JP2580538B2 - Method for selective acetalization of sugars - Google Patents

Method for selective acetalization of sugars

Info

Publication number
JP2580538B2
JP2580538B2 JP6190599A JP19059994A JP2580538B2 JP 2580538 B2 JP2580538 B2 JP 2580538B2 JP 6190599 A JP6190599 A JP 6190599A JP 19059994 A JP19059994 A JP 19059994A JP 2580538 B2 JP2580538 B2 JP 2580538B2
Authority
JP
Japan
Prior art keywords
compound
group
saccharide
nmr
thiocarbonyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6190599A
Other languages
Japanese (ja)
Other versions
JPH0853485A (en
Inventor
勲 渋谷
康夫 蒲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6190599A priority Critical patent/JP2580538B2/en
Publication of JPH0853485A publication Critical patent/JPH0853485A/en
Application granted granted Critical
Publication of JP2580538B2 publication Critical patent/JP2580538B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、糖類の新規な選択的ア
セタール化方法、さらに詳しくは、糖類にチオカルボニ
ル化合物を反応させて、糖類の2,3位又は4,6位を
選択的に、好収率でアセタール化する方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method for selectively acetalizing saccharides, and more particularly, to reacting a saccharide with a thiocarbonyl compound to selectively react 2,3- or 4,6-positions of the saccharide. And a method for acetalization in good yield.

【0002】[0002]

【従来の技術】従来、アセタール化反応は、一般に酸の
存在下でアルデヒドやケトンなどのカルボニル化合物と
アルコール類とを加熱し、脱水縮合させることにより行
われていた。しかしながら、このような反応において
は、使用できるカルボニル化合物の種類は制限されるの
を免れない上、酸を必要とするため、異性化などの副反
応が起こりやすく、したがって、酸や熱に不安定な化合
物では良好な結果が得られないという問題がある。
2. Description of the Related Art Conventionally, an acetalization reaction is generally carried out by heating a carbonyl compound such as an aldehyde or a ketone and an alcohol in the presence of an acid to cause dehydration condensation. However, in such a reaction, the types of carbonyl compounds that can be used are inevitably limited, and since an acid is required, side reactions such as isomerization are likely to occur, and therefore, the reaction is unstable to acids and heat. There is a problem that good results cannot be obtained with a simple compound.

【0003】ところで、糖類の水酸基の保護には、通常
ベンズアルデヒド又はアセトンを用いて、酸性の反応条
件下で加熱する方法が用いられているが、この場合、異
性化などの副反応を伴い、必ずしも満足しうる結果は得
られていないし、またこのアセタール化による保護基の
導入は水酸基の位置によって制約されるのを免れない。
[0003] To protect the hydroxyl groups of saccharides, a method of heating under acidic reaction conditions using benzaldehyde or acetone is usually used, but this method involves side reactions such as isomerization and is not necessarily accompanied by side reactions. Satisfactory results have not been obtained and the introduction of protecting groups by this acetalization is inevitably restricted by the position of the hydroxyl groups.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来の糖類
のアセタール化方法が有する欠点を克服し、異性化など
の副反応を抑制して、糖類を好収率で、かつ位置選択的
にアセタール化する新規な方法を提供することを目的と
してなされたものである。
DISCLOSURE OF THE INVENTION The present invention overcomes the drawbacks of the conventional methods for acetalizing saccharides, suppresses side reactions such as isomerization, and allows saccharides to be produced in good yield and regioselectively. The purpose of the present invention is to provide a novel method for acetalization.

【0005】[0005]

【課題を解決するための手段】本発明者らは、糖類のア
セタール化方法について種々研究を重ねた結果、従来の
カルボニル化合物を用いる方法とは全く異なったチオカ
ルボニル化合物を用いる方法を開発し、この方法によれ
ば糖類の2,3位又は4,6位が選択的にアセタール化
されることを見出し、この知見に基づいて本発明を完成
するに至った。
Means for Solving the Problems The present inventors have conducted various studies on a method for acetalizing a saccharide, and as a result, have developed a method using a thiocarbonyl compound which is completely different from the conventional method using a carbonyl compound. According to this method, it was found that the 2-, 3- or 4-position of the saccharide was selectively acetalized, and based on this finding, the present invention was completed.

【0006】すなわち、本発明は、糖類をアセタール化
するに当り、糖類に、塩基及び銀塩又は銅塩の存在下、
かさ高い有機基をもつチオカルボニル化合物を反応させ
ることを特徴とする糖類の2,3位又は4,6位を選択
的にアセタール化する方法を提供するものである。
That is, according to the present invention, when acetalizing a saccharide, the saccharide is added to a base in the presence of a silver salt or a copper salt.
An object of the present invention is to provide a method for selectively acetalizing the saccharide at the 2,3 or 4,6 position by reacting a thiocarbonyl compound having a bulky organic group.

【0007】本発明方法において用いられる糖類として
は、例えばグルコース、マンノース、ガラクトースなど
の単糖類及びそれらのアノマー水酸基のα又はβ‐メチ
ル化体や水酸基の一部がアシル化、エーテル化されたも
の、マンニトール、グルシトールなどの糖アルコール
類、スクロース、マルトース、トレハロース、シクロデ
キストリンなどの二糖類やオリゴ糖類、さらにはこれら
の誘導体などが挙げられる。
The saccharides used in the method of the present invention include, for example, monosaccharides such as glucose, mannose, and galactose, and α- or β-methylated anomeric hydroxyl groups and those obtained by partially acylating or etherifying hydroxyl groups. And sugar alcohols such as mannitol and glucitol, disaccharides and oligosaccharides such as sucrose, maltose, trehalose and cyclodextrin, and derivatives thereof.

【0008】本発明方法において用いられるかさ高い、
有機基をもつチオカルボニル化合物としては、一般式
The bulky material used in the method of the present invention,
As the thiocarbonyl compound having an organic group, a general formula

【化1】 で表わされる構造のものを挙げることができる。Embedded image Can be mentioned.

【0009】前記一般式において、R1及びR2は、それ
ぞれチオカルボニル基に結合しているかさ高い有機基で
あり、具体的には、フェニル基、ニトロフェニル基、ジ
メチルアミノフェニル基などのアリール基、イソプロピ
ル基、t‐ブチル基、ピリジル基、チエニル基などの複
素環式基、モルホリノ基、ジメチルアミノ基、ピペリジ
ノ基などのジ置換アミノ基などが挙げられる。R1及び
2は、たがいに同一であっても異なっていてもよく、
またたがいに結合して環構造を形成していてもよい。
In the above formula, R 1 and R 2 are each a bulky organic group bonded to a thiocarbonyl group, and specifically, an aryl group such as a phenyl group, a nitrophenyl group and a dimethylaminophenyl group. And heterocyclic groups such as isopropyl group, isopropyl group, t-butyl group, pyridyl group and thienyl group, and disubstituted amino groups such as morpholino group, dimethylamino group and piperidino group. R 1 and R 2 may be the same or different,
Further, they may combine with each other to form a ring structure.

【0010】このチオカルボニル化合物としては、チオ
カルボニル基に直接芳香環又は複素環あるいはその両方
が結合しているものが好ましく、例えばビス(ジアルキ
ルアミノフェニル)チオケトン、ニトロフェニルモルホ
リノチオケトン、2,6‐ジアルキル‐γ‐ピランチオ
ン、キサンテンチオン、チオキサンテンチオンなどが好
ましく挙げられる。
As the thiocarbonyl compound, those in which an aromatic ring or a heterocyclic ring or both are directly bonded to a thiocarbonyl group are preferable. For example, bis (dialkylaminophenyl) thioketone, nitrophenylmorpholinothioketone, 2,6 -Dialkyl-γ-pyranthion, xanthenethione, thioxanthenthione and the like are preferred.

【0011】本発明方法においては、前記糖類に、塩基
及び銀塩又は銅塩の存在下、前記チオカルボニル化合物
を反応させるが、この際、有機溶媒中で反応させるのが
好ましい。有機溶媒としては、例えばアセトニトリル、
テトラヒドロフラン、トルエン、酢酸エチル、N,N‐
ジメチルホルムアミド、ピリジン、ジクロロメタンなど
が挙げられる。これらの溶媒は単独で用いてもよいし、
2種以上を混合して用いてもよい。
In the method of the present invention, the thiocarbonyl compound is reacted with the saccharide in the presence of a base and a silver salt or a copper salt. In this case, the reaction is preferably performed in an organic solvent. As the organic solvent, for example, acetonitrile,
Tetrahydrofuran, toluene, ethyl acetate, N, N-
Examples include dimethylformamide, pyridine, dichloromethane and the like. These solvents may be used alone,
Two or more kinds may be used as a mixture.

【0012】また、塩基としては、例えばトリエチルア
ミン、4‐ジメチルアミノピリジン、ピリジン、ジイソ
プロピルエチルアミンなどの有機第三級アミン、あるい
はカリウムt‐ブトキシド、炭酸カリウムなどが挙げら
れるが、これらの中で有機第三級アミンが有機溶媒に対
する溶解性の点から好適である。また、これらの塩基
は、それぞれ単独で用いてもよいし、2種以上を組み合
わせて用いてもよい。
Examples of the base include organic tertiary amines such as triethylamine, 4-dimethylaminopyridine, pyridine and diisopropylethylamine, and potassium t-butoxide and potassium carbonate. Tertiary amines are preferred from the viewpoint of solubility in organic solvents. In addition, these bases may be used alone or in combination of two or more.

【0013】一方、銀塩や銅塩としては、有機塩、無機
塩のいずれであってもよく、例えばトリフルオロ酢酸
銀、酢酸銀、過塩素酸銀、硝酸銀、酸化銀、硫酸銀、四
フッ化ホウ酸銀、トリフルオロメタンスルホン酸銀、酸
化銅、塩化銅(I)、トリフルオロ酢酸銅(II)、ト
リフルオロメタンスルホン酸銅(II)などが挙げられ
るが、これらの中で、有機溶媒に対して溶解性の高いト
リフルオロ酢酸塩及びトリフルオロメタンスルホン酸塩
が好適である。これらの銀塩や銅塩は、それぞれ単独で
用いてもよいし、2種以上を組み合わせて用いてもよ
い。
On the other hand, the silver salt or the copper salt may be any of an organic salt and an inorganic salt, for example, silver trifluoroacetate, silver acetate, silver perchlorate, silver nitrate, silver oxide, silver sulfate, tetrafluoride. Silver borate, silver trifluoromethanesulfonate, copper oxide, copper (I) chloride, copper (II) trifluoroacetate, copper (II) trifluoromethanesulfonate, and the like. On the other hand, trifluoroacetate and trifluoromethanesulfonate having high solubility are preferred. These silver salts and copper salts may be used alone or in combination of two or more.

【0014】次に、本発明の好適な実施態様について説
明すると、まず、適当な有機溶媒に、一般式(I)で表
わされるチオカルボニル化合物と糖類とを、好ましくは
モル比1:0.5ないし1:2、より好ましくは1:
0.8ないし1:1.2の割合で溶解したのち、塩基
を、通常チオカルボニル化合物1モルに対して1当量以
上、好ましくは2〜5当量の割合で加えて室温でかきま
ぜる。この溶液に、チオカルボニル化合物1モルに対し
て通常2〜3モル、好ましくは2〜2.5モルの銀塩又
は銅塩を直接又は溶媒に溶解して滴下し、通常室温にて
かきまぜながら反応を行う。この際、必要に応じて加熱
し、反応を促進させてもよい。反応終了後、不溶物の硫
化銀又は硫化銅をろ過や溶解などの方法により除去した
のち、溶媒などの揮発分を減圧留去する。このようにし
て生成したアセタール化合物は、必要ならば再結晶ある
いはカラムクロマトグラフィーなどにより精製を行うこ
とができる。
Next, a preferred embodiment of the present invention will be described. First, a thiocarbonyl compound represented by the general formula (I) and a saccharide are mixed in a suitable organic solvent, preferably in a molar ratio of 1: 0.5. To 1: 2, more preferably 1:
After dissolving at a ratio of 0.8 to 1: 1.2, a base is usually added in an amount of 1 equivalent or more, preferably 2 to 5 equivalents, per 1 mol of the thiocarbonyl compound, and the mixture is stirred at room temperature. To this solution, usually 2 to 3 moles, preferably 2 to 2.5 moles of a silver salt or a copper salt is added directly or dissolved in a solvent to 1 mole of the thiocarbonyl compound, and the mixture is added dropwise with stirring at room temperature. I do. At this time, the reaction may be promoted if necessary by heating. After completion of the reaction, insoluble silver sulfide or copper sulfide is removed by a method such as filtration or dissolution, and volatile components such as a solvent are distilled off under reduced pressure. The acetal compound thus produced can be purified by recrystallization or column chromatography if necessary.

【0015】得られた化合物がアセタール化合物である
ことの確認及びその構造決定は、融点、元素分析、1
−NMR及び13C−NMRなどの測定によって行われ
る。
Confirmation that the obtained compound is an acetal compound and determination of its structure are performed by melting point, elemental analysis, 1 H
-NMR and 13 C-NMR.

【0016】このようにして、一般式Thus, the general formula

【化2】 で表わされる糖類のアセタール化合物が得られる。前記
一般式(II)において、R1及びR2は前記と同じ意味
をもち、Aは糖類の2,3位の2個の水酸基又は4,6
位の2個の水酸基を除いた残基である。この糖残基に
は、脂肪族基、芳香族基、複素環式基などの置換基が導
入されていてもよく、また、これらの置換基は、水酸
基、アミノ基、アルコキシ基、チオアルコキシ基、エス
テル基、アシル基などを含有していてもよい。さらに、
前記置換基はたがいに結合して環状構造を形成していて
もよい。
Embedded image Is obtained. In the general formula (II), R 1 and R 2 have the same meanings as described above, and A is two hydroxyl groups at the 2,3-position of the saccharide or 4,6
It is a residue excluding the two hydroxyl groups at the position. Substituents such as an aliphatic group, an aromatic group, and a heterocyclic group may be introduced into the sugar residue, and these substituents may be a hydroxyl group, an amino group, an alkoxy group, a thioalkoxy group. , An ester group, an acyl group, or the like. further,
The substituents may be bonded to each other to form a cyclic structure.

【0017】次に、本発明における反応機構について
は、チオカルボニル化合物としてビス(4‐ジメチルア
ミノフェニル)チオケトン(チオミヒラーズケトン)
を、糖類としてメチルα‐D‐グルコシドを、塩基とし
てトリエチルアミンを、銀塩としてトリフルオロ酢酸銀
を用い、トリエチルアミン及びトリフルオロ酢酸銀の存
在下、メチルα‐D‐グルコシドにチオミヒラーズケト
ンを反応させた場合を例に挙げると、以下のように推定
される。
Next, regarding the reaction mechanism in the present invention, bis (4-dimethylaminophenyl) thioketone (thiomihlazketone) is used as the thiocarbonyl compound.
Using methyl α-D-glucoside as a saccharide, triethylamine as a base and silver trifluoroacetate as a silver salt, and reacting methyl α-D-glucoside with thiomihlaz ketone in the presence of triethylamine and silver trifluoroacetate. Taking the case where this is done as an example, it is estimated as follows.

【0018】[0018]

【化3】 Embedded image

【0019】表1に、糖類としてメチルα‐D‐グルコ
シドを、チオカルボニル化合物としてビス(4‐ジメチ
ルアミノフェニル)チオケトン(チオミヒラーズケト
ン)、4‐ニトロフェニルモルホリノチオケトン、キサ
ンテンチオン及びチオキサンテンチオンを用い、本発明
方法により合成したアセタール化合物の例を構造式で示
す。また、表2に、糖類としてメチルα‐D‐マンノシ
ドを、チオカルボニル化合物としてビス(4‐ジメチル
アミノフェニル)チオケトン(チオミヒラーズケト
ン)、キサンテンチオン及びチオキサンテンチオンを用
い、本発明方法により合成したアセタール化合物の例を
構造式で示す。
Table 1 shows that methyl α-D-glucoside is used as a saccharide, and bis (4-dimethylaminophenyl) thioketone (thiomichler's ketone), 4-nitrophenylmorpholinothioketone, xanthenethione and thioxanthene are used as thiocarbonyl compounds. An example of an acetal compound synthesized by thione using the method of the present invention is shown by a structural formula. Further, Table 2 shows that methyl α-D-mannoside is synthesized as a saccharide and bis (4-dimethylaminophenyl) thioketone (thiomichler's ketone), xanthenethione and thioxanthenethione are synthesized as thiocarbonyl compounds according to the method of the present invention. An example of the acetal compound thus obtained is shown by a structural formula.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【発明の効果】本発明方法に従えば、室温付近の穏和な
塩基性条件下で、従来知られていない新規な反応形式
で、簡便かつ高収率で全く新しいタイプの糖類のアセタ
ール化合物を製造することができる。この反応を、糖類
の水酸基の保護化反応に応用すれば、前記一般式(I)
におけるR1、R2の種類を適当に選ぶことによって、異
なった位置の水酸基の保護を選択的に、かつ効率よく行
うことができる。すなわち、メチルα‐D‐グルコシド
を例にとれば、チオカルボニル化合物としてチオミヒラ
ーズケトン(R1、R2がそれぞれ4‐ジメチルアミノフ
ェニル基)を用いると、4,6‐位のアセタール化合物
「化合物(1)」が得られる。一方、チオカルボニル化
合物としてキサンテンチオンを用いて反応させると、
2,3‐位のアセタール化合物「化合物(3)」が得ら
れる。
According to the method of the present invention, a completely new type of acetal compound of a saccharide can be produced simply and in high yield under a mildly basic condition near room temperature in a novel reaction mode which has not been known. can do. If this reaction is applied to a reaction for protecting a hydroxyl group of a saccharide, the above-mentioned general formula (I)
By appropriately selecting the types of R 1 and R 2 in the above, the protection of hydroxyl groups at different positions can be performed selectively and efficiently. That is, taking methyl α-D-glucoside as an example, when using a thiocarbonyl compound as a thiocarbonyl compound (R 1 and R 2 are each a 4-dimethylaminophenyl group), an acetal compound at the 4,6-position is used. Compound (1) "is obtained. On the other hand, when reacted using xanthenethione as a thiocarbonyl compound,
The 2,3-position acetal compound "compound (3)" is obtained.

【0023】本発明方法によって、このように糖類の水
酸基をアセタール化し、さらに従来法の保護、脱保護反
応と組み合わせることにより、従来法では極めて製造が
難しいとされている2,3‐位に遊離した水酸基を有す
る糖の誘導体も容易に製造することが可能となる。
According to the method of the present invention, the hydroxyl group of the saccharide is acetalized as described above, and further combined with the protection and deprotection reactions of the conventional method, so that the saccharide can be liberated at the 2,3-position which is extremely difficult to produce by the conventional method. Thus, a sugar derivative having a hydroxyl group can also be easily produced.

【0024】したがって、本発明方法は、糖鎖を構築す
る上で、重要な新規な素材を提供することができ、糖鎖
工学の発展に大いに貢献するものである。
Therefore, the method of the present invention can provide an important new material for constructing a sugar chain, and greatly contributes to the development of sugar chain engineering.

【0025】[0025]

【実施例】次に、実施例により本発明をさらに詳細に説
明する。
Next, the present invention will be described in more detail with reference to examples.

【0026】実施例1 糖類としてメチル‐α‐D‐グルコシド及びメチルα‐
D‐マンノシドを、チオカルボニル化合物としてビス
(4‐ジメチルアミノフェニル)チオケトン(チオミヒ
ラーズケトン)、4‐ニトロフェニルモルホリノチオケ
トン、キサンテンチオン及びチオキサンテンチオンを用
い、糖類のアセタール化を行った。
Example 1 As sugars, methyl-α-D-glucoside and methyl α-
D-Mannoside was subjected to acetalization of saccharides using bis (4-dimethylaminophenyl) thioketone (thiomihlaz ketone), 4-nitrophenylmorpholinothioketone, xanthenethione and thioxanthenethione as thiocarbonyl compounds.

【0027】チオカルボニル化合物1.0mmol、糖
類1.2mmolを無水のジメチルホルムアミド(DM
F)15mlに溶解し、さらに0.5mlのトリエチル
アミンを加えた反応液に、トリフルオロ酢酸銀2.5m
molのDMF溶液5mlを5〜10分間かけて滴下し
た。室温で1〜4時間かきまぜたのち、酢酸エチル及び
食塩水を添加して酢酸エチル層を分離し、水洗後、無水
MgSO4で乾燥した。酢酸エチルを減圧で留去して得
られた粗生成物を再結晶(酢酸エチル/ヘキサン)ある
いはシリカゲルカラムクロマトにより精製した。このよ
うにして得られた化合物(1)〜(8)についての融点
(mp)、20℃における濃度1%(w/v)のクロロ
ホルム溶液の旋光度([α]D 20)、チオカルボニル化
合物に対する収率、1H−NMR、13C−NMR、元素
分析結果は以下の通りである。
The thiocarbonyl compound (1.0 mmol) and the saccharide (1.2 mmol) were treated with anhydrous dimethylformamide (DM).
F) The reaction solution dissolved in 15 ml and further added with 0.5 ml of triethylamine was added with 2.5 m of silver trifluoroacetate.
5 ml of a DMF solution was added dropwise over 5 to 10 minutes. After stirring at room temperature for 1 to 4 hours, ethyl acetate and brine were added to separate the ethyl acetate layer, washed with water and dried over anhydrous MgSO 4 . The crude product obtained by evaporating the ethyl acetate under reduced pressure was purified by recrystallization (ethyl acetate / hexane) or silica gel column chromatography. The melting points (mp) of the compounds (1) to (8) thus obtained, the optical rotation ([α] D 20 ) of a 1% (w / v) chloroform solution at 20 ° C., the thiocarbonyl compound , 1 H-NMR, 13 C-NMR, and the results of elemental analysis are as follows.

【0028】化合物(1) mp:190〜191℃、[α]D 20=+106.7°、
収率:77%1 H−NMR:2.31(1H,d.J=9.1H
z),2.82(1H,br),2.87(6H,
s),2.98(6H,s),3.43(3H,s),
3.4〜3.6(2H,m),3.7〜4.1(4H,
m),4.68(1H,d,J=4.0Hz),6.5
〜6.6(2H,m),6.7〜6.8(2H,m),
7.2〜7.3(2H,m),7.3〜7.4ppm
(2H,m)。13 C−NMR:40.2,40.4,55.2,63.
2,63.6,72.0,72.5,74.6,99.
5,103.1,111.7,112.3,125.
2,126.7,128.7,132.0,149.
9,150.3ppm. 元素分析:測定値(%);C,65.01;H,7.1
4;N,6.20 計算値(%);C,64.85;H,7.26;N,
6.30
Compound (1) mp: 190-191 ° C., [α] D 20 = + 106.7 °,
Yield: 77% 1 H-NMR: 2.31 (1H, d.J = 9.1H)
z), 2.82 (1H, br), 2.87 (6H,
s), 2.98 (6H, s), 3.43 (3H, s),
3.4 to 3.6 (2H, m), 3.7 to 4.1 (4H,
m), 4.68 (1H, d, J = 4.0 Hz), 6.5
66.6 (2H, m), 6.7〜6.8 (2H, m),
7.2 to 7.3 (2H, m), 7.3 to 7.4 ppm
(2H, m). 13 C-NMR: 40.2, 40.4, 55.2, 63.
2,63.6,72.0,72.5,74.6,99.
5, 103.1, 111.7, 112.3, 125.
2,126.7,128.7,132.0,149.
9, 150.3 ppm. Elemental analysis: measured value (%); C, 65.01; H, 7.1
N; 6.20 Calculated (%); C, 64.85; H, 7.26; N,
6.30

【0029】化合物(2) mp:198.5〜199.5℃、収率:20%1 H−NMR:2.3〜2.5(4H,m),2.51
(1H,d,J=9.7Hz),3.05(1H,b
r),3.42(1H,s),3.6〜4.3(11
H,m),4.80(1H,d,J=3.8Hz),
7.5〜7.6(2H,m),8.2〜8.3ppm
(2H,m)。13 C−NMR:45.3,55.5,61.7,62.
5,66.6,71.7,72.3,73.2,99.
8,104.7,122.7,126.6,141.
2,147.6ppm。 元素分析:測定値(%);C,52.50;H,5.8
3;N,6.74 計算値(%);C,52.42;H,5.87;N,
6.79
Compound (2) mp: 198.5-199.5 ° C., yield: 20% 1 H-NMR: 2.3-2.5 (4H, m), 2.51
(1H, d, J = 9.7 Hz), 3.05 (1H, b
r), 3.42 (1H, s), 3.6-4.3 (11
H, m), 4.80 (1H, d, J = 3.8 Hz),
7.5 to 7.6 (2H, m), 8.2 to 8.3 ppm
(2H, m). 13 C-NMR: 45.3, 55.5, 61.7, 62.
5,66.6,71.7,72.3,73.2,99.
8, 104.7, 122.7, 126.6, 141.
2,147.6 ppm. Elemental analysis: measured value (%); C, 52.50; H, 5.8
N; 6.74 Calculated (%); C, 52.42; H, 5.87;
6.79

【0030】化合物(3) mp:204〜205℃、[α]D 20=+87.70
°、収率:78%1 H−NMR:2.10(1H,br,s,6−O
H),2.76(1H,d,J=3.0Hz,4−O
H),3.56(3H,s,−OCH),3.5〜
3.7(1H,m,H−5),3.8〜3.9(2H,
m,H−6),3.96(1H,dd,J=9.6H
z,J=3.0Hz,H−2),4.05(1H,m,
H−4),4.48(1H,t,J=9.6Hz,H−
3),5.21(1H,d,J=3.0Hz),7.1
〜7.3(4H,m),7.3〜7.5(2H,m),
7.61(1H,dd,J=7.8Hz,J=1.6H
z),7.93ppm(1H,dd,J=7.6Hz,
J=1.4Hz)。13 C−NMR:55.7,61.3,69.8,73.
1,76.7,77.3,98.1,102.2,11
6.6,116.8,122.2,122.3,12
3.2,123.3,125.7,126.4,13
0.0,130.1,151.6,151.7 pp
m。 元素分析:測定値(%);C,64.77;H,5.4
1 計算値(%);C,64.51;H,5.41
Compound (3) mp: 204-205 ° C., [α] D 20 = + 87.70
°, yield: 78% 1 H-NMR: 2.10 (1H, br, s, 6-O
H), 2.76 (1H, d, J = 3.0 Hz, 4-O
H), 3.56 (3H, s , -OCH 3), 3.5~
3.7 (1H, m, H-5), 3.8-3.9 (2H,
m, H-6), 3.96 (1H, dd, J = 9.6H)
z, J = 3.0 Hz, H-2), 4.05 (1H, m,
H-4), 4.48 (1H, t, J = 9.6 Hz, H-
3), 5.21 (1H, d, J = 3.0 Hz), 7.1
-7.3 (4H, m), 7.3-7.5 (2H, m),
7.61 (1H, dd, J = 7.8 Hz, J = 1.6H
z), 7.93 ppm (1H, dd, J = 7.6 Hz,
J = 1.4 Hz). 13 C-NMR: 55.7, 61.3, 69.8, 73.
1,76.7,77.3,98.1,102.2,11
6.6,116.8,122.2,122.3,12
3.2, 123.3, 125.7, 126.4, 13
0.0, 130.1, 151.6, 151.7 pp
m. Elemental analysis: measured value (%); C, 64.77; H, 5.4
1 Calculated value (%); C, 64.51; H, 5.41

【0031】化合物(4) mp:198〜200℃、[α]D 20=+77.7°、
収率54%1 H−NMR:2.08(1H,t,J=7.2Hz,
6−OH),2.85(1H,d,J=3.6Hz,4
−OH),3.52(3H,s),3.4〜3.6(1
H,m,H−5),3.72(1H,dd,J=9.6
Hz,J=3.0Hz,H−2),3.8〜3.9(1
H,m,H−4),3.99(1H,dt,J=9.4
Hz,J=3.6Hz,H−4),4.19(1H,d
d,J=9.6Hz,J=9.4Hz,H−3),5.
20(1H,d,J=3.0Hz,H−1),7.3〜
7.4(4H,m),7.4〜7.6(2H,m),
7.7〜7.8(1H,m),8.0〜8.1ppm
(1H,m)。13 C−NMR:55.5,66.2,69.6,73.
8,76.7,77.2,97.9,104.9,12
5.2,126.1,126.2,126.2,12
6.6,126.6,128.1,128.2,13
2.7,132.9,133.9,133.9 pp
m。 元素分析:測定値(%);C,61.96;H,5.2
9;S,8.17 計算値(%);C,61.84;H,5.19;S,
8.26,
Compound (4) mp: 198-200 ° C., [α] D 20 = + 77.7 °,
Yield 54% 1 H-NMR: 2.08 ( 1 H, t, J = 7.2 Hz,
6-OH), 2.85 (1H, d, J = 3.6 Hz, 4
-OH), 3.52 (3H, s), 3.4 to 3.6 (1
H, m, H-5), 3.72 (1H, dd, J = 9.6).
Hz, J = 3.0 Hz, H-2), 3.8-3.9 (1
H, m, H-4), 3.99 (1H, dt, J = 9.4).
Hz, J = 3.6 Hz, H-4), 4.19 (1H, d
d, J = 9.6 Hz, J = 9.4 Hz, H-3), 5.
20 (1H, d, J = 3.0 Hz, H-1), 7.3 to
7.4 (4H, m), 7.4 to 7.6 (2H, m),
7.7 to 7.8 (1H, m), 8.0 to 8.1 ppm
(1H, m). 13 C-NMR: 55.5, 66.2, 69.6, 73.
8, 76.7, 77.2, 97.9, 104.9, 12
5.2, 126.1, 126.2, 126.2, 12
6.6, 126.6, 128.1, 128.2, 13
2.7, 132.9, 133.9, 133.9 pp
m. Elemental analysis: measured value (%); C, 61.96; H, 5.2
9; S, 8.17 Calculated (%); C, 61.84; H, 5.19;
8.26,

【0032】化合物(5) mp:192〜194℃、[α]D 20=+72.5°、
収率26%1 H−NMR:2.48(1H,br),2.74(1
H,br),2.88(6H,s),2.98(6H,
s),3.38(3H,s),3.8〜3.9(2H,
m),3.9〜4.1(4H,m),4.66(1H,
d,J=1.1Hz),6.5〜6.6(2H,m),
6.7〜6.8(2H,m),7.2〜7.3(2H,
m),7.3〜7.4 ppm(2H,m)。13 C−NMR:40.6,55.0,63.7,63.
9,69.1,70.9,72.7,101.2,10
3.9,111.7,112.7,125.6,12
7.0,128.8,150.2 ppm。 元素分析:測定値(%);C,65.11;H,7.0
8;N,6.31 計算値(%);C,64.85;H,7.26;N,
6.30
Compound (5) mp: 192 ° -194 ° C., [α] D 20 = + 72.5 °,
Yield 26% 1 H-NMR: 2.48 (1H, br), 2.74 (1
H, br), 2.88 (6H, s), 2.98 (6H,
s), 3.38 (3H, s), 3.8-3.9 (2H,
m), 3.9-4.1 (4H, m), 4.66 (1H,
d, J = 1.1 Hz), 6.5 to 6.6 (2H, m),
6.7 to 6.8 (2H, m), 7.2 to 7.3 (2H,
m), 7.3-7.4 ppm (2H, m). 13 C-NMR: 40.6, 55.0, 63.7, 63.
9, 69.1, 70.9, 72.7, 101.2, 10
3.9, 111.7, 112.7, 125.6, 12
7.0, 128.8, 150.2 ppm. Elemental analysis: measured value (%); C, 65.11; H, 7.0
8; N, 6.31 Calculated (%); C, 64.85; H, 7.26;
6.30

【0033】化合物(6) mp:182〜184℃、[α]D 20=+72.7°、
収率34%1 H−NMR:2.17(1H,br),2.75(1
H,br),2.91(6H,s),2.94(6H,
s),3.39(3H,s),3.6〜3.7(1H,
m),3.7〜3.8(3H,m),4.06(1H,
d,J=6.3Hz,H−2),4.28(1H,t,
J=6.3Hz,H−3),5.04(1H,s,H−
1),6.6〜6.7(4H,m),7.2〜7.4
ppm(4H,m)。13 C−NMR:40.5,40.6,55.2,63.
0,69.4,70.2,75.1,78.2,98.
6,110.7,111.8,127.3,127.
4,130.4,150.2,150.3。 元素分析:測定値(%);C,64.85;H,7.0
6;N,6.26 計算値(%);C,64.85;H,7.26;N,
6.30
Compound (6) mp: 182-184 ° C., [α] D 20 = + 72.7 °,
Yield 34% 1 H-NMR: 2.17 (1H, br), 2.75 (1
H, br), 2.91 (6H, s), 2.94 (6H,
s), 3.39 (3H, s), 3.6-3.7 (1H,
m), 3.7-3.8 (3H, m), 4.06 (1H,
d, J = 6.3 Hz, H-2), 4.28 (1H, t,
J = 6.3 Hz, H-3), 5.04 (1H, s, H-)
1), 6.6 to 6.7 (4H, m), 7.2 to 7.4
ppm (4H, m). 13 C-NMR: 40.5, 40.6, 55.2, 63.
0, 69.4, 70.2, 75.1, 78.2, 98.
6, 110.7, 111.8, 127.3, 127.
4, 130.4, 150.2, 150.3. Elemental analysis: measured value (%); C, 64.85; H, 7.0
6; N, 6.26 Calculated (%); C, 64.85; H, 7.26;
6.30

【0034】化合物(7) mp:199.5〜201℃、[α]D 20=−9.9
°、収率65%1 H−NMR:2.51(1H,br,6−OH),
3.33(3H,s),3.59(1H,d,J=5.
0Hz,4−OH),3.69(1H,m,H−5),
3.8〜3.9(2H,m,H−6),4.0〜4.2
(1H,m,H−4),4.39(1H,d,J=6.
6Hz,H−2),4.66(1H,t,J=6.6H
z,H−3),4.89(1H,s,H−1),7.1
〜7.3(4H,m),7.3〜7.5(2H,m),
7.51(1H,dd,J=7.8Hz,J=1.6H
z),7.84ppm(1H,dd,J=7.8Hz,
J=1.6Hz)。13 C−NMR:55.1,62.2,66.8,69.
7,75.1,79.5,98.2,101.8,11
6.7,116.9,121.7,122.9,12
3.3,123.5,125.0,125.7,12
9.8,130.2,151.7,152.8 pp
m。 元素分析:測定値(%);C,64.37;H,5.4
1 計算値(%);C,64.51;H,5.41
Compound (7) mp: 199.5-201 ° C., [α] D 20 = −9.9
°, yield 65% 1 H-NMR: 2.51 (1H, br, 6-OH),
3.33 (3H, s), 3.59 (1H, d, J = 5.
0 Hz, 4-OH), 3.69 (1H, m, H-5),
3.8-3.9 (2H, m, H-6), 4.0-4.2
(1H, m, H-4), 4.39 (1H, d, J = 6.
6Hz, H-2), 4.66 (1H, t, J = 6.6H)
z, H-3), 4.89 (1H, s, H-1), 7.1
-7.3 (4H, m), 7.3-7.5 (2H, m),
7.51 (1H, dd, J = 7.8 Hz, J = 1.6H
z), 7.84 ppm (1H, dd, J = 7.8 Hz,
J = 1.6 Hz). 13 C-NMR: 55.1, 62.2, 66.8, 69.
7, 75.1, 79.5, 98.2, 101.8, 11
6.7, 116.9, 121.7, 122.9, 12
3.3, 123.5, 125.0, 125.7, 12
9.8, 130.2, 151.7, 152.8 pp
m. Elemental analysis: measured value (%); C, 64.37; H, 5.4
1 Calculated value (%); C, 64.51; H, 5.41

【0035】化合物(8) mp:100℃(分解)、[α]D 20=+2.7°、収
率:47%1 H−NMR:2.45(1H,br),3.32(3
H,s),3.3〜3.4(1H,m),3.5〜3.
7(2H,m),3.8〜3.9(1H,br),3.
9〜4.0(1H,m),4.09(1H,d,J=
6.0Hz),4.58(1H,dd,J=7.2H
z,J=6.0Hz),4.94(1H,s),7.3
〜7.4(4H,m),7.5〜7.6(2H,m),
7.7〜7.8(1H,m),7.9〜8.0ppm
(1H,m)。13 C−NMR:55.1,62.3,69.1,69.
3,75.3,79.8,97.8,105.0,12
5.0,125.3,125.9,126.5,12
7.0,127.2,128.1,128.4,13
3.0,133.7,134.2,134.3 pp
m。 元素分析:測定値(%);C,61.55;H,5.5
9;S,8.11 計算値(%);C,61.84;H,5.19;S,
8.26
Compound (8) mp: 100 ° C. (decomposition), [α] D 20 = + 2.7 °, yield: 47% 1 H-NMR: 2.45 (1H, br), 3.32 (3
H, s), 3.3-3.4 (1H, m), 3.5-3.3.
7 (2H, m), 3.8 to 3.9 (1H, br), 3.
9 to 4.0 (1H, m), 4.09 (1H, d, J =
6.0 Hz), 4.58 (1H, dd, J = 7.2H)
z, J = 6.0 Hz), 4.94 (1H, s), 7.3
To 7.4 (4H, m), 7.5 to 7.6 (2H, m),
7.7 to 7.8 (1H, m), 7.9 to 8.0 ppm
(1H, m). 13 C-NMR: 55.1, 62.3, 69.1, 69.
3,75.3,79.8,97.8,105.0,12
5.0, 125.3, 125.9, 126.5, 12
7.0, 127.2, 128.1, 128.4, 13
3.0, 133.7, 134.2, 134.3 pp
m. Elemental analysis: measured value (%); C, 61.55; H, 5.5
9; S, 8.11 Calculated value (%); C, 61.84; H, 5.19; S,
8.26

【0036】実施例2 チオミヒラーズケトン1mmol、メチルα‐D‐グル
コシド1.2mmol及びトリエチルアミン0.5ml
を無水ピリジン5mlに溶解した。この反応液に塩化銅
(I)2.5mmolを5分間かけて添加したのち、室
温で約1時間かきまぜた。反応液からピリジンとトリエ
チルアミンを減圧で留去し、さらに残渣に希塩酸と酢酸
エチルを加えた。沈殿物をろ去して得られる有機層を分
離、水洗、乾燥したのちに、減圧で酢酸エチルを留去し
た。得られた粗生成物をシリカゲルカラムクロマトに展
開して、酢酸エチル/ヘキサンで溶出させたところ、化
合物(I)が15%の収率で得られた。
Example 2 1 mmol of thiomihlaz ketone, 1.2 mmol of methyl α-D-glucoside and 0.5 ml of triethylamine
Was dissolved in 5 ml of anhydrous pyridine. After adding 2.5 mmol of copper (I) chloride to the reaction solution over 5 minutes, the mixture was stirred at room temperature for about 1 hour. Pyridine and triethylamine were distilled off from the reaction solution under reduced pressure, and diluted hydrochloric acid and ethyl acetate were added to the residue. After the precipitate was filtered off, the organic layer obtained was separated, washed with water and dried, and then ethyl acetate was distilled off under reduced pressure. The obtained crude product was developed on silica gel column chromatography and eluted with ethyl acetate / hexane to give compound (I) at a yield of 15%.

【0037】比較例1 チオミヒラーズケトン1mmol、メチルα‐D‐グル
コシド1.2mmolを無水DMF15mlに溶解し、
さらに0.5mlのトリエチルアミンを加えた反応液を
室温で5時間かきまぜ続けた。反応液の極少量を取り出
し、TLC(シリカゲル、薄層クロマト)に展開したが
化合物(I)の生成が認められなっかたので、さらに反
応液を80℃で一夜加熱したが、反応は進行していなか
った。
Comparative Example 1 1 mmol of thiomihlaz ketone and 1.2 mmol of methyl α-D-glucoside were dissolved in 15 ml of anhydrous DMF.
The reaction mixture to which 0.5 ml of triethylamine was further added was continuously stirred at room temperature for 5 hours. A very small amount of the reaction solution was taken out and developed on TLC (silica gel, thin layer chromatography), but the formation of compound (I) was not observed. Therefore, the reaction solution was further heated at 80 ° C. overnight, but the reaction proceeded. I didn't.

【0038】比較例2 チオミヒラーズケトン1mmol、メチルα‐D‐グル
コシド1.2mmolを溶解した反応液にトリフルオロ
酢酸銀2.5mmolのアセトニトリル溶液3mlを5
分間かけて滴下したのち、室温で約2時間かきまぜた。
反応液の極少量を取り出し、TLCに展開したが、化合
物(I)の生成を確認できなっかので、さらに反応液を
80℃で5時間加熱したが、未反応であった。
Comparative Example 2 3 ml of a solution of 2.5 mmol of silver trifluoroacetate in acetonitrile was added to a reaction solution in which 1 mmol of thiomihlaz ketone and 1.2 mmol of methyl α-D-glucoside were dissolved.
After dropwise addition over a period of minutes, the mixture was stirred at room temperature for about 2 hours.
A very small amount of the reaction solution was taken out and developed on TLC. Since the formation of compound (I) could not be confirmed, the reaction solution was further heated at 80 ° C. for 5 hours, but was not reacted.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 糖類をアセタール化するに当り、糖類
に、塩基及び銀塩又は銅塩の存在下、かさ高い有機基を
もつチオカルボニル化合物を反応させることを特徴とす
る糖類の2,3位又は4,6位を選択的にアセタール化
する方法。
1. A method for acetalizing a saccharide, comprising reacting the saccharide with a thiocarbonyl compound having a bulky organic group in the presence of a base and a silver salt or a copper salt. Alternatively, a method of selectively acetalizing the 4- and 6-positions.
【請求項2】 かさ高い有機基をもつチオカルボニル化
合物がビス(ジアルキルアミノフェニル)チオケトン、
ニトロフェニルモルホリノチオケトン、2,6‐ジアル
キル‐γ‐ピランチオン、キサンテンチオン又はチオキ
サンテンチオンである請求項1記載の方法。
2. A thiocarbonyl compound having a bulky organic group is a bis (dialkylaminophenyl) thioketone,
The method according to claim 1, which is nitrophenylmorpholinothioketone, 2,6-dialkyl-γ-pyranthion, xanthenethione or thioxanthenthione.
【請求項3】 有機溶媒中で反応させる請求項1又は請
求項2記載の方法。
3. The method according to claim 1, wherein the reaction is carried out in an organic solvent.
【請求項4】 塩基として有機第三級アミンを用いる請
求項3記載の方法。
4. The method according to claim 3, wherein an organic tertiary amine is used as the base.
【請求項5】 銀塩又は銅塩としてトリフルオロ酢酸塩
又はトリフルオロメタンスルホン酸塩を用いる請求項3
記載の方法。
5. The method according to claim 3, wherein trifluoroacetate or trifluoromethanesulfonate is used as the silver salt or the copper salt.
The described method.
JP6190599A 1994-08-12 1994-08-12 Method for selective acetalization of sugars Expired - Lifetime JP2580538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6190599A JP2580538B2 (en) 1994-08-12 1994-08-12 Method for selective acetalization of sugars

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6190599A JP2580538B2 (en) 1994-08-12 1994-08-12 Method for selective acetalization of sugars

Publications (2)

Publication Number Publication Date
JPH0853485A JPH0853485A (en) 1996-02-27
JP2580538B2 true JP2580538B2 (en) 1997-02-12

Family

ID=16260753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6190599A Expired - Lifetime JP2580538B2 (en) 1994-08-12 1994-08-12 Method for selective acetalization of sugars

Country Status (1)

Country Link
JP (1) JP2580538B2 (en)

Also Published As

Publication number Publication date
JPH0853485A (en) 1996-02-27

Similar Documents

Publication Publication Date Title
JP2777359B2 (en) Selective isolation of difluoronucleosides
JP2580538B2 (en) Method for selective acetalization of sugars
JPH07316178A (en) Glycoaminooxazolines
JPH02225484A (en) Production of pterin derivative
EP0389110A2 (en) Process for the preparation of 2'-deoxy-5-trifluoromethyl-beta-uridine
JPS5936914B2 (en) Cephalosporin analogs
JPS6232196B2 (en)
JPH0269476A (en) Production of pyrimidine derivative
JP2661635B2 (en) Method for producing acetal compound
JP2003527397A (en) Method for producing perbenzylated 1-o-glycoside
JP3837876B2 (en) Azidohalogenobenzyl derivatives and methods for protecting hydroxyl groups
JP3259191B2 (en) Synthesis of 2,2'-anhydroarabinosyl thymine derivatives
US4324895A (en) Novel process for producing pyrimidine nucleosides and novel pyrimidine nucleosides obtained thereby
JPH06263792A (en) Production of 2'-deoxynycleosides
JPH0522712B2 (en)
JP2547125B2 (en) 2 ', 3'-dideoxy-2', 3'-disubstituted-nucleosides and process for their production
JP2639549B2 (en) Pentadienal derivatives and their production
JPH05271224A (en) New nucleoside derivative containing oxetane ring
JPS63284193A (en) Production of 2',3'-dideoxycytidine derivative
JPH07242694A (en) Triazolopurine nucleoside derivative and synthetic intermediate useful for producing the same derivative
JP2005504024A (en) Process for the preparation of peracylated 1-O-glycosides
JPH0368879B2 (en)
JPH0692431B2 (en) Polyacetyl oligosaccharide derivative
JPS589115B2 (en) Shinkina Nucleoside Yudotaino Seizouhouhou
JPH0543545A (en) New aza-saccharide derivative

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term