JPH0368879B2 - - Google Patents

Info

Publication number
JPH0368879B2
JPH0368879B2 JP57192900A JP19290082A JPH0368879B2 JP H0368879 B2 JPH0368879 B2 JP H0368879B2 JP 57192900 A JP57192900 A JP 57192900A JP 19290082 A JP19290082 A JP 19290082A JP H0368879 B2 JPH0368879 B2 JP H0368879B2
Authority
JP
Japan
Prior art keywords
reaction
nucleoside
group
substituted uracil
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57192900A
Other languages
Japanese (ja)
Other versions
JPS5982396A (en
Inventor
Sada Myasaka
Hiromichi Tanaka
Hiroyuki Hayakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamasa Shoyu KK
Original Assignee
Yamasa Shoyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamasa Shoyu KK filed Critical Yamasa Shoyu KK
Priority to JP57192900A priority Critical patent/JPS5982396A/en
Publication of JPS5982396A publication Critical patent/JPS5982396A/en
Publication of JPH0368879B2 publication Critical patent/JPH0368879B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Description

【発明の詳細な説明】 本発明は、5−置換ウラシルヌクレオシドの製
造法に関するものである。 有機化合物のリチウム化は、炭素−炭素結合形
成反応のための重要な手段として認識されるよう
になつてきた。しかしながら、ヌクレオシド化学
の分野においては、このリチウム化反応を応用し
た例はあまり知られていない。これは、従来報告
されている結果が、製造上の立場から見て実用性
に乏しいものであつたことと関連している。 本発明者らは、先にウリジン誘導体のリチウム
化について研究し、2′,3′−O−イソプロピリデ
ン−5′−O−メトキシメチルウリジンをリチウム
ジイソプロピルアミド(LDA)と反応させると、
C−6位が位置選択的にリチウム化され、N3
6−ジリチオ体が得られることを知見した
(Nucleic Acids Symposium Series No.8,33
(1980))。そして、N3,6−ジリチオ体を種々の
親電子試薬と反応させることによつて、C−6位
に炭素−炭素結合を介して種々の置換基を導入す
ることに成功した(Nucleic Acids Symposium
Series No.10,1(1981))。 本発明は、ウラシルヌクレオシドのC−5位に
位置選択的に炭素−炭素結合を介して種々の置換
基を導入することのできる方法を提供する目的の
もとに完成されたものである。 すなわち、本発明者らは、ウラシルヌクレオシ
ドをロジウム/アルミナなどの還元触媒を用いて
接触還元することにより得られる5,6−ジヒド
ロウラシルヌクレオシドをリチウム化剤によりリ
チウム化し、そのリチウム化生成物に親電子試薬
として酸ハライドを反応させ、さらに5−6結合
をフエニルセレネニルクロライド−ピリジンで不
飽和化すると、5−アシルウラシルヌクレオシド
が選択的に得られることを見い出した。したがつ
て、5,6−ジヒドロウラシルヌクレオシドのリ
チウム化物は、化学反応的観点から、N3,5−
ジリチオ−5,6−ジヒドロウラシルヌクレオシ
ドであると同定され、このものは各種の親電子試
薬との反応により容易にC−5位に炭素−炭素結
合を介して置換基を導入でき、5−置換ウラシル
ヌクレオシドの原料化合物として極めて有用であ
ることが判明した。 原料化合物であるN3,5−ジリチオ−5,6
−ジヒドロウラシルヌクレオシドは、下記一般式
〔〕で表わされる。 該式中、Rは保護基を有する糖残基を示す。糖
残基の具体例としてはフラノシル基、たとえばβ
−D−リボフラノシル基、β−D−2−デオキシ
リボフラノシル基、β−D−3−デオキシリボフ
ラノシル基、β−D−アラビノフラノシル基など
が挙げられる。糖残基の保護基としては、ヌクレ
オシド化学において適用しうるものを保護を要す
る糖水酸基の位置に応じて適宜に選択すればよ
い。具体的には、酸処理により容易に脱離しうる
ものが好ましく、たとえば、メトキシメチル基、
エトキシエチル基などのアルコキシアルキル基、
トリチル基、ベンジル基などのアラルキル基な
ど、また糖残基がβ−D−リボフラノシル基であ
る場合、その2′位および3′位水酸基の同時保護用
として、イソプロピリデン基、エチリデン基など
のアルキリデン基、メトキシメチレン基、エトキ
シメチレン基、エトキシエチレン基などのアルコ
キシアルキリデン基などが例示できる。 原料化合物は、5,6−ジヒドロウラシルヌク
レオシドにリチウム化剤を反応させることにより
調製することができる。 5,6−ジヒドロウラシルヌクレオシドは、下
記式で表わされる。 該式中、Rは、目的とする原料化合物のものと
対応する。この化合物は、ロジウム/アルミナを
還元触媒として用いてウラシルヌクレオシドを接
触還元する方法など公知の方法により製造するこ
とができる(たとえば、J.Chem.Soc.(1970)
2444参照)。 リチウム化反応において用いられるリチウム化
剤としては、LDA、n−ブチルリチウム、フエ
ニルリチウム、リチウム−n−プロピルアミド、
テトラメチルピペリジニルリチウムなどが例示さ
れる。反応は通常エーテル系溶媒中で行われ、反
応溶媒としては、テトラヒドロフラン、ジオキサ
ン、ジエチルエーテル、ジメトキシエタン、ジエ
チレングリコールジメチルエーテルなどが適用さ
れる。リチウム化剤の求核性を強めるために、ト
リエチルアミン、N,N,N′,N′−テトラメチ
ルエチレンジアミンなどの三級アミンを溶媒中に
存在させることもできる。反応条件としては、無
水条下で、副反応を防止するため−78〜0℃の低
温条件が設定される。反応は、数十分〜数時間で
完結する。 このようにして得られた原料化合物は不安定で
あるため、合成反応液から単離せずに、そのまま
以下の反応に供される。 5−置換ウラシルヌクレオシドを得る反応工程
は、上記原料化合物に対して、C−5位リチウ
ム原子と親電子試薬との置換反応、およびC−
5および6位炭素原子間結合の不飽和化反応を行
う工程からなる。 C−5位置換反応に使用される親電子試薬は酸
ハライド、アルデヒド、ギ酸エステル、ケトン、
ジスルフイド及びハロゲン化アルキルから選択し
うる。反応は、原料化合物の合成反応液に親電子
試薬を添加して行う(Nucleic Acids Research
Symposium Series No.10 1−4(1981)参照) C−5および6位炭素原子間結合の不飽和化反
応は、セレノキシドの熱分解反応(「新実験化学
講座14、有機化合物の合成と反応()」151頁〜
154頁、昭和52年丸善(株)発行参照)を応用するこ
とにより行うことができる。具体的には、ジクロ
ロメタンなどの溶媒中でフエニルセレネニルクロ
ライド−ピリジン複合体の存在下で0℃〜室温で
十数時間反応させてフエニルセレネニル化し、ピ
リジンを留去した後、ジクロロメタン中0℃で30
%過酸化水素と反応させてフエニルセレネニル基
を酸化的に脱離する方法などにより行う。また、
ハロゲン化アルキルなどの親電子試薬の種類によ
つては、C−5位をフエニルセレネニル化した
後、親電子試薬の置換反応を行わせ、次いでフエ
ニルセレネニル基を酸化的に脱離させる方法を採
用する。 実施例 LDA11.65mmolを含むテトラヒドロフラン溶
液15mlに、テトラヒドロフラン18mlに2′,3′−O
−イソプロピリデン−5′−O−メトキシメチル−
5,6−ジヒドロウリジン1.54g(4.66mmol)を
溶解させた溶液を、乾燥アルゴンガス加圧下、−
70℃を越えないようにしながら添下し、1時間撹
拌しながら反応させた。(=原料化合物の調製) この原料化合物の合成反応液に、−70℃以下に
温度を保ちながらベンゾイルクロライド1.09ml
(9.32mmol)を少量ずつ滴下し、1時間反応させ
た。酢酸で反応を停止させ、室温に戻した後、濃
縮乾固し、残渣をシリカゲルカラムクロマトグラ
フイーに付した。1%エタノール−クロロホルム
溶液で溶出し、溶出液を濃縮乾固して5−ベンゾ
イル−2′,3′−O−イソプロピリデン−5′−O−
メトキシメチル−5,6−ジヒドロウリジン
1.61g(収率79.6%)を得た。 質量分析スペクトル:M+m/z:434 フエニルセレネニルクロライド0.26gをジクロ
ロメタン25mlに溶解させ、0℃に冷却し、ピリジ
ン0.12gを加えてフエニルセレネニルクロライド
−ピリジン複合体を調製した。 5−ベンゾイル−2′,3′−O−イソプロピリデ
ン−5′−O−メトキシメチル−5,6−ジヒドロ
ウリジン510mgのジクロロメタン7ml溶液を0℃
で上記複合体25mlに加え、一夜撹拌した。 反応液を濃縮乾固し、ピリジンをエタノールと
共沸させて完全に除去し、残渣をジクロロメタン
10mlに溶解させ、7℃に冷却し、30%過酸化水素
0.1mlを加え、0℃で1時間撹拌した。さらに30
%過酸化水素0.1mlを加え、0℃で1時間撹拌を
続けた。反応液に水10mlを加え、有機溶媒層を分
取し、硫酸ナトリウムで乾燥させ、濾過し、濃縮
乾固した。シリカゲルカラムクロマトグラフイー
(溶出剤:1%エタノールクロロホルム溶液)で
分離精製して5−ベンゾイル−2′,3′−O−イソ
プロピリデン−5′−O−メトキシメチルウリジン
456mg(収率89.7%)を得た。 質量分析スペクトル:M+1m/z:433 PMRスペクトル:δ8.39sH−6 5−ベンゾイル−2′,3′−O−イソプロピリデ
ン−5′−O−メトキシメチルウリジン360mgに50
%トリフルオロ酢酸水溶液8mlを加え、室温で2
日間撹拌した。反応液を濃縮乾固し、残渣をシリ
カゲルカラムクロマトグラフイー(溶出剤:5%
エタノール−クロロホルム溶液)で分離して5−
ベンゾイルウリジン245mg(収率84.3%)を得た。 融点210〜211℃ 元素分析 計算値 C,15.17 H,4.63 N,8.04 実測値 C,55.23 H,4.63 N,7.85 PMRスペクトル:(D2O,DSS)δ 5.93 H−1′ 8.52 H−6 7.45〜7.79 フエニル 上記実施例の反応経路を図式化すると以下のと
おりである。なお、Rはフエニル基を示す。 ベンゾイルクロライドの代わりに種々の酸ハラ
イドを本発明化合物に反応させた結果は、次表の
とおりであつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing 5-substituted uracil nucleosides. Lithiation of organic compounds has become recognized as an important means for carbon-carbon bond forming reactions. However, in the field of nucleoside chemistry, there are not many examples of applications of this lithiation reaction. This is related to the fact that the results reported so far have been impractical from a manufacturing standpoint. The present inventors previously studied the lithiation of uridine derivatives and found that when 2',3'-O-isopropylidene-5'-O-methoxymethyl uridine was reacted with lithium diisopropylamide (LDA),
The C-6 position is regioselectively lithiated, and N 3 ,
It was found that the 6-dilithio form was obtained (Nucleic Acids Symposium Series No. 8, 33
(1980)). By reacting the N 3,6 -dilithio form with various electrophilic reagents, we succeeded in introducing various substituents at the C-6 position via a carbon-carbon bond (Nucleic Acids Symposium).
Series No. 10, 1 (1981)). The present invention was completed with the object of providing a method capable of regioselectively introducing various substituents into the C-5 position of uracil nucleoside via a carbon-carbon bond. That is, the present inventors lithiated 5,6-dihydrouracil nucleoside obtained by catalytic reduction of uracil nucleoside using a reduction catalyst such as rhodium/alumina using a lithiation agent, and the lithiated product was It has been found that 5-acyluracil nucleoside can be selectively obtained by reacting with an acid halide as an electronic reagent and further unsaturating the 5-6 bond with phenylselenenyl chloride-pyridine. Therefore, from the chemical reaction point of view, the lithiated product of 5,6-dihydrouracil nucleoside is N 3 ,5-
It was identified as dilithio-5,6-dihydrouracil nucleoside, which can be easily substituted at the C-5 position via a carbon-carbon bond by reaction with various electrophilic reagents. It was found to be extremely useful as a raw material compound for uracil nucleoside. Raw material compound N 3 ,5-dilithio-5,6
-Dihydrouracil nucleoside is represented by the following general formula []. In this formula, R represents a sugar residue having a protecting group. Specific examples of sugar residues include furanosyl groups, such as β
-D-ribofuranosyl group, β-D-2-deoxyribofuranosyl group, β-D-3-deoxyribofuranosyl group, β-D-arabinofuranosyl group and the like. As the protecting group for sugar residues, those applicable in nucleoside chemistry may be appropriately selected depending on the position of the sugar hydroxyl group that requires protection. Specifically, those that can be easily eliminated by acid treatment are preferred, such as methoxymethyl groups,
Alkoxyalkyl groups such as ethoxyethyl groups,
For simultaneous protection of aralkyl groups such as trityl group and benzyl group, and when the sugar residue is β-D-ribofuranosyl group, alkylidene groups such as isopropylidene group and ethylidene group are used for simultaneous protection of hydroxyl groups at the 2′ and 3′ positions. Examples include alkoxyalkylidene groups such as methoxymethylene groups, ethoxymethylene groups, and ethoxyethylene groups. The raw material compound can be prepared by reacting 5,6-dihydrouracil nucleoside with a lithiation agent. 5,6-dihydrouracil nucleoside is represented by the following formula. In the formula, R corresponds to that of the desired starting compound. This compound can be produced by a known method such as a method of catalytic reduction of uracil nucleoside using rhodium/alumina as a reduction catalyst (for example, J. Chem. Soc. (1970)).
2444). The lithiation agents used in the lithiation reaction include LDA, n-butyllithium, phenyllithium, lithium-n-propylamide,
Examples include tetramethylpiperidinyllithium. The reaction is usually carried out in an ether solvent, and examples of the reaction solvent include tetrahydrofuran, dioxane, diethyl ether, dimethoxyethane, diethylene glycol dimethyl ether, and the like. Tertiary amines such as triethylamine, N,N,N',N'-tetramethylethylenediamine can also be present in the solvent to enhance the nucleophilicity of the lithiation agent. The reaction conditions are anhydrous conditions and low temperature conditions of -78 to 0°C to prevent side reactions. The reaction is completed in several tens of minutes to several hours. Since the raw material compound thus obtained is unstable, it is directly subjected to the following reaction without being isolated from the synthesis reaction solution. The reaction step for obtaining 5-substituted uracil nucleoside involves a substitution reaction of the C-5 lithium atom with an electrophilic reagent, and a C-
It consists of a step of performing a desaturation reaction of the bond between carbon atoms at the 5th and 6th positions. Electrophilic reagents used in the C-5 substitution reaction include acid halides, aldehydes, formate esters, ketones,
It may be selected from disulfides and alkyl halides. The reaction is carried out by adding an electrophilic reagent to the synthesis reaction solution of the raw material compound (Nucleic Acids Research
Symposium Series No. 10 1-4 (1981)) The unsaturation reaction of the bond between carbon atoms at the C-5 and 6 positions is the thermal decomposition reaction of selenoxide ("New Experimental Chemistry Course 14, Synthesis and Reactions of Organic Compounds"). )” page 151~
This can be done by applying the method (see page 154, published by Maruzen Co., Ltd. in 1978). Specifically, in the presence of a phenylselenenyl chloride-pyridine complex in a solvent such as dichloromethane, it is reacted at 0°C to room temperature for more than ten hours to form phenylselenenylation, and after distilling off the pyridine, it is converted into phenylselenenyl in dichloromethane. 30 at 0℃
% hydrogen peroxide to oxidatively eliminate the phenylselenenyl group. Also,
Depending on the type of electrophilic reagent such as an alkyl halide, the C-5 position may be phenylselenenylated, followed by a substitution reaction of the electrophilic reagent, and then the phenylselenenyl group is oxidatively eliminated. Adopt a method that allows Example: To 15 ml of a tetrahydrofuran solution containing 11.65 mmol of LDA, add 2′,3′-O to 18 ml of tetrahydrofuran.
-isopropylidene-5'-O-methoxymethyl-
A solution containing 1.54 g (4.66 mmol) of 5,6-dihydrouridine was heated under dry argon gas pressure.
The mixture was added while not exceeding 70°C, and the reaction was allowed to proceed for 1 hour with stirring. (=Preparation of raw material compound) Add 1.09 ml of benzoyl chloride to the synthesis reaction solution of this raw material compound while keeping the temperature below -70℃.
(9.32 mmol) was added dropwise little by little and reacted for 1 hour. After stopping the reaction with acetic acid and returning the temperature to room temperature, the mixture was concentrated to dryness and the residue was subjected to silica gel column chromatography. Elute with 1% ethanol-chloroform solution, and concentrate the eluate to dryness to give 5-benzoyl-2',3'-O-isopropylidene-5'-O-
Methoxymethyl-5,6-dihydrouridine
1.61g (yield 79.6%) was obtained. Mass spectrometry spectrum: M + m/z: 434 0.26 g of phenylselenenyl chloride was dissolved in 25 ml of dichloromethane, cooled to 0° C., and 0.12 g of pyridine was added to prepare a phenylselenenyl chloride-pyridine complex. A solution of 510 mg of 5-benzoyl-2',3'-O-isopropylidene-5'-O-methoxymethyl-5,6-dihydrouridine in 7 ml of dichloromethane was heated at 0°C.
The mixture was added to 25 ml of the above complex and stirred overnight. The reaction solution was concentrated to dryness, pyridine was completely removed by azeotroping with ethanol, and the residue was dissolved in dichloromethane.
Dissolve in 10ml, cool to 7℃, and add 30% hydrogen peroxide.
0.1 ml was added and stirred at 0°C for 1 hour. 30 more
% hydrogen peroxide was added and stirring was continued for 1 hour at 0°C. 10 ml of water was added to the reaction solution, and the organic solvent layer was separated, dried over sodium sulfate, filtered, and concentrated to dryness. 5-benzoyl-2',3'-O-isopropylidene-5'-O-methoxymethyluridine was separated and purified by silica gel column chromatography (eluent: 1% ethanol chloroform solution).
456 mg (yield 89.7%) was obtained. Mass spectrometry spectrum: M + 1m/z: 433 PMR spectrum: δ8.39sH-6 5-benzoyl-2',3'-O-isopropylidene-5'-O-methoxymethyluridine 360mg
Add 8 ml of % trifluoroacetic acid aqueous solution and stir at room temperature.
The mixture was stirred for several days. The reaction solution was concentrated to dryness, and the residue was subjected to silica gel column chromatography (eluent: 5%
Separate with ethanol-chloroform solution) and 5-
245 mg (yield 84.3%) of benzoyl uridine was obtained. Melting point 210-211℃ Elemental analysis Calculated value C, 15.17 H, 4.63 N, 8.04 Actual value C, 55.23 H, 4.63 N, 7.85 PMR spectrum: (D 2 O, DSS) δ 5.93 H-1' 8.52 H-6 7.45 ~7.79 Phenyl The reaction route of the above example is illustrated as follows. Note that R represents a phenyl group. The results of reacting various acid halides with the compounds of the present invention in place of benzoyl chloride are shown in the following table. 【table】

Claims (1)

【特許請求の範囲】 1 5−置換ウラシルヌクレオシドの製造法であ
つて、原料化合物として一般式() (式中、Rは保護基を有するフラノシル基を示
す。)で表されるN3,5−ジリチオ−5,6−ジ
ヒドロウラシルヌクレオシドを使用し、該化合物
を酸ハライド、アルデヒド、ギ酸エステル、ケ
トン、ジスルフイド及びハロゲン化アルキルから
選択される親電子試薬と反応させる置換反応、及
び塩基部5位及び6位炭素原子間結合を不飽和
化するためにセレノキシドの熱分解反応に付し、
必要に応じてフラノシル基の保護基を除去して5
−置換ウラシルヌクレオシドを得ることを特徴と
する5−置換ウラシルヌクレオシドの製造法。
[Scope of Claims] 1. A method for producing 5-substituted uracil nucleosides, which comprises the general formula () as a raw material compound. (In the formula, R represents a furanosyl group having a protecting group.) Using N 3 ,5-dilithio-5,6-dihydrouracil nucleoside, the compound can be added to acid halides, aldehydes, formate esters, ketones, etc. , a substitution reaction to react with an electrophilic reagent selected from disulfides and alkyl halides, and a thermal decomposition reaction of selenoxide to unsaturate the bonds between the carbon atoms at the 5- and 6-positions of the base moiety,
If necessary, the protecting group of the furanosyl group is removed and 5
- A method for producing a 5-substituted uracil nucleoside, characterized by obtaining a substituted uracil nucleoside.
JP57192900A 1982-11-02 1982-11-02 N3,5-dilithio-5,6-dihydrouracil nucleoside Granted JPS5982396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57192900A JPS5982396A (en) 1982-11-02 1982-11-02 N3,5-dilithio-5,6-dihydrouracil nucleoside

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57192900A JPS5982396A (en) 1982-11-02 1982-11-02 N3,5-dilithio-5,6-dihydrouracil nucleoside

Publications (2)

Publication Number Publication Date
JPS5982396A JPS5982396A (en) 1984-05-12
JPH0368879B2 true JPH0368879B2 (en) 1991-10-30

Family

ID=16298842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57192900A Granted JPS5982396A (en) 1982-11-02 1982-11-02 N3,5-dilithio-5,6-dihydrouracil nucleoside

Country Status (1)

Country Link
JP (1) JPS5982396A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5428149A (en) * 1993-06-14 1995-06-27 Washington State University Research Foundation Method for palladium catalyzed carbon-carbon coulping and products

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TETRAHEDRON LETTERS *

Also Published As

Publication number Publication date
JPS5982396A (en) 1984-05-12

Similar Documents

Publication Publication Date Title
JP3986313B2 (en) Method for producing fluticasone and related 17β-carbothioic acid ester using novel synthesis method of carbothioic acid and novel purification method
JPS61204193A (en) Production of cytosine nuceoside
JP3042073B2 (en) Nucleoside derivative and method for producing the same
JPH0368879B2 (en)
JP3265548B2 (en) Preparation of ribonucleotide reductase inhibitors
JPS6232196B2 (en)
JP3259191B2 (en) Synthesis of 2,2'-anhydroarabinosyl thymine derivatives
JP2007513134A (en) Improved synthesis of 2-substituted adenosine
JPH10130244A (en) Production of acyclonucleoside
JPS62283973A (en) Conversion of aristeromycin to cyclaradine
JPH0531559B2 (en)
JPH0761979A (en) Bisphenol derivative and its production
GB2096596A (en) 8-quinolinesulfonyl derivatives and their synthesis and use as coupling agents in nucleotide chemistry
JP3495774B2 (en) Method for producing 1-hydroxyindoles
JP2580538B2 (en) Method for selective acetalization of sugars
JPH1045742A (en) Production of esculetin derivative having selectively protected 7-hydroxyl group
JPH07116211B2 (en) Uracil derivative
JPH027595B2 (en)
JPH06135962A (en) Production of 2',3'-dideoxynucleoside derivative
JPS60120890A (en) Novel phosphorylation agent
JPS5930720B2 (en) Method for producing 5-bromouracil nucleoside
JPH06345794A (en) Nucleoside or nucleotide derivative
JPS637200B2 (en)
JPH0959293A (en) Production of adenosine derivative having carbon chain substituent on 2-position
JPH0535157B2 (en)