JP2579921B2 - Substrate manufacturing method - Google Patents

Substrate manufacturing method

Info

Publication number
JP2579921B2
JP2579921B2 JP61307941A JP30794186A JP2579921B2 JP 2579921 B2 JP2579921 B2 JP 2579921B2 JP 61307941 A JP61307941 A JP 61307941A JP 30794186 A JP30794186 A JP 30794186A JP 2579921 B2 JP2579921 B2 JP 2579921B2
Authority
JP
Japan
Prior art keywords
substrate
contact angle
treatment agent
thin film
accumulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61307941A
Other languages
Japanese (ja)
Other versions
JPS63161628A (en
Inventor
俊 江草
俊夫 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP61307941A priority Critical patent/JP2579921B2/en
Publication of JPS63161628A publication Critical patent/JPS63161628A/en
Application granted granted Critical
Publication of JP2579921B2 publication Critical patent/JP2579921B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は基板の製造方法に係り、更に詳しくは有機薄
膜を形成するための基板の製造方法に関する。
The present invention relates to a method of manufacturing a substrate, and more particularly, to a method of manufacturing a substrate for forming an organic thin film.

(従来の技術) 近年、有機薄膜を利用した電気的および光学的素子の
開発が活発化する中で、特にラングミュア・ブロジェッ
ト法(LB法)による有機薄膜の製造法が注目されてい
る。LB法により作られた薄膜(LB膜)は1層あたり20〜
50Åと非常に薄いためMISやMIMといった構造を持つ素子
の絶縁層あるいは電気的、光学的機能層として応用され
ようとしている。
(Prior Art) In recent years, as the development of electrical and optical elements using an organic thin film has been activated, a method of manufacturing an organic thin film by a Langmuir-Blodgett method (LB method) has attracted attention. Thin film (LB film) made by LB method is 20 ~ per layer
Due to its extremely small thickness of 50 mm, it is being applied as an insulating layer or an electrical or optical functional layer for devices having a structure such as MIS or MIM.

特にLSIに代表される微細化されたパターンを有する
素子に、LB法により作られた薄膜を応用する場合、この
薄膜の微細加工技術が必要となる。有機薄膜の微細加工
技術としては、光二量化あるいは光重合性LB膜分子を用
いた光写真食刻技術による考えが提案されている。しか
しこの方法では用いることのできる分子材料が大きく限
定される。従ってすべてのLB分子材料に対して微細パタ
ーンを形成できる技術が望まれている。
In particular, when a thin film formed by the LB method is applied to an element having a fine pattern represented by an LSI, a fine processing technique for the thin film is required. As the microfabrication technology of the organic thin film, the idea of photodimerization using photodimerization or photopolymerizable LB film molecules has been proposed. However, this method greatly limits the molecular materials that can be used. Therefore, a technique capable of forming a fine pattern on all LB molecular materials is desired.

(発明が解決しようとする問題点) 本発明はこのような問題点に鑑みなされたものであ
り、有機薄膜のパターン形成が容易な基板の製造方法を
提供することを目的とする。
(Problems to be Solved by the Invention) The present invention has been made in view of such a problem, and an object of the present invention is to provide a method of manufacturing a substrate in which an organic thin film pattern can be easily formed.

〔発明の構成〕[Configuration of the invention]

(問題点を解決するための手段と作用) 本発明は、ラングミュア・ブロジェット法により有機
薄膜を形成するための基板を製造する方法であって、け
い素の置換基として少なくとも1個以上の疎水基を含有
するシランカップリング剤を表面に水酸基を有する基板
に対する表面処理剤として用い、前記基板表面の純水に
対する接触角θが基板下降時に単分子膜の累積が可能な
接触角θ3となるよう前記表面処理剤により第1の領域
を画定する工程と、基板下降時及び上昇時共に単分子膜
の累積が不可能な接触角θ2となるよう前記表面処理剤
により第2の領域を画定する工程とを具備したことを特
徴とする基板の製造方法である。
(Means and Actions for Solving the Problems) The present invention is a method for producing a substrate for forming an organic thin film by the Langmuir-Blodgett method, comprising at least one hydrophobic group as a silicon substituent. A silane coupling agent containing a group is used as a surface treating agent for a substrate having a hydroxyl group on its surface, and the contact angle θ of the substrate surface with pure water becomes a contact angle θ3 at which a monomolecular film can be accumulated when the substrate descends. A step of defining a first region with the surface treatment agent and a step of defining a second region with the surface treatment agent such that the contact angle θ2 at which the accumulation of the monomolecular film is impossible during both lowering and rising of the substrate. And a method of manufacturing a substrate.

本発明者等が基板表面の性質と単分子膜の累積性につ
いて鋭意検討を重ねた結果、以下に述べるような全く新
規な事実を発見するに到った。即ち、水面上に薄膜(特
に単分子膜)を形成しうる分子(LB膜分子)は、一端が
疎水基,他端が親水基を有する構造をとる界面活性剤で
ある。このLB膜分子から作られる水面上単分子膜に、種
々の接触角θを示す表面から成る基板を気液方向あるい
は液気方向に移動させて累積膜の面積と基板の面積の比
を表わす累積比を調べると、すべてのLB膜分子において
第8,9図の如くなる。
The present inventors have conducted intensive studies on the properties of the substrate surface and the cumulative nature of the monomolecular film, and as a result, have come to discover a completely novel fact as described below. That is, a molecule (LB film molecule) capable of forming a thin film (especially a monomolecular film) on the water surface is a surfactant having a structure in which one end has a hydrophobic group and the other end has a hydrophilic group. A substrate composed of surfaces exhibiting various contact angles θ is moved in the gas-liquid or liquid-gas direction on a monolayer on the water surface made from this LB film molecule, and the cumulative film area and substrate area ratio is expressed. When the ratio is examined, the results are as shown in FIGS. 8 and 9 for all the LB film molecules.

ここで接触角θは、純水面に基板に垂直に浸けた時に
出来るメニスカス水面と基板との接点を通る水面に対す
る接線と、基板とがなす水側の角度である(第5,6
図)。接触角θ及びその測定法については、新実験化学
講座、Vol.18、“界面とコロイド”、P93〜106に詳細に
述べられているが、上記方法以外の測定方法、例えば上
記のθを直接測定するのではなく、メニスカスの高さを
測定して、理論数式よりθを求める方法、上記基板を傾
けてメニスカスが水面と同じ水平面になる時の基板の傾
斜角を測定する方法、水平に置いた基板上に水滴をたら
して、その水滴表面と基板との間のなす角を測定する方
法のいずれの方法によって得られる接触角θも、上記定
義のθと同じ値である。
Here, the contact angle θ is the angle between the tangent to the water surface passing through the contact point between the meniscus water surface and the substrate formed when the substrate is immersed perpendicularly to the pure water surface and the water side formed by the substrate (Nos. 5 and 6).
Figure). The contact angle θ and its measurement method are described in detail in New Experimental Chemistry Course, Vol. 18, “Interface and Colloid”, pp. 93 to 106. Rather than measuring, measuring the height of the meniscus and obtaining θ from the theoretical formula, measuring the tilt angle of the substrate when the meniscus is inclined to the same horizontal plane as the water surface, tilting the substrate, placing horizontally The contact angle θ obtained by any method of dropping a water droplet on the substrate and measuring the angle between the surface of the water droplet and the substrate has the same value as θ defined above.

尚、ここでは微細な領域の接触角が問題となるが、実
際にはそのような接触角を実験的に測定することは不可
能であるので、同様の処理法を大面積の領域について行
ない、接触角を測定し、それを微細な領域の接触角にあ
てはめる。
Here, the contact angle of a fine region is a problem, but it is impossible to actually measure such a contact angle experimentally. Therefore, the same processing method is performed for a large area region, The contact angle is measured and applied to the contact angle of a fine area.

第8,9図によれば基板を上昇して単分子膜の累積を行
なう場合、累積可能なθの範囲はθ=0゜からある上限
の臨界接触角(以下θと略す)の間に限られる。この
θはLB膜分子の親水性基の種類によって変化するが、
決して90゜を越えることはない。基板を下降する場合
も、累積可能なθの範囲はある下限の臨界接触角(以下
θと略す)からθ<180゜の間に限られる。θはお
おむね90゜の値である。臨界接触角とは、その接触角の
前後で累積比が1から0あるいは0から1に変化する接
触角のことである。θはθを越えることはなく、従
ってLB膜分子には必ず基板を上昇,下降のいずれの方向
に移動しても累積比が0となる接触角の領域が存在す
る。
If it increases the substrate according to the eighth and ninth FIG performing accumulation of monomolecular film, during the critical contact angle of the upper range of possible cumulative theta have a from theta = 0 ° (hereinafter referred to as theta a) Limited. This theta a varies depending on the kind of the hydrophilic groups of the LB membrane molecules,
Never exceed 90 ゜. Sometimes down the substrate limited from the critical contact angle is the range of possible cumulative theta limit (hereinafter referred to as θ b) θ <between 180 °. θ b is approximately 90 ° value. The critical contact angle is a contact angle at which the cumulative ratio changes from 1 to 0 or from 0 to 1 before and after the contact angle. theta a is not exceed theta b, thus increasing always the substrate in LB membrane molecules, regions of contact angle be moved in any direction of the downward at a cumulative ratio 0 is present.

従って、本発明の接触角θは上述したようなθ
ら180゜の間である。また、本発明の接触角θはθ
とθの間である。尚、θ及びθは累積する分子の
種類等により決定される値である。
Therefore, the contact angle theta 3 of the present invention is between 180 ° from such theta b as described above. The contact angle θ 2 of the present invention is θ a
It is between θ b. Note that θ a and θ b are values determined by the types of molecules to be accumulated.

次に、本発明の基板を用いた有機薄膜の製造について
述べる。
Next, production of an organic thin film using the substrate of the present invention will be described.

まず、第一層目の累積を、基板を下降させて行なう
(第2〜4図)。累積が可能な接触角を有する領域に第
一層目を累積し終ると、第二層目は基板の移動方向が逆
になる。第一層目を下降して累積した場合には親水基が
露出しており、この領域の表面は完全に基板を上昇して
累積が可能な接触角の範囲になっており第二層目の累積
を行なうことができる。以後第n層が第(n+1)層を
累積する場合も同様の関係が成り立つ。従って最初の基
板表面の接触角を累積可能な状態にしておけばその領域
のみ第一層が第n層の累積膜を形成することができる。
First, accumulation of the first layer is performed by lowering the substrate (FIGS. 2 to 4). When the accumulation of the first layer in the region having the contact angle that can be accumulated is completed, the moving direction of the substrate in the second layer is reversed. When the accumulation is performed by descending the first layer, the hydrophilic group is exposed, and the surface of this region is in a range of the contact angle where accumulation is possible by completely ascending the substrate, and Accumulation can be performed. Thereafter, the same relationship holds when the n-th layer accumulates the (n + 1) -th layer. Therefore, if the contact angle of the first substrate surface is set to be accumulable, the first layer can form an n-th accumulated film only in that region.

本発明の基板を得るための第一の方法は純水に対する
接触角が基板上昇時の累積における臨界接触角より小さ
い基板(第1図a)を表面処理剤で処理して新たなる接
触角が基板下降時の累積における臨界接触角より大なる
ようにする(第1図b)。これにレジストを塗布し光あ
るいは電子線を用いたリソグラフィー技術により最小寸
法0.1μmまでレジストパターンを形成し(第1図
c)、該レジスト除去部の表面処理剤を除去し(第1図
d)、該レジスト除去部の接触角が基板上昇時の累積に
おける臨界接触角より大なりかつまた基板下降時の累積
における臨界接触角より小なるように再び表面処理剤処
理し(第1図e)、該残存レジストを基板の各接触角に
影響を与えないように完全に除去して得るものである
(第1図f)。
A first method for obtaining the substrate of the present invention is to treat a substrate (FIG. 1a) having a contact angle with pure water smaller than the critical contact angle in the accumulation when the substrate is raised with a surface treatment agent to obtain a new contact angle. The contact angle is set to be larger than the critical contact angle in the accumulation when the substrate is lowered (FIG. 1B). A resist is applied thereto, a resist pattern is formed to a minimum dimension of 0.1 μm by lithography using light or an electron beam (FIG. 1c), and the surface treatment agent at the resist-removed portion is removed (FIG. 1d). The surface treatment agent treatment is again performed so that the contact angle of the resist removing portion is larger than the critical contact angle in the accumulation when the substrate is raised and smaller than the critical contact angle in the accumulation when the substrate is lowered (FIG. 1e). The residual resist is obtained by completely removing the resist so as not to affect each contact angle of the substrate (FIG. 1f).

第2の方法は、純水に対する接触角が基板上昇時の臨
界接触角よりも小なる基板(第1図a)にレジストを塗
布し、光あるいは電子線を用いたリソグラフィー技術に
より最小寸法0.1μmまでのレジストパターンを形成し
(第1図g)、該レジスト除去部の接触角が基板下降時
の累積における臨界接触角より大なるように表面処理剤
処理し(第1図h)、該残存レジストを除去後(第1図
i)、該レジスト残存部であった表面の接触角が基板上
昇時の累積における臨界接触角より大なりかつまた基板
下降時の累積における臨界接触角より小なるように再び
表面処理剤処理して得られるものである(第1図f)。
In the second method, a resist is applied to a substrate (FIG. 1a) in which the contact angle with pure water is smaller than the critical contact angle when the substrate is raised, and a minimum dimension of 0.1 μm is formed by a lithography technique using light or an electron beam. (FIG. 1g), and a surface treatment agent treatment (FIG. 1h) is performed so that the contact angle of the resist-removed portion becomes larger than the critical contact angle in the accumulation when the substrate is lowered (FIG. 1h). After removing the resist (FIG. 1i), the contact angle of the surface that was the resist remaining portion was made larger than the critical contact angle in the accumulation when the substrate was raised, and was smaller than the critical contact angle in the accumulation when the substrate was lowered. (FIG. 1f).

本発明の表面処理剤としては、基板が表面に水酸基を
有するものであればシランカップリング剤を用いること
ができる。
As the surface treatment agent of the present invention, a silane coupling agent can be used as long as the substrate has a hydroxyl group on the surface.

シランカップリング剤としては、けい素の置換基とし
て少なくとも1個以上の疎水基を含有するものが用いら
れる。さらに、この基板が電気的素子に用いられる場合
は、電気的特性に影響を及ぼさない処理剤が良い。ビス
(トリメチルシリル)アミンやトリメチルクロロシラン
に代表されるように表面水酸基と反応して単分子被膜を
形成し、しかも疎水基がメチル基のようにできるだけ小
さいものが望ましい。
As the silane coupling agent, one containing at least one hydrophobic group as a substituent of silicon is used. Further, when the substrate is used for an electric element, a treatment agent which does not affect the electric characteristics is preferable. It is desirable that the compound reacts with a surface hydroxyl group as represented by bis (trimethylsilyl) amine or trimethylchlorosilane to form a monomolecular film and has a hydrophobic group as small as possible, such as a methyl group.

例えば、次のようなものが挙げられる。 For example, the following are mentioned.

のいずれかである。 Is one of

ビス(トリメチルシリル)アミンを用いる場合、基板
の接触角θの制御はビス(トリメチルシリル)アミンの
常温における飽和蒸気相中での基板の反応時間により可
能である(第7図)。
When using bis (trimethylsilyl) amine, the contact angle θ of the substrate can be controlled by the reaction time of the substrate in the saturated vapor phase at normal temperature of bis (trimethylsilyl) amine (FIG. 7).

本発明では他にCH3OCH2SiCl3等を表面処理剤として使
用することができる。本発明に用いられる基板は、半導
体,金属,無機,有機材料のいずれか、あるいはそれら
の複合材料から成るものの内、表面処理により基板表面
の純水に対する接触角を制御することが可能なものであ
れば、いずれも適用することができる。また基板上に素
子を形成するために微細加工が既にほどこされているも
のも適用可能である。
In the present invention, CH 3 OCH 2 SiCl 3 or the like can be used as a surface treatment agent. The substrate used in the present invention is made of any one of a semiconductor, a metal, an inorganic material, an organic material, and a composite material thereof, and can control a contact angle of the substrate surface with pure water by surface treatment. If so, any can be applied. In addition, an element which has already been subjected to fine processing for forming an element on a substrate is also applicable.

(実施例) (実施例1) 熱酸化Si基板を硫酸/過酸化水素水(3:1)でSH処理
し乾燥後、ビス(トリメチルシリル)アミン飽和蒸気相
に入れて24hr反応し、その後100℃5分間ベークし、コ
ーターでクロロメチル化ポリスチレンレジストを塗布し
DeepUV(1:1)コンタクト露光で1μm〜100μmの様々
なパターンを露光し、現像後50%H2SO4水溶液で1分間
処理し、水洗,乾燥後有機溶剤洗浄して残存レジストを
除去する。再びビス(トリメチルシリル)アミンで今度
は2hr反応し100℃5分間ベークすると所定の基板が得ら
れる。
(Example) (Example 1) A thermally oxidized Si substrate is subjected to SH treatment with sulfuric acid / hydrogen peroxide solution (3: 1), dried, and then put into a bis (trimethylsilyl) amine saturated vapor phase and reacted for 24 hours. Bake for 5 minutes and apply chloromethylated polystyrene resist with a coater
Various patterns of 1 μm to 100 μm are exposed by DeepUV (1: 1) contact exposure, developed, treated with a 50% H 2 SO 4 aqueous solution for 1 minute, washed with water, dried, and washed with an organic solvent to remove the remaining resist. After reacting again for 2 hours with bis (trimethylsilyl) amine and baking at 100 ° C. for 5 minutes, a predetermined substrate is obtained.

(実施例2) 熱酸化シリコン基板をSH処理後、水洗,乾燥しポジ型
フォトレジスト商品名AZ1450をコーターで塗布し、縮小
投影露光装置で1μm〜100μmの様々なパターンを露
光し、アルカリ現像後ビス(トリメチルシリル)アミン
飽和蒸気相に入れる。24hr後100℃5分間ベークし有機
溶媒洗浄で残存レジストを除去し、再びビス(トリメチ
ルシリル)アミンを2hrかけ、100℃5分間ベークすると
所定の基板を得る。
(Example 2) After thermal processing of a thermally oxidized silicon substrate, the substrate was washed with water, dried, coated with a positive photoresist (trade name: AZ1450) by a coater, exposed to various patterns of 1 μm to 100 μm by a reduction projection exposure apparatus, and subjected to alkali development. Place in bis (trimethylsilyl) amine saturated vapor phase. After 24 hours, baking is performed at 100 ° C. for 5 minutes, the remaining resist is removed by washing with an organic solvent, bis (trimethylsilyl) amine is again applied for 2 hours, and baking is performed at 100 ° C. for 5 minutes to obtain a predetermined substrate.

(実施例3) 塩化カドミウム0.5mM水溶液の水面上にステアリン酸
を展開し、表面圧25dyne/cmに圧縮する。実施例1,2で得
られた基板を気液方向に下降し上昇する。これを繰り返
えして2層から100層までの累積を行なった。微分干渉
顕微鏡,SEM,TEMによれば、基板下降時の臨界接触角より
大なる接触角を有するすべての基板領域のみに均一にス
テアリン酸カドミウムが累積されていることが判明し、
微細パターン化された有機薄膜を得た。
(Example 3) Stearic acid is spread on the water surface of a 0.5 mM cadmium chloride aqueous solution, and compressed to a surface pressure of 25 dyne / cm. The substrates obtained in Examples 1 and 2 are lowered and raised in the gas-liquid direction. This was repeated to perform accumulation from 2 layers to 100 layers. According to the differential interference microscope, SEM, and TEM, it was found that cadmium stearate was accumulated uniformly only in all the substrate regions having a contact angle larger than the critical contact angle when the substrate was lowered,
A finely patterned organic thin film was obtained.

〔発明の効果〕〔The invention's effect〕

本発明によれば、有機薄膜のパターン形成が容易な基
板を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the board | substrate with which the pattern formation of an organic thin film is easy can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の基板を作成する工程を表わす図、第2
図乃至第4図は本発明の基板を用いた有機薄膜の作製を
表わす図、第5図,第6図は接触角を表わす図、第7図
は処理時間と接触角との関係を表わす図、第8図,第9
図は接触角と累積比の関係を表わす図である。 1……基板、2……基板表面 3……接触角が0゜からθの間にある領域 4……第2の領域、5……LB膜分子 6……親水基、7……疎水基 8……水溶液、9……水面 10……第1の領域、11……純水 12……接線、15……θ 16……θ、17……レジスト
FIG. 1 is a view showing a process for producing a substrate of the present invention, and FIG.
FIGS. 4 to 5 show the preparation of an organic thin film using the substrate of the present invention, FIGS. 5 and 6 show the contact angles, and FIG. 7 shows the relationship between the processing time and the contact angle. 8 and 9
The figure shows the relationship between the contact angle and the cumulative ratio. DESCRIPTION OF SYMBOLS 1 ... board | substrate 2, ... board | substrate surface 3 ... area | region whose contact angle is between 0 degree and (theta) a 4 ... 2nd area, 5 ... LB film molecule 6 ... hydrophilic group, 7 ... hydrophobic Base 8 ... Aqueous solution, 9 ... Water surface 10 ... First area, 11 ... Pure water 12 ... Tangential line, 15 ... [theta] a16 ... [theta] b , 17 ... Resist

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ラングミュア・ブロジェット法により有機
薄膜を形成するための基板を製造する方法であって、け
い素の置換基として少なくとも1個以上の疎水基を含有
するシランカップリング剤を表面に水酸基を有する基板
に対する表面処理剤として用い、前記基板表面の純水に
対する接触角θが基板下降時に単分子膜の累積が可能な
接触角θ3となるよう前記表面処理剤により第1の領域
を画定する工程と、基板下降時及び上昇時共に単分子膜
の累積が不可能な接触角θ2となるよう前記表面処理剤
により第2の領域を画定する工程とを具備したことを特
徴とする基板の製造方法。
1. A method for producing a substrate for forming an organic thin film by a Langmuir-Blodgett method, wherein a silane coupling agent containing at least one hydrophobic group as a silicon substituent is added to the surface. A first region is defined by the surface treatment agent so that the contact angle θ of the substrate surface with pure water becomes a contact angle θ3 at which the monomolecular film can be accumulated when the substrate is lowered, when used as a surface treatment agent for a substrate having a hydroxyl group. And a step of defining a second region with the surface treatment agent so as to have a contact angle θ2 that makes it impossible to accumulate a monomolecular film both when the substrate is lowered and when the substrate is raised. Production method.
JP61307941A 1986-12-25 1986-12-25 Substrate manufacturing method Expired - Lifetime JP2579921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61307941A JP2579921B2 (en) 1986-12-25 1986-12-25 Substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61307941A JP2579921B2 (en) 1986-12-25 1986-12-25 Substrate manufacturing method

Publications (2)

Publication Number Publication Date
JPS63161628A JPS63161628A (en) 1988-07-05
JP2579921B2 true JP2579921B2 (en) 1997-02-12

Family

ID=17975017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61307941A Expired - Lifetime JP2579921B2 (en) 1986-12-25 1986-12-25 Substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP2579921B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01231937A (en) * 1988-03-11 1989-09-18 Komatsu Ltd Formation of monomolecular film
JP2005059043A (en) * 2003-08-11 2005-03-10 Daihatsu Motor Co Ltd Positioning device and carrying pallet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211826A (en) * 1984-04-06 1985-10-24 Canon Inc Pattern forming means

Also Published As

Publication number Publication date
JPS63161628A (en) 1988-07-05

Similar Documents

Publication Publication Date Title
JP3600546B2 (en) Method for forming patterned indium zinc oxide film and indium tin oxide film by microcontact printing
US7732119B2 (en) Photosensitive self-assembled monolayer for selective placement of hydrophilic structures
KR100473799B1 (en) Method for nano-scale patterning
KR100473800B1 (en) Method for high resolution patterning by low energy electron beam
JP2579921B2 (en) Substrate manufacturing method
JP2000147792A (en) Pattern forming method
JP2579922B2 (en) Substrate manufacturing method
US6866791B1 (en) Method of forming patterned nickel and doped nickel films via microcontact printing and uses thereof
JP2579920B2 (en) Substrate processing method
JP4078424B2 (en) Microstructured metal oxide thin film and method for producing the same
KR100429910B1 (en) Method for high resolution patterning of by low energy electron beam
KR101424329B1 (en) Silica Nano Structure, Method of fabricating the same and Etching Mask using the same
JPS63161627A (en) Substrate
JPH0661160A (en) Pattern forming method
US5466487A (en) Chemically adsorbed film and method of manufacturing the same
KR100590442B1 (en) Fabrication method of x-ray mask for manufacturing nano structure and fabrication method of nano structure using the same
JPS63161630A (en) Substrate
JPS59148335A (en) Forming method of minute pattern
JPH03141632A (en) Formation of pattern and manufacture of semiconductor device
JPS63130165A (en) Preparation of organic thin film
JP2004119524A (en) Method for nanopatterning using organic unimolecular film as resist
KR100690012B1 (en) Fabrication method of shadow mask for manufacturing nano structure and fabrication method of nano structure using the same
JP2938116B2 (en) Material for forming interlayer insulating film and method for manufacturing semiconductor device
KR100547254B1 (en) Ultra-thin organic films for lithography
JPS61138254A (en) Formation of pattern resin composition