.
FIG. 6 shows the correlation between load and speed when V is 3 kg and the load is 0 to 0.3 kg. The maximum speed with no load is 0.
4m / sec, maximum propulsion 0.8kg.

なお、駆動電圧をピーク間で5.0Vとして、圧接力0.5k
gに設定したときに、振動周波数が90.0〜113.0kHzの範
囲で正方向(縦振動素子3の下面側の方向)へ走行し、
85.8〜87.3kHzの範囲において逆方向に走行した。この
実施例の共振振動数は、FEMによる解析結果では92.7kHz
であったが、実際に試作した物をインピーダンスアナラ
イザで測定した結果では94.7kHzであった。
The drive voltage is 5.0 V between peaks, and the pressing force is 0.5 k
When set to g, the vehicle travels in the forward direction (the direction on the lower surface side of the longitudinal vibration element 3) in the vibration frequency range of 90.0 to 113.0 kHz,
The vehicle ran in the opposite direction in the range of 85.8 to 87.3 kHz. The resonance frequency of this example is 92.7 kHz according to the analysis result by FEM.
However, it was 94.7 kHz as a result of measuring an actual prototype with an impedance analyzer.

なお、この発明の実施例は上記のものに限定されるも
のではなく、例えば、傾斜面の傾斜角度は45度に限られ
ず、これを適宜に設定することにより、振動の垂直成分
と水平成分の比率を変更することができる。また、振動
部材の断面形状は矩形である場合でも、隣接する辺の比
率を適宜に設定してよく、また矩形以外の形状にしても
よい。振動部材はその一部が柱状に形成されていればよ
く、例えば、第7図に示すように、柱状部25の上端に傾
斜部26が一体に形成された構成とし、傾斜部の上端に縦
振動素子3を取り付けてもよい。
It should be noted that the embodiment of the present invention is not limited to the above, for example, the inclination angle of the inclined surface is not limited to 45 degrees, and by appropriately setting this, the vertical component and the horizontal component of the vibration The ratio can be changed. Further, even when the cross-sectional shape of the vibrating member is rectangular, the ratio of adjacent sides may be appropriately set, or may be a shape other than rectangular. The vibrating member only needs to be partially formed in a columnar shape. For example, as shown in FIG. 7, an inclined portion 26 is integrally formed at an upper end of a columnar portion 25, and a vertical portion is formed at an upper end of the inclined portion. The vibration element 3 may be attached.

[発明の効果] 以上詳述したように、この発明は、弾性体から柱状に
形成した振動部材に、この振動部材の軸線に対して斜め
に取り付けられて該振動部材の軸線に交差する方向に振
動する振動素子を設けて構成し、更に、上記振動部材の
一端に上記振動部材に対して軸線に交差する方向に相対
移動自在な被駆動体を当接させたものであり、1つの振
動素子の超音波振動を振動部材に伝達させ、振動部材に
その振動特性に応じた定在波振動を起こさせ、振動部材
の端部に楕円振動を励起させることにより、簡単な構成
でエネルギー効率の高い超音波リニアモータを提供する
ことができるという優れた効果を奏するものである。
[Effects of the Invention] As described in detail above, the present invention is provided on a vibrating member formed in a columnar shape from an elastic body at an angle to the axis of the vibrating member so as to intersect with the axis of the vibrating member. A vibrating element that vibrates is provided, and a driven body that is relatively movable in a direction intersecting the axis with respect to the vibrating member is brought into contact with one end of the vibrating member. By transmitting the ultrasonic vibration to the vibrating member, causing the vibrating member to generate standing wave vibration in accordance with the vibration characteristics thereof, and exciting the elliptical vibration at the end of the vibrating member, a simple configuration and high energy efficiency This has an excellent effect that an ultrasonic linear motor can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例を示す斜視図、第2図は他
の実施例を示す断面図、第3図ないし第5図はその振動
の過程をシミュレーションによって解析した結果を示す
図、第6図は実施例の超音波リニアモータの負荷と速度
の関係を示すグラフ、第7図はさらに他の実施例を示す
図、第8図ないし第10図は従来例を示す図である。 1……レール(被駆動体)、2……振動部材、3……縦
振動素子。
FIG. 1 is a perspective view showing one embodiment of the present invention, FIG. 2 is a cross-sectional view showing another embodiment, and FIGS. 3 to 5 are diagrams showing the results of analysis of the vibration process by simulation. FIG. 6 is a graph showing the relationship between the load and the speed of the ultrasonic linear motor of the embodiment, FIG. 7 is a diagram showing still another embodiment, and FIGS. 8 to 10 are diagrams showing a conventional example. 1 ... rail (driven body), 2 ... vibrating member, 3 ... longitudinal vibration element.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】弾性体から柱状に形成した振動部材の一端
部に、この振動部材の軸線に対して斜めに取り付けられ
て該振動部材の軸線に交差する方向に振動する振動素子
を設け、該振動素子により前記振動部材の他端部に縦振
動及び撓み振動を起こさせることを特徴とする超音波リ
ニアモータ。
A vibrating element is provided at one end of a vibrating member formed in a columnar shape from an elastic body and attached at an angle to an axis of the vibrating member and vibrates in a direction intersecting the axis of the vibrating member. An ultrasonic linear motor, wherein a longitudinal vibration and a bending vibration are caused at the other end of the vibration member by a vibration element.
【請求項2】弾性体から柱状に形成した振動部材に、こ
の振動部材の軸線に対して斜めに取り付けられて該振動
部材の軸線に交差する方向に振動する振動素子を設け、
上記振動部材の一端に上記振動部材に対して軸線に交差
する方向に相対移動自在な被駆動体を当接させたことを
特徴とする超音波リニアモータ。
2. A vibrating element formed obliquely with respect to an axis of the vibrating member and vibrating in a direction intersecting the axis of the vibrating member is provided on a vibrating member formed in a column shape from an elastic body,
An ultrasonic linear motor, wherein a driven body which is relatively movable with respect to one end of the vibration member in a direction intersecting the axis with the vibration member is brought into contact with the vibration member.
【請求項3】弾性体から柱状に形成した振動部材に、こ
の振動部材の軸線に対して斜めに取り付けられて該振動
部材の軸線に交差する方向に振動する振動素子を設け、
上記振動部材の一端に上記振動部材に対して軸線に交差
する方向に相対移動自在な被駆動体を当接させ、上記振
動素子の振動により上記振動部材に撓み振動と縦振動を
励起し、振動部材の被駆動体との当接面に撓み振動と縦
振動の合成による楕円振動をさせることを特徴とする超
音波リニアモータの駆動方法。
3. A vibrating element formed obliquely with respect to an axis of the vibrating member and vibrating in a direction intersecting the axis of the vibrating member is provided on a vibrating member formed in a columnar shape from an elastic body,
A driven body which is relatively movable in a direction intersecting the axis with respect to the vibrating member is brought into contact with one end of the vibrating member, and the vibration of the vibrating element excites the bending vibration and the longitudinal vibration to the vibrating member, thereby causing the vibration. A method of driving an ultrasonic linear motor, wherein an elliptical vibration is generated by combining bending vibration and longitudinal vibration on a contact surface of a member with a driven body.
JP63318254A 1988-12-16 1988-12-16 Ultrasonic linear motor and driving method thereof Expired - Fee Related JP2582145B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63318254A JP2582145B2 (en) 1988-12-16 1988-12-16 Ultrasonic linear motor and driving method thereof
GB8926830A GB2228627B (en) 1988-12-16 1989-11-28 Ultrasonic wave linear motor
US07/639,396 US5216313A (en) 1988-12-16 1991-01-10 Ultrasonic wave linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63318254A JP2582145B2 (en) 1988-12-16 1988-12-16 Ultrasonic linear motor and driving method thereof

Publications (2)

Publication Number Publication Date
JPH02164286A JPH02164286A (en) 1990-06-25
JP2582145B2 true JP2582145B2 (en) 1997-02-19

Family

ID=18097154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63318254A Expired - Fee Related JP2582145B2 (en) 1988-12-16 1988-12-16 Ultrasonic linear motor and driving method thereof

Country Status (2)

Country Link
JP (1) JP2582145B2 (en)
GB (1) GB2228627B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100492693C (en) * 2000-03-23 2009-05-27 伊利普特克谐振调节器股份公司 Vibratory motors and methods of making and using same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3309239A1 (en) * 1983-03-15 1984-09-20 Siemens AG, 1000 Berlin und 8000 München Piezo-electric motor
US4613782A (en) * 1984-03-23 1986-09-23 Hitachi, Ltd. Actuator
EP0297574A3 (en) * 1987-07-01 1990-06-20 Hitachi, Ltd. Actuator which drives a driven member by using piezo-electric elements
DE3735623A1 (en) * 1987-10-21 1989-05-03 Philips Patentverwaltung ELECTRIC ROTATIONAL OR LINEAR MOTOR WHOSE RUNNER IS DRIVEN BY MEANS OF ULTRASONIC VIBRATIONS
GB2216732B (en) * 1988-03-15 1992-08-12 Alps Electric Co Ltd Linear motors

Also Published As

Publication number Publication date
GB2228627B (en) 1992-12-16
GB8926830D0 (en) 1990-01-17
GB2228627A (en) 1990-08-29
JPH02164286A (en) 1990-06-25

Similar Documents

Publication Publication Date Title
US5134334A (en) Ultrasonic linear motor
JP2690907B2 (en) Composite piezoelectric motor
US5101132A (en) Linear ultrasonic motor
JPS61224881A (en) Vibration wave motor
JPS6022479A (en) Stator of surface wave motor and improvement in movable element
JPS59188381A (en) Improvement in rotor/movable element of surface wave motor
JP2582145B2 (en) Ultrasonic linear motor and driving method thereof
JPS6311073A (en) Vibrating wave motor
JPS62259485A (en) Piezoelectric driving apparatus
JPH01264582A (en) Ultrasonic linear motor
JP2534343B2 (en) Ultrasonic linear motor
JPH08242592A (en) Ultrasonic actuator
JPS60174074A (en) Vibration wave motor
JPH07110141B2 (en) Ultrasonic linear motor
JPS61102177A (en) Surface wave drive motor
JP2622286B2 (en) Ultrasonic linear motor
JP2543163B2 (en) Ultrasonic linear motor
JP2605355B2 (en) Driving method of ultrasonic motor and vibrator for ultrasonic motor
JPS60148384A (en) Vibration wave motor
JP2517021B2 (en) Object moving device
JPH0723037Y2 (en) Ultrasonic linear motor
JPH0724956Y2 (en) Ultrasonic linear motor
JPH0724954Y2 (en) Ultrasonic linear motor
JPH0552137B2 (en)
JPH0480630B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees