JP2577926Y2 - Fluorescence measurement device - Google Patents

Fluorescence measurement device

Info

Publication number
JP2577926Y2
JP2577926Y2 JP1992056026U JP5602692U JP2577926Y2 JP 2577926 Y2 JP2577926 Y2 JP 2577926Y2 JP 1992056026 U JP1992056026 U JP 1992056026U JP 5602692 U JP5602692 U JP 5602692U JP 2577926 Y2 JP2577926 Y2 JP 2577926Y2
Authority
JP
Japan
Prior art keywords
focal point
mirror
excitation light
sample
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1992056026U
Other languages
Japanese (ja)
Other versions
JPH0562850U (en
Inventor
五輪生 中西
健雄 田名網
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP1992056026U priority Critical patent/JP2577926Y2/en
Publication of JPH0562850U publication Critical patent/JPH0562850U/en
Application granted granted Critical
Publication of JP2577926Y2 publication Critical patent/JP2577926Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、バイオテクノロジー産
業や半導体産業における蛍光分析を行う装置に関し、特
に回転楕円鏡で蛍光を集光する蛍光測定装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for performing fluorescence analysis in the biotechnology industry and the semiconductor industry, and more particularly to a fluorescence measurement apparatus for collecting fluorescence using a spheroid mirror.

【0002】[0002]

【従来の技術】蛍光とは、或る物質に特定の波長の光を
あてると、それより長波長の光(蛍光)が、その物質か
ら発光される現象であり、この蛍光度を測定すること
は、吸光度を測定する装置に比較して、原理的に高感度
であり、近年、バイオテクノロジーでは、そのニーズが
高まっている。
2. Description of the Related Art Fluorescence is a phenomenon in which, when light of a specific wavelength is applied to a certain substance, light (fluorescence) having a longer wavelength than that is emitted from the substance. Has a higher sensitivity in principle than a device for measuring absorbance, and in biotechnology in recent years, its needs are increasing.

【0003】このような蛍光測定装置において、回転楕
円鏡を用いて、蛍光を効率良く集光するためには、図3
に示すように、回転楕円鏡1の第1焦点1aに試料2
を、また、第2焦点1bに検出器3を設置して、試料2
から発光する蛍光を必ず検出器3に導く必要がある。ま
た、励起光を効率良く試料2に照射するためには、回転
楕円鏡1の一部に穴をあけて励起光を照射させたり、励
起光源にレーザを用いたり、回転楕円鏡を大きくして、
そのスペースに光学系を設置するなどの対策が取られて
いた。
In such a fluorescence measuring apparatus, in order to efficiently collect fluorescence using a spheroidal mirror, FIG.
As shown in the figure, the sample 2 is placed at the first focal point 1a of the spheroidal mirror 1.
The detector 3 is set at the second focal point 1b, and the sample 2
It is necessary to guide the fluorescence emitted from the detector 3 to the detector 3 without fail. Further, in order to efficiently irradiate the sample 2 with the excitation light, a part of the spheroidal mirror 1 is pierced to irradiate the excitation light, a laser is used as an excitation light source, or the spheroidal mirror is enlarged. ,
Measures such as installing an optical system in the space were taken.

【0004】しかしながら、励起光を効率良く試料に照
射させるため、励起光源にレーザを用いる場合について
は、励起波長にあったレーザがなく、高価な装置とな
る。また、回転楕円鏡を大きくして、そのスペースに光
学系を設置する場合については、蛍光の集光効率が悪く
なり、装置を小型化できないといった問題点があった。
However, in order to efficiently irradiate the sample with the excitation light, when a laser is used as the excitation light source, there is no laser corresponding to the excitation wavelength, and the apparatus becomes expensive. Further, in the case where the spheroidal mirror is enlarged and an optical system is installed in the space, there has been a problem that the efficiency of condensing the fluorescent light deteriorates and the device cannot be miniaturized.

【0005】[0005]

【考案が解決しようとする課題】本考案は、上記従来技
術の課題を踏まえて成されたものであり、回転楕円鏡の
第2焦点と励起光源が鏡像関係となる位置に平面鏡を設
置することにより、あたかも第2焦点に設置した検出器
から励起光が照射されたようにして、試料に励起光を効
率良く照射できると共に、回転楕円鏡と多層膜干渉フィ
ルタを組み合わせた測定セルで試料を囲むことにより、
励起効率が高く、迷光の少ない、小型で安価な蛍光測定
装置を提供することを目的としたものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and is to provide a plane mirror at a position where the second focal point of the spheroidal mirror and the excitation light source have a mirror image relationship. As a result, the sample can be efficiently irradiated with the excitation light as if the excitation light was emitted from the detector installed at the second focal point, and the sample is surrounded by the measurement cell combining the spheroidal mirror and the multilayer interference filter. By doing
It is an object of the present invention to provide a small and inexpensive fluorescence measuring device having high excitation efficiency, little stray light, and low cost.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に本考案の構成は、長軸側の一部が欠如した回転楕円鏡
の欠如していない側の焦点(第1焦点)に試料を、ま
た、欠如している側の焦点(第2焦点)に検出器を配置
し、励起光を前記回転楕円鏡を介して前記第1焦点に設
置された前記試料に集光させた時にこの試料から四方に
発光する蛍光を前記回転楕円鏡を介して前記第2焦点に
設置された前記検出器で測定するようにした蛍光測定装
置において、前記検出器と前記励起光を出射する励起光
源が鏡像関係となる位置に平面鏡を設置した構成とした
ことを特徴とする。また、長軸側の一部が欠如した回転
楕円鏡の欠如していない側の焦点(第1焦点)に試料
を、また、欠如している側の焦点(第2焦点)に検出器
を設置し、励起光を前記試料に照射させた時にこの試料
から四方に発光する蛍光を前記回転楕円鏡を介して前記
第2焦点に設置された前記検出器で測定するようにした
蛍光測定装置において、前記回転楕円鏡の長軸の垂直2
等分面に蛍光は透過し励起光は反射する多層膜干渉フィ
ルタを設置すると共に、この多層膜干渉フィルタに励起
光導入用のピンホールまたはスリットを設けた構成とし
たことを特徴とする。
In order to solve the above-mentioned problems, the configuration of the present invention is to arrange a sample at a focal point (first focal point) on a non-absent side of a spheroidal mirror having a part on the long axis side. In addition, a detector is arranged at the focal point (second focal point) on the missing side, and the excitation light is focused on the specimen placed at the first focal point via the spheroidal mirror. A fluorescence measurement device configured to measure fluorescence emitted in four directions through the spheroidal mirror with the detector provided at the second focal point, wherein the detector and the excitation light source that emits the excitation light are mirror images. It is characterized in that a plane mirror is installed at a relevant position. In addition, the sample is set at the focal point (first focal point) on the non-absent side of the spheroidal mirror where a part of the major axis is missing, and the detector is placed at the focal point on the missing side (second focal point). Then, in a fluorescence measurement apparatus that when the excitation light is irradiated on the sample, fluorescence emitted from the sample in all directions is measured by the detector installed at the second focus through the spheroid mirror. Vertical 2 of the major axis of the spheroid mirror
In addition to installing a multilayer interference filter that transmits fluorescence and reflects excitation light on the equal surface, excitation is performed on this multilayer interference filter.
It is characterized in that a pinhole or a slit for introducing light is provided .

【0007】[0007]

【作用】本考案によれば、励起光源と回転楕円鏡の第2
焦点に設置した検出器とが鏡像関係となる位置に平面鏡
を設置している。したがって、試料から見ると、あたか
も励起光が回転楕円鏡の第2焦点に設置した検出器から
出射しているような構成とできるため、回転楕円鏡の第
1焦点に設置した試料へ励起光を効率良く照射できる。
また、試料を回転楕円鏡と多層膜干渉フィルタで囲むこ
とにより、試料に吸収されずに迷光となる励起光を繰り
返して試料に照射することができ、迷光を低減して励起
効率を向上できる。
According to the present invention, the excitation light source and the second spheroidal mirror are used.
A plane mirror is installed at a position where the detector installed at the focal point has a mirror image relationship. Therefore, from the viewpoint of the sample, the excitation light can be configured to be emitted from the detector provided at the second focal point of the spheroidal mirror. Irradiation can be performed efficiently.
In addition, by surrounding the sample with the spheroid mirror and the multilayer interference filter, the sample can be repeatedly irradiated with the excitation light that is not absorbed by the sample and becomes stray light, and the stray light can be reduced and the excitation efficiency can be improved.

【0008】[0008]

【実施例】以下、本考案を図面に基づいて説明する。図
1は本考案の蛍光測定装置の第1の実施例を示す構成図
である。図1において、1は回転楕円鏡であり、長軸側
の一部(図では、向かって右側の長軸側の面)が欠如し
ている。2は回転楕円鏡1の欠如していない側の焦点位
置(第1焦点)1aに設置された試料、3は回転楕円鏡
1の欠如している側の焦点位置(第2焦点)1bに設置
された検出器である。4は励起光源、5は励起波長の光
だけを通す光学フィルタ(または、プリズムや回折格子
などの分光器)、6は集光レンズである。6aは集光レ
ンズ6の焦点、7は平面鏡であり、集光レンズ6の焦点
6aは、平面鏡7に対して回転楕円鏡1の第2の焦点1
bに設置された検出器3と鏡像対称な位置にある。つま
り、試料2から見ると励起光源4が、あたかも回転楕円
鏡1の第2焦点に設置されているかのように見える。8
は励起光と蛍光を分離する光学フィルタ(または、プリ
ズムや回折格子などの分光器)であり、励起光は遮断し
て蛍光の波長のみを透過し、検出器3へ導く。なお、図
示はしないが、回転楕円鏡1内に設置された試料2はガ
ラスなどの無蛍光性の透明物体で保持されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a first embodiment of the fluorescence measuring device of the present invention. In FIG. 1, reference numeral 1 denotes a spheroid mirror, and a part on the long axis side (a surface on the long axis side on the right side in FIG. 1) is missing. Reference numeral 2 denotes a sample set at a focal position (first focus) 1a on the side where the spheroidal mirror 1 is not missing, and reference numeral 3 denotes a sample set at a focal position (second focus) 1b where the spheroidal mirror 1 is missing. Detector. 4 is an excitation light source, 5 is an optical filter (or a spectroscope such as a prism or a diffraction grating) that allows only light of the excitation wavelength, and 6 is a condenser lens. 6a is a focal point of the condenser lens 6, 7 is a plane mirror, and the focal point 6a of the condenser lens 6 is a second focal point 1 of the spheroid mirror 1 with respect to the plane mirror 7.
It is located at a mirror image position with respect to the detector 3 installed at the position b. That is, when viewed from the sample 2, the excitation light source 4 looks as if it is installed at the second focal point of the spheroidal mirror 1. 8
Denotes an optical filter (or a spectroscope such as a prism or a diffraction grating) for separating the excitation light and the fluorescence, and blocks the excitation light, transmits only the wavelength of the fluorescence, and guides it to the detector 3. Although not shown, the sample 2 installed in the spheroid mirror 1 is held by a non-fluorescent transparent object such as glass.

【0009】このような構成において、励起光源4から
出射された光は、光学フィルタ5を通して励起波長の光
だけが通され、集光レンズ6により集光されて平面鏡7
に入射される。入射光は、平面鏡7で反射され、回転楕
円鏡1の鏡面で反射されて、その第1焦点1aに置かれ
た試料2へ入射される。試料2は四方に蛍光を発する
が、この内、回転楕円鏡1の鏡面に当たって反射された
蛍光は、全て回転楕円鏡1の第2焦点1bに置かれた検
出器3に集光される。この場合、検出器3の前段に設置
された光学フィルタ8により、励起光は遮断されるた
め、検出器3へは蛍光だけが導かれる。ここで、回転楕
円鏡1の第2焦点と励起光源4の出射光を集光する集光
レンズ6の焦点とは、平面鏡7に対して対称な位置にあ
る。つまり、励起光源4から出射した励起光は、集光レ
ンズ6の焦点6aと平面鏡7に対して対称位置である回
転楕円鏡1の第2焦点1bに置かれた検出器3から出射
したかのようになる。したがって、集光レンズ6によっ
て集光された励起光を全て試料2に照射することができ
る。
In such a configuration, the light emitted from the excitation light source 4 passes only the light having the excitation wavelength through the optical filter 5, and is condensed by the condenser lens 6, and is converged by the plane mirror 7.
Is incident on. The incident light is reflected by the plane mirror 7, reflected by the mirror surface of the spheroidal mirror 1, and made incident on the sample 2 placed at the first focal point 1a. The sample 2 emits fluorescent light in all directions, and among them, all the fluorescent light reflected on the mirror surface of the spheroidal mirror 1 is collected on the detector 3 placed at the second focal point 1b of the spheroidal mirror 1. In this case, since the excitation light is cut off by the optical filter 8 installed in front of the detector 3, only the fluorescence is guided to the detector 3. Here, the second focal point of the spheroidal mirror 1 and the focal point of the condenser lens 6 for condensing the light emitted from the excitation light source 4 are located symmetrically with respect to the plane mirror 7. That is, whether the excitation light emitted from the excitation light source 4 is emitted from the detector 3 placed at the second focal point 1b of the spheroidal mirror 1 which is symmetrical with respect to the focal point 6a of the condenser lens 6 and the plane mirror 7. Become like Therefore, all of the excitation light condensed by the condenser lens 6 can be applied to the sample 2.

【0010】なお、上記実施例において、検出器3と励
起光源4と平面鏡7は複数個あっても良い。
In the above embodiment, a plurality of detectors 3, excitation light sources 4, and plane mirrors 7 may be provided.

【0011】次に、図2は本考案の蛍光測定装置の第2
の実施例を示す構成図である。なお、図2において図1
と同一要素には同一符号を付して重複する説明は省略す
る。図2において、9は蛍光は透過し、励起光を反射す
る多層膜干渉フィルタであり、回転楕円鏡1の長軸の垂
直2等分面に設置されている。また、この多層膜干渉フ
ィルタには励起光を回転楕円鏡1内に導入するためのピ
ンホール9aが設けられている。なお、このピンホール
9aは、回転楕円鏡1に設けてあっても良く、また、ピ
ンホールはスリットであっても良い。
Next, FIG. 2 shows a second example of the fluorescence measuring device of the present invention.
FIG. 3 is a configuration diagram showing an example of the embodiment. In FIG. 2, FIG.
The same elements as those described above are denoted by the same reference numerals, and redundant description will be omitted. In FIG. 2, reference numeral 9 denotes a multilayer interference filter that transmits fluorescence and reflects excitation light, and is provided on a plane bisecting the major axis of the spheroidal mirror 1. The multilayer interference filter is provided with a pinhole 9a for introducing the excitation light into the spheroid mirror 1. Note that the pinhole 9a may be provided in the spheroid mirror 1, and the pinhole may be a slit.

【0012】このような構成において、励起光は多層膜
干渉フィルタ9のピンホール9aを通って、回転楕円鏡
1の第1焦点1aに置かれた試料2へ入射される。試料
2は四方に蛍光を発するが、この内、回転楕円鏡1の鏡
面に当たって反射された蛍光は、多層膜干渉フィルタ9
を透過して、全て回転楕円鏡1の第2焦点1bに置かれ
た検出器3に集光される。この場合、試料2に吸収され
なかった励起光は、その一部はピンホール9aを通って
外部への迷光となるが、殆どは回転楕円鏡1と励起光を
反射する多層膜干渉フィルタ9で反射されて、再び試料
2に照射され、吸収されて蛍光を発する。つまり、回転
楕円鏡1と多層膜干渉フィルタ9で囲まれた空間内で
は、試料2に吸収されなかった励起光が繰り返して試料
2に照射されている。この動作を繰り返して行うことに
より、入射した励起光子と試料の蛍光分子との衝突確立
が上昇するため、励起効率が上がり、外部への迷光は減
少する。
In such a configuration, the excitation light passes through the pinhole 9a of the multilayer interference filter 9 and is incident on the sample 2 placed at the first focal point 1a of the spheroid mirror 1. The sample 2 emits fluorescence in all directions, and the fluorescence reflected on the mirror surface of the spheroidal mirror 1 is reflected by the multilayer interference filter 9.
, And are all collected on the detector 3 placed at the second focal point 1 b of the spheroid mirror 1. In this case, part of the excitation light not absorbed by the sample 2 becomes stray light to the outside through the pinhole 9a, but most of the light is generated by the spheroid mirror 1 and the multilayer interference filter 9 that reflects the excitation light. The light is reflected, irradiates the sample 2 again, is absorbed, and emits fluorescence. That is, in a space surrounded by the spheroid mirror 1 and the multilayer interference filter 9, the excitation light not absorbed by the sample 2 is repeatedly irradiated on the sample 2. By repeating this operation, the probability of collision between the incident excitation photons and the fluorescent molecules of the sample increases, so that the excitation efficiency increases and stray light to the outside decreases.

【0013】ここで、第1の実施例では、一度照射した
励起光は、光学フィルタ8に吸収されるか、試料2で散
乱されて迷光となっていたが、第2の実施例では試料2
に照射後、散乱・透過した励起光を再び多層膜干渉フィ
ルタ9により反射して試料2に照射している。1回の反
射で損失する励起光の割合をΔとすると、n回の反射
で、試料2に照射される励起光の総量は、 An=1+(1−Δ)+(1−Δ)2+───+(1−Δ)n となり、 Σ(1−Δ)n=1/Δ となる。回転楕円鏡や多層膜干渉フィルタの反射率は通
常90%以上はあるので、Δ=10%と考えると、An
=10、つまり励起光を10倍強める効果がある。ま
た、セルの外部にあらわれる励起光と蛍光の比は、蛍光
の光量は1/Δ倍に増加するが、励起光量は1/Δ倍、
多層膜干渉フィルタの励起光成分透過率は略Δと見做す
と、励起光の光量は略等しくなるので、蛍光/励起光は
1/Δ倍になる。したがって、第1の実施例より更に励
起効率が上がると共に、蛍光測定のS/Nが向上する。
Here, in the first embodiment, the excitation light once irradiated is absorbed by the optical filter 8 or scattered by the sample 2 to become stray light, but in the second embodiment, the excitation light is
After that, the scattered and transmitted excitation light is reflected again by the multilayer interference filter 9 and irradiates the sample 2. Assuming that the ratio of the excitation light lost in one reflection is Δ, the total amount of the excitation light irradiated on the sample 2 in the n reflections is: An = 1 + (1−Δ) + (1−Δ) 2 + ─── + (1−Δ) n , and Σ (1−Δ) n = 1 / Δ. Since the reflectance of a spheroidal mirror or a multilayer interference filter is usually 90% or more, if Δ = 10%, A n
= 10, that is, an effect of increasing the excitation light by 10 times. In addition, the ratio of the excitation light and the fluorescence appearing outside the cell is such that the amount of the fluorescence is increased by a factor of 1 / Δ,
Assuming that the transmittance of the excitation light component of the multilayer interference filter is substantially Δ, the amount of the excitation light becomes substantially equal, so that the fluorescence / excitation light becomes 1 / Δ times. Therefore, the excitation efficiency is further increased as compared with the first embodiment, and the S / N of the fluorescence measurement is improved.

【0014】また、図示にての説明は省略するが、上記
第2の実施例において、検出器の受光面が多層膜干渉フ
ィルタの全面を覆うような検出器を用いても良く、この
場合、検出器を回転楕円鏡の第2焦点に設置する必要は
なく、調整を容易とし、装置を小型にできる効果があ
る。
Although not shown in the drawings, in the second embodiment, a detector in which the light receiving surface of the detector covers the entire surface of the multilayer interference filter may be used. There is no need to dispose the detector at the second focal point of the spheroid mirror, which has the effect of facilitating adjustment and reducing the size of the device.

【0015】なお、上記実施例において、光学フィルタ
5は、励起光源4としてレーザ光源を使用する場合は必
要なく、XeランプやHgランプなどの連続なスペクト
ルを持つ光源においては、励起波長のみを通す。
In the above-mentioned embodiment, the optical filter 5 is not necessary when a laser light source is used as the excitation light source 4. In a light source having a continuous spectrum, such as a Xe lamp or an Hg lamp, only the excitation wavelength passes. .

【0016】[0016]

【考案の効果】以上、実施例と共に具体的に説明したよ
うに、本考案によれば、励起光源と焦点を鏡像対称とな
るように平面鏡を設置したため、励起光の照射効率が改
善され、機器の感度を向上できる。また、励起光を照射
するために、平面鏡1枚を用いるという簡単な構成とし
たために、装置を小型、安価に製作することができる。
また、回転楕円鏡と多層膜干渉フィルタで試料を囲むこ
とにより、より励起効率が高く、迷光の少なくできるな
どの効果を有する蛍光測定装置を実現できる。
As described above in detail with the embodiments, according to the present invention, since the plane mirror is installed so that the focal point of the excitation light source and the focal point are mirror-image symmetric, the irradiation efficiency of the excitation light is improved, Sensitivity can be improved. In addition, since a single plane mirror is used to irradiate the excitation light, the apparatus can be manufactured small and inexpensively.
Further, by surrounding the sample with the spheroidal mirror and the multilayer interference filter, it is possible to realize a fluorescence measurement device having higher excitation efficiency and an effect of reducing stray light.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案の蛍光測定装置の第1の実施例を示す構
成図である。
FIG. 1 is a configuration diagram showing a first embodiment of a fluorescence measurement device of the present invention.

【図2】本考案の蛍光測定装置の第2の実施例を示す構
成図である。
FIG. 2 is a configuration diagram showing a second embodiment of the fluorescence measurement device of the present invention.

【図3】回転楕円鏡を用いて蛍光を集光する蛍光測定装
置を説明する図である。
FIG. 3 is a diagram illustrating a fluorescence measurement device that collects fluorescence using a spheroidal mirror.

【符号の説明】[Explanation of symbols]

1 回転楕円鏡 1a 第1焦点 1b 第2焦点 2 試料 3 検出器 4 励起光源 5、8 光学フィルタ 6 集光レンズ 6a 集光レンズ6の焦点 7 平面鏡 9 多層膜干渉フィルタ 9a ピンホール DESCRIPTION OF SYMBOLS 1 Spheroid mirror 1a 1st focus 1b 2nd focus 2 Sample 3 Detector 4 Excitation light source 5,8 Optical filter 6 Condensing lens 6a Focus of condensing lens 6 7 Plane mirror 9 Multilayer interference filter 9a Pinhole

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01N 21/64 G01J 3/443──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01N 21/64 G01J 3/443

Claims (2)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 長軸側の一部が欠如した回転楕円鏡の欠
如していない側の焦点(第1焦点)に試料を、また、欠
如している側の焦点(第2焦点)に検出器を配置し、励
起光を前記回転楕円鏡を介して前記第1焦点に設置され
た前記試料に集光させた時にこの試料から四方に発光す
る蛍光を前記回転楕円鏡を介して前記第2焦点に設置さ
れた前記検出器で測定するようにした蛍光測定装置にお
いて、 前記検出器と前記励起光を出射する励起光源が鏡像関係
となる位置に平面鏡を設置した構成としたことを特徴と
する蛍光測定装置。
1. A sample is detected at a focal point (first focal point) on a non-absent side of a spheroidal mirror having a part on the long axis side, and at a focal point (second focal point) on a missing side. A fluorescent lamp that emits light in all directions from the sample when the excitation light is focused on the sample placed at the first focal point via the spheroid mirror via the spheroid mirror. In a fluorescence measurement device configured to measure with the detector provided at a focal point, a flat mirror is provided at a position where the detector and an excitation light source that emits the excitation light have a mirror image relationship. Fluorescence measurement device.
【請求項2】 長軸側の一部が欠如した回転楕円鏡の欠
如していない側の焦点(第1焦点)に試料を、また、欠
如している側の焦点(第2焦点)に検出器を設置し、
起光を前記試料に照射させた時にこの試料から四方に発
光する蛍光を前記回転楕円鏡を介して前記第2焦点に設
置された前記検出器で測定するようにした蛍光測定装置
において、 前記回転楕円鏡の長軸の垂直2等分面に蛍光は透過し励
起光は反射する多層膜干渉フィルタを設置すると共に、
この多層膜干渉フィルタに励起光導入用のピンホールま
たはスリットを設けた構成としたことを特徴とする蛍光
測定装置。
2. A sample is detected at a focal point (first focal point) on the non-absent side of the spheroidal mirror having a part on the long axis side, and at a focal point (second focal point) on the missing side. Set up and encourage
A fluorescence measuring device configured to measure fluorescence emitted from the sample in all directions when the sample is irradiated with light by the detector provided at the second focal point via the spheroid mirror; A multilayer interference filter that transmits fluorescence and reflects excitation light is set on the perpendicular bisector of the major axis of the elliptical mirror.
The multilayer interference filter has a pinhole for introducing excitation light.
Or a fluorescence measuring device characterized by having a slit .
JP1992056026U 1991-12-04 1992-08-10 Fluorescence measurement device Expired - Fee Related JP2577926Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1992056026U JP2577926Y2 (en) 1991-12-04 1992-08-10 Fluorescence measurement device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9994591 1991-12-04
JP3-99945 1991-12-04
JP1992056026U JP2577926Y2 (en) 1991-12-04 1992-08-10 Fluorescence measurement device

Publications (2)

Publication Number Publication Date
JPH0562850U JPH0562850U (en) 1993-08-20
JP2577926Y2 true JP2577926Y2 (en) 1998-08-06

Family

ID=26396941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992056026U Expired - Fee Related JP2577926Y2 (en) 1991-12-04 1992-08-10 Fluorescence measurement device

Country Status (1)

Country Link
JP (1) JP2577926Y2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1127867A (en) * 1978-03-20 1982-07-20 Albert Brunsting Ellipsoid radiation collector and method
JPS56137302A (en) * 1980-03-28 1981-10-27 Mitsubishi Electric Corp Optical wavelength branching device
US5026159A (en) * 1989-05-19 1991-06-25 Acrogen, Inc. Area-modulated luminescence (AML)

Also Published As

Publication number Publication date
JPH0562850U (en) 1993-08-20

Similar Documents

Publication Publication Date Title
US5018866A (en) Method and apparatus for performing high sensitivity fluorescence measurements
US4945250A (en) Optical read head for immunoassay instrument
JP2002542482A (en) Novel scanning spectrophotometer for high-throughput fluorescence detection
JPH03503454A (en) Optical reader for immunoassays
JP2936947B2 (en) Spectrofluorometer
JP3778320B2 (en) Circular dichroism fluorescence excitation spectrum measuring device
JP2577926Y2 (en) Fluorescence measurement device
JPH11173987A (en) Microtiter viewer
CN113720825B (en) Optical instant detector and detection method and application
US4707131A (en) Optical arrangement for photometrical analysis measuring devices
CN212059104U (en) Wide-spectrum high-sensitivity Raman spectrometer
JPS5919305B2 (en) Fluorescence spectrophotometer
JP4262380B2 (en) Light intensity measuring device
JPH1019779A (en) Weak fluorescence measuring apparatus
CN112782149A (en) Multifunctional Raman spectrometer
JP2021051074A (en) Spectroscopic analyzer
JPH07280732A (en) Fluorescence spectrometer
JP2003149154A (en) Fluorescence spectrophotometer
JPH03214038A (en) Instrument for measuring aerosol, dust and the like spreaded in the air
JPH0219897B2 (en)
RU2583859C1 (en) High-aperture rc-gas analyser
JPH0795040B2 (en) Micro foreign matter inspection device
CN111442842A (en) High-resolution and high-sensitivity Raman spectrometer
JPS61110035A (en) Optical system for photometric analysis
CN118150504A (en) Water quality detector based on ultraviolet-visible light absorption spectrum and use method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees