JP2577656B2 - Rechargeable battery charging method - Google Patents

Rechargeable battery charging method

Info

Publication number
JP2577656B2
JP2577656B2 JP2314870A JP31487090A JP2577656B2 JP 2577656 B2 JP2577656 B2 JP 2577656B2 JP 2314870 A JP2314870 A JP 2314870A JP 31487090 A JP31487090 A JP 31487090A JP 2577656 B2 JP2577656 B2 JP 2577656B2
Authority
JP
Japan
Prior art keywords
voltage
charging
circuit
input terminal
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2314870A
Other languages
Japanese (ja)
Other versions
JPH04185238A (en
Inventor
雅則 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2314870A priority Critical patent/JP2577656B2/en
Publication of JPH04185238A publication Critical patent/JPH04185238A/en
Application granted granted Critical
Publication of JP2577656B2 publication Critical patent/JP2577656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はより正確な動作を行うことのできる二次電池
の充電方式に関する。
Description: TECHNICAL FIELD The present invention relates to a secondary battery charging method capable of performing more accurate operations.

〔従来の技術〕[Conventional technology]

二次電池特にNi−Cd蓄電池は緊急時であっても使用で
きるように急速充電を行うことが多い。たとえ急速充電
であっても、電池にダメージを与えないように定電流充
電を行うと共に過充電を防止する制御を行うことが必要
である。充電制御方式としては、従来、−ΔV充電検出
方式、電圧検出方式、温度制御方式、タイマ方式などが
ある。
Secondary batteries, especially Ni-Cd storage batteries, are often rapidly charged so that they can be used even in an emergency. Even for quick charging, it is necessary to perform constant current charging so as not to damage the battery and to perform control to prevent overcharging. Conventional charge control methods include a -ΔV charge detection method, a voltage detection method, a temperature control method, and a timer method.

−ΔV充電検出方式は、Ni−Cd蓄電池に適用すること
が多い。Ni電極が充電終了となるとき発熱するため、電
圧が或る値まで上昇した後ΔVだけ降下することを検出
し、そのとき充電終了とする方式であり、雰囲気温度に
左右されず略100%の充電量が確保できる特徴がある。
第4図は−ΔV充電検出方式の従来の電池充電回路構成
を示すブロック図である。該第4図において、1は電
池、2は充電用電源、3は充電検出スイッチ、4はパル
ス発生器、5,6はゲート回路、7は電圧比較回路、8は
尖頭値保持回路を示す。該充電用電源2から該電池1を
充電するとき、当初は該充電検出スイッチ3を閉じて充
電を開始する。該電池1と充電電流とに応じて充電が進
行するとき、該パルス発生器4からのパルスにより該ゲ
ート5を閉じ、その時の電池電圧を該尖頭値保持回路8
で保持する。該尖頭値保持回路8はダイオード・抵抗素
子・コンデンサを使用する公知の回路であって、コンデ
ンサの両端の電圧が保持される電圧である。該ゲート5
を閉じて電圧を保持した時から、所定時間経過後に該ゲ
ート6を閉じる。そのとき該ゲート5は開いているた
め、従前の電池電圧を保持した値と、新しい電圧とを該
比較回路7により比較する、第5図は第4図による電池
1の電圧などの時間的変化を示す図である。充電を開始
したときは、電池両端の電圧の変化が大きく、そのため
単位時間当たりの電圧変化値(単位時間は例えば1分間
とする)は、極端に、大きく変化するが、間もなく電池
電圧の変化は小さくなって電圧変化係数は極めて小さな
値となる。次に充電が進み、例えば60分経過の後は電池
電圧の単位時間当たりの変化が再び大きくなる。そこで
単位時間当たりの時間の前後における電圧値を、第4図
の該比較回路7において比較するのである。後の時刻に
おける電圧値が、前の時刻における電圧値より大きいと
測定したときは充電中と判断する。第5図に示すように
充電終了のときは、以後の電圧値が低下するので該比較
回路7において比較すると、後の時刻における電圧値が
より小さくなっている。そのため低下値が所定値ΔVよ
り大きく変化したことを検出したとき、該比較回路7は
出力を発し、該充電検出スイッチ3をオフに制御する。
該スイッチ3がオフとされたことにより、該電池1充電
は完了する。ΔVは該電池1と充電電流とにより予め設
定して置く。この時電池電圧の低下は前述のように電極
に発熱を生じたことに基づいている。
The -ΔV charge detection method is often applied to Ni-Cd storage batteries. Since the Ni electrode generates heat when charging is completed, it is detected that the voltage rises to a certain value and then drops by ΔV, and charging is completed at that time. There is a feature that the charge amount can be secured.
FIG. 4 is a block diagram showing a conventional battery charging circuit configuration of the -ΔV charge detection system. In FIG. 4, 1 is a battery, 2 is a charging power supply, 3 is a charge detection switch, 4 is a pulse generator, 5 and 6 are gate circuits, 7 is a voltage comparison circuit, and 8 is a peak value holding circuit. . When charging the battery 1 from the charging power supply 2, the charge detection switch 3 is initially closed to start charging. When charging proceeds according to the battery 1 and the charging current, the gate 5 is closed by a pulse from the pulse generator 4 and the battery voltage at that time is stored in the peak value holding circuit 8.
Hold with. The peak value holding circuit 8 is a known circuit using a diode, a resistance element, and a capacitor, and is a voltage at which the voltage across the capacitor is held. The gate 5
The gate 6 is closed after a lapse of a predetermined time from when the voltage is held by closing the gate. At this time, since the gate 5 is open, the value holding the previous battery voltage and the new voltage are compared by the comparison circuit 7. FIG. 5 shows a temporal change in the voltage of the battery 1 and the like according to FIG. FIG. When charging is started, the change in the voltage across the battery is large. Therefore, the voltage change value per unit time (the unit time is, for example, 1 minute) is extremely large, but the change in the battery voltage will be soon. As it becomes smaller, the voltage change coefficient becomes an extremely small value. Next, charging proceeds. For example, after a lapse of 60 minutes, a change in the battery voltage per unit time increases again. Therefore, the voltage values before and after the time per unit time are compared in the comparison circuit 7 in FIG. When the voltage value at the later time is measured to be larger than the voltage value at the previous time, it is determined that the battery is being charged. As shown in FIG. 5, when the charging is completed, the subsequent voltage value decreases. Therefore, when compared in the comparison circuit 7, the voltage value at a later time is smaller. Therefore, when detecting that the decrease value has changed more than the predetermined value ΔV, the comparison circuit 7 generates an output and controls the charge detection switch 3 to be turned off.
When the switch 3 is turned off, the charging of the battery 1 is completed. ΔV is set in advance based on the battery 1 and the charging current. At this time, the decrease in the battery voltage is based on the generation of heat in the electrodes as described above.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

第4図に示す従来の電池充電回路では、該尖頭値保持
回路8により、保持している電位が時間の経過と共にコ
ンデンサ充電電荷が漏れて電位降下が起こるため、該ゲ
ート6が閉じて該比較回路7で比較する他方の電位は必
ずしも所定時間前の電位ではない。そのため−ΔVの検
出に誤差を生じるため、トリクル充電への切り換えが的
確に行われない欠点を有する。
In the conventional battery charging circuit shown in FIG. 4, the peak value holding circuit 8 causes the held potential to leak as the capacitor charge leaks over time, causing a potential drop. The other potential to be compared by the comparison circuit 7 is not necessarily the potential before a predetermined time. For this reason, an error occurs in the detection of -ΔV, and there is a disadvantage that switching to trickle charging is not performed accurately.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の目的は前述の従来の欠点を解消し、二次電池
の充電完了の時における最大電圧値をディジタル回路に
より正確に保持し、且つ高精度のタイミングでトリクル
充電への切換えを的確に行い得る二次電池の充電方式を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional drawbacks, accurately maintain the maximum voltage value at the time of completion of charging of a secondary battery by a digital circuit, and accurately switch to trickle charging with high precision timing. An object of the present invention is to provide a secondary battery charging method that can be obtained.

〔課題を解決するための手段〕[Means for solving the problem]

二次電池に対し急速充電を行う電源を具備し、急速充
電の開始後、該電池の両端の電圧を測定して尖頭値検出
回路により電圧最大値を検出し、次に測定電圧が低下し
て低下値が所定値以下となったとき充電終了であると検
出する二次電池の充電方式において、該尖頭値検出回路
はディジタル回路で構成すると共に、該ディジタル回路
は(イ)一方の入力端子に充電中の電池電圧を印加し、
他方の入力端子に定電圧電源からの電圧を抵抗分割した
電圧と、D/A変換器出力電圧とを印加し、両入力端子の
印加電圧を比較し、比較した結果の出力を発生する第1
電圧比較回路と(ロ)該第1電圧比較回路の出力に対応
するアナログ値を得るためのクロックパルス発生器・パ
ルスカウンタ・D/A変換器と(ハ)一方入力端子は前記
第1電圧比較回路の一方の入力端子と接続され、他方の
入力端子に前記D/A変換器出力を抵抗分割して印加し、
両入力端子の印加電圧を比較し、比較した結果の出力に
より充電終了を検出する第2電圧比較回路とで構成する
ことを特徴とする。
A power supply for quick charging of the secondary battery is provided.After the start of the quick charging, the voltage at both ends of the battery is measured, the peak value detection circuit detects the maximum voltage, and then the measured voltage decreases. In the charging method of the secondary battery, which detects that the charging is completed when the decrease value becomes equal to or less than the predetermined value, the peak value detection circuit is constituted by a digital circuit, and the digital circuit comprises (a) one input terminal. Apply the battery voltage during charging to the terminal,
A voltage obtained by dividing the voltage from the constant voltage power supply by resistance and the output voltage of the D / A converter are applied to the other input terminal, and the applied voltages of both input terminals are compared.
A voltage comparison circuit and (b) a clock pulse generator, a pulse counter, and a D / A converter for obtaining an analog value corresponding to the output of the first voltage comparison circuit; and (c) one input terminal is the first voltage comparison circuit. Is connected to one input terminal of the circuit, and applies the output of the D / A converter to the other input terminal by resistance division,
It is characterized by comprising a second voltage comparison circuit that compares the applied voltages of both input terminals and detects the end of charging based on the output of the comparison result.

〔作 用〕(Operation)

急速充電・トルクル充電を切換え制御する回路は、当
初において急速充電を行うように制御して置く。そのた
め当初は二次電池に対し充電用電源から急速充電を始め
る。該電池の充電が略終了する頃、該電池の両端の電圧
について上記の構成の該ディジタル回路で構成された尖
頭値検出回路により検出測定する。即ち、第1電圧比較
回路の一方の入力端子には充電中の電池の電圧を、他方
の入力端子には定電圧電源からの電圧を抵抗分割した電
圧と後述するD/A変換器出力電圧とを印加して比較す
る。
The circuit for switching and controlling the quick charge and the torcle charge is initially controlled to perform the quick charge. Therefore, initially, the secondary battery is rapidly charged from the charging power supply. When the charging of the battery is substantially completed, the voltage at both ends of the battery is detected and measured by the peak value detecting circuit constituted by the digital circuit having the above configuration. That is, the voltage of the battery being charged is input to one input terminal of the first voltage comparison circuit, the voltage obtained by dividing the voltage from the constant voltage power supply to the other input terminal, and the D / A converter output voltage described later. Is applied for comparison.

例えば一方の入力端子の電圧が他方の入力端子電圧よ
り高い値のとき、第1電圧比較回路は信号“H"を出力
し、その状態が継続中であれば充電中であると判断す
る。D/A変換器出力値もアナログ値として大きな値とな
る。
For example, when the voltage of one input terminal is higher than the voltage of the other input terminal, the first voltage comparison circuit outputs a signal “H”. If the state is continuing, it is determined that the battery is being charged. The output value of the D / A converter also becomes a large value as an analog value.

第2電圧比較回路の一方の入力端子には第1電圧の比
較回路の一方の入力端子の電圧が、他方の入力端子には
D/A変換器出力電圧、即ち一方の入力端子の電圧よりdV
低い電圧が印加されている。各電圧比較回路の一方の入
力端子には電池の充電電圧が印加されていて、急速充電
が完了の頃は充電特性のため、その電圧がdVだけ低下す
る。そのため第2電圧比較回路の入力端子の電圧は同値
となる場合が起こる。同値となったときに第2電圧比較
回路の出力により、急速充電回路は充電終了と判断され
必要に応じてトリクル充電に切換えられる。このときdV
の値は電池電圧に関係しない所定値に選択されているか
ら、急速充電終了の判断が正確にできる。
One input terminal of the second voltage comparison circuit receives the voltage of one input terminal of the first voltage comparison circuit, and the other input terminal receives the voltage of the other input terminal.
D / A converter output voltage, that is, dV from the voltage of one input terminal
Low voltage is applied. The charging voltage of the battery is applied to one input terminal of each voltage comparison circuit, and when the rapid charging is completed, the voltage drops by dV due to the charging characteristics. Therefore, the voltage of the input terminal of the second voltage comparison circuit may have the same value. When the value becomes the same, the output of the second voltage comparison circuit determines that the charging is completed, and switches to trickle charging as necessary. At this time dV
Is selected to be a predetermined value that is not related to the battery voltage, so that the end of quick charge can be accurately determined.

〔実施例〕〔Example〕

第1図は本発明の二次電池の充電方式の実施例を示す
全体図である。第1図において、1は充電すべき二次電
池、2は充電用電源、10は急速充電・トリクル充電切換
制御回路、11はディジタル・尖頭値保持回路兼比較回
路、12は定電圧源、13は制御出力端子を示す。その動作
は前述の〔作用〕の欄に記載した所と同じである。
FIG. 1 is an overall view showing an embodiment of a charging method for a secondary battery according to the present invention. In FIG. 1, 1 is a secondary battery to be charged, 2 is a power supply for charging, 10 is a quick charge / trickle charge switching control circuit, 11 is a digital / peak value holding circuit / comparison circuit, 12 is a constant voltage source, 13 indicates a control output terminal. The operation is the same as that described in the section of [Action].

次に第2図は本発明の実施例として、第1図中の特に
該ディジタル保持回路兼比較回路11を詳細に示した構成
図である。即ち、第2図において、1は充電すべき二次
電池、2は充電用電源、10は急速充電・トリクル充電切
換制御回路、12は定電圧源、13は該ディジタル・尖頭保
持回路兼比較回路11の出力端子、14はツェナダイオー
ド、15乃至19は抵抗素子、20は第1電圧比較回路、21は
第2電圧比較回路、22はナンド回路、23はバイナリカウ
ンタ、24はD/A変換器、25はバッファ増幅器、26はクロ
ック発生源を示す。
Next, FIG. 2 is a block diagram showing in detail the digital holding circuit and comparison circuit 11 in FIG. 1 as an embodiment of the present invention. That is, in FIG. 2, 1 is a secondary battery to be charged, 2 is a charging power source, 10 is a rapid charging / trickle charge switching control circuit, 12 is a constant voltage source, and 13 is a digital / peak holding circuit / comparison. Output terminal of the circuit 11, 14 is a Zener diode, 15 to 19 are resistance elements, 20 is a first voltage comparison circuit, 21 is a second voltage comparison circuit, 22 is a NAND circuit, 23 is a binary counter, and 24 is D / A conversion , 25 is a buffer amplifier, and 26 is a clock generation source.

該第1電圧比較回路20の非反転入力端子(+)には、
該電池1の電圧が、該ツェナダイオード14によりレベル
シフトされて印加される。該第1電圧比較回路20の反転
入力端子(−)には該定電圧源12の電圧を該抵抗素子16
と抵抗素子17〜19との比で分割した値と、D/A変換器24
の出力とが入力される。そのため入力端子(+)の方が
(−)の方より高ければ、該第一電圧比較回路20の出力
は“H"となる。その出力は該ナンド回路22の一方の入力
となり、該ナンド回路22の他の入力は該クロック発生源
26からのクロックである。そのため該ナンド回路22の出
力はクロックが“H"となったときに対応して発生し、該
バイナリカウンタ23において分周カウントされる。カウ
ント値を該D/A変換器24で変換し、アナログ出力として
該バッファ増幅器25により増幅して、その出力を該抵抗
素子17,18の接続点に印加する。
The non-inverting input terminal (+) of the first voltage comparison circuit 20 has
The voltage of the battery 1 is applied with its level shifted by the zener diode 14. The voltage of the constant voltage source 12 is applied to the inverting input terminal (-) of the first voltage comparison circuit 20.
And the value divided by the ratio of the resistance elements 17 to 19 and the D / A converter 24
Is output. Therefore, if the input terminal (+) is higher than the input terminal (-), the output of the first voltage comparison circuit 20 becomes "H". Its output is one input of the NAND circuit 22, and the other input of the NAND circuit 22 is the clock generation source.
The clock from 26. Therefore, the output of the NAND circuit 22 is generated in response to the clock becoming “H”, and the binary counter 23 performs frequency division counting. The count value is converted by the D / A converter 24, amplified as an analog output by the buffer amplifier 25, and the output is applied to the connection point between the resistance elements 17 and 18.

若し、第1電圧比較回路20の反転入力端子(−)の電
圧が、該第1電圧比較回路20の非反転入力端子(+)の
電圧(電池電圧に対応)より高くなると、第1電圧比較
回路20の出力は“L"になる。この動作はD/A変換器24の
出力値を一定にしたままであるから、第1電圧比較回路
20の反転入力端子(−)の電圧は、充電電池の電圧最大
値を維持していることを示す。
If the voltage at the inverting input terminal (-) of the first voltage comparing circuit 20 becomes higher than the voltage (corresponding to the battery voltage) of the non-inverting input terminal (+) of the first voltage comparing circuit 20, the first voltage The output of the comparison circuit 20 becomes “L”. Since this operation keeps the output value of the D / A converter 24 constant, the first voltage comparison circuit
The voltage of the inverting input terminal (−) of 20 indicates that the voltage maximum value of the rechargeable battery is maintained.

また抵抗素子17,18は第1電圧比較回路20の反転入力
端子(−)の電圧と、第2電圧比較回路21の反転入力端
子(−)の電圧との差を一定にするように動作してい
る。(D/A変換器24の一定値出力の動作が関与してい
る)。そのため、第2電圧比較回路21の反転入力端子
(−)の電圧は、電池電圧の最大値より一定の電圧だけ
低い電圧を維持している。その電圧差を「dV」と表現す
る。急速充電の終了を検出する−ΔVと対応して考えら
れるから同様に表現する。(この電圧値を充電終了後の
判断用比較電圧の差値ということができる)。
The resistance elements 17 and 18 operate so as to make the difference between the voltage of the inverting input terminal (−) of the first voltage comparing circuit 20 and the voltage of the inverting input terminal (−) of the second voltage comparing circuit 21 constant. ing. (The operation of the constant value output of the D / A converter 24 is involved). Therefore, the voltage of the inverting input terminal (−) of the second voltage comparison circuit 21 maintains a voltage lower than the maximum value of the battery voltage by a certain voltage. The voltage difference is expressed as “dV”. Since it is considered to correspond to -ΔV for detecting the end of the rapid charging, the same expression is used. (This voltage value can be called the difference value of the comparison voltage for judgment after the end of charging).

次に第2電圧比較回路21は非反転入力端子(+)に電
池1の充電電圧をツェナーダイオード14によりシフトし
た値が入力される。また反転入力端子(−)には上述の
ように電池1の充電最大値よりdV低い電圧値に維持され
ている。従って、電池1の電圧が急速充電の終期になる
と非反転入力端子(+)の電圧が反転入力端子(−)の
電圧より高くなる。それまで第2電圧比較回路の出力は
“H"であったが、急速充填が完全になると電池の電圧低
下が発生し、充電最大値電圧よりdVだけ低下すると、そ
の後は第2電圧比較回路21の出力は“L"に変化する。
Next, a value obtained by shifting the charging voltage of the battery 1 by the Zener diode 14 is input to the non-inverting input terminal (+) of the second voltage comparison circuit 21. The voltage at the inverting input terminal (-) is maintained at a voltage value dV lower than the maximum charging value of the battery 1 as described above. Therefore, when the voltage of the battery 1 reaches the end of the quick charge, the voltage of the non-inverting input terminal (+) becomes higher than the voltage of the inverting input terminal (-). Until then, the output of the second voltage comparison circuit was "H". However, when the rapid filling was completed, the voltage of the battery dropped, and when the voltage dropped dV below the maximum charging voltage, the second voltage comparison circuit 21 Changes to “L”.

第3図は該電池の電圧変化・回路内の端子電圧変化を
示す図である。曲線Aは該電池の電圧変化、即ち第1電
圧比較回路20の非反転入力端子(+)と、第2電圧比較
回路21の非反転入力端子(+)との電圧変化を示してい
る。
FIG. 3 is a diagram showing a voltage change of the battery and a terminal voltage change in the circuit. A curve A indicates a voltage change of the battery, that is, a voltage change between the non-inverting input terminal (+) of the first voltage comparing circuit 20 and the non-inverting input terminal (+) of the second voltage comparing circuit 21.

曲線Bは第2電圧低各回路21の反転入力端子(−)の
電圧変化を示す。第2電圧比較回路21の出力は曲線Aが
曲線Bより高い電圧のとき“H"であって、時刻Tc以後は
その状態が逆転するから、出力は“L"に変化する。従っ
て、出力端子13の電位が“H"から“L"に変化したとき、
制御回路10は急速充電からトリクル充電に切換える。
A curve B indicates a voltage change at the inverting input terminal (-) of each of the second low voltage circuits 21. The output of the second voltage comparison circuit 21 is "H" when the curve A has a higher voltage than the curve B, and the state is reversed after the time Tc, so that the output changes to "L". Therefore, when the potential of the output terminal 13 changes from “H” to “L”,
The control circuit 10 switches from quick charge to trickle charge.

第2図においてクロック発生源26、ナンド回路22、バ
イナリカウンタ23はディジタル動作を行い、D/A変換器2
4の分解能に基づく量子化誤差の範囲内で充電中の電池
の最大値が正確に保持される。
In FIG. 2, a clock source 26, a NAND circuit 22, and a binary counter 23 perform digital operations, and the D / A converter 2
The maximum value of the battery being charged is accurately maintained within the range of the quantization error based on the resolution of 4.

また電池電圧の保持がなされた後に、該第2電圧比較
回路21から“L"が出力されるまでの端子(−)の電圧変
化dVは充電される電池の電圧に関係なく、 dV={1/(1+k)}Vr{k/(1+k)}Ve となる。ここで、k=(抵抗16・抵抗17)=(抵抗19・
抵抗18) Vr=定電圧源12の電圧 Ve=量子化誤差である。
Further, after the battery voltage is held, the voltage change dV at the terminal (−) until “L” is output from the second voltage comparison circuit 21 is dV = {1 regardless of the voltage of the battery being charged. / (1 + k)} Vr {k / (1 + k)} Ve. Here, k = (resistance 16 · resistance 17) = (resistance 19 ·
Resistance 18) Vr = voltage of constant voltage source 12 Ve = quantization error.

〔発明の効果〕〔The invention's effect〕

このように本発明によるときは、充電終了のため電池
電圧が最大値となったとき、その値をディジタル回路に
より保持しているから、保持電圧が正確であり、且つ充
電終了後の判断用比較電圧値の差値を充電電池の電圧に
関係ない値に設定することができて、その値も正確であ
るから、急速充電の終了後必要であればトリクル充電へ
の切換えが的確に行うことができる効果をもたらす。
As described above, according to the present invention, when the battery voltage reaches the maximum value for the end of charging, the value is held by the digital circuit, so that the held voltage is accurate and the comparison for judgment after the end of charging is performed. The difference between the voltage values can be set to a value irrelevant to the voltage of the rechargeable battery, and the value is also accurate, so that switching to trickle charge can be performed properly if necessary after the end of quick charge. The effect that can be done.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の二次電池の充電方式の実施例を示す全
体図、第2図はその実施例の詳細な構成を示す図、第3
図は第2図の電圧変化を示す図、第4図は従来の電池充
電回路の構成を示す図、第5図は第4図の電圧変化を示
す図である。 1……電池、2……充電用電源 10……急速充電・トリクル充電切換制御回路 11……ディジタル尖頭値保持回路兼比較回路 12……定電圧源、13……制御出力端子 20……第1電圧比較回路、21……第2電圧比較回路
FIG. 1 is an overall view showing an embodiment of a charging method for a secondary battery according to the present invention, FIG. 2 is a view showing a detailed configuration of the embodiment, FIG.
FIG. 4 is a diagram showing the voltage change in FIG. 2, FIG. 4 is a diagram showing the configuration of a conventional battery charging circuit, and FIG. 5 is a diagram showing the voltage change in FIG. 1 ... Battery 2 ... Charging power supply 10 ... Quick charge / trickle charge switching control circuit 11 ... Digital peak value holding circuit and comparison circuit 12 ... Constant voltage source 13 ... Control output terminal 20 ... 1st voltage comparison circuit, 21 ... 2nd voltage comparison circuit

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】二次電池に対し急速充電を行う電源を具備
し、急速充電の開始後、該電池の両端の電圧を測定して
尖頭値検出回路により電圧最大値を検出し、次に測定電
圧が低下して低下値が所定値以下となったとき充電終了
であると検出する二次電池の充電方式において、該尖頭
値検出回路はディジタル回路で構成すると共に、該ディ
ジタル回路は(イ)一方の入力端子に充電中の電池電圧
を印加し、他方の入力端子に定電圧電源からの電圧を抵
抗分割した電圧と、D/A変換器出力電圧とを印加し、両
入力端子の印加電圧を比較し、比較した結果の出力を発
生する第1電圧比較回路と(ロ)該第1電圧比較回路の
出力に対応するアナログ値を得るためのクロックパルス
発生器・パルスカウンタ・D/A変換器と(ハ)一方の入
力端子は前記第1電圧比較回路の一方の入力端子と接続
され、他方の入力端子に前記D/A変換器出力を抵抗分割
して印加し、両入力端子の印加電圧を比較し、比較した
結果の出力により充電終了を検出する第2電圧比較回路
とで構成することを特徴とする二次電池の充電方式。
A power supply for rapidly charging a secondary battery is provided. After the start of the rapid charging, the voltage across the battery is measured, and a peak value detection circuit detects a maximum voltage value. In a charging method for a secondary battery, which detects that charging has been completed when the measured voltage decreases to a predetermined value or less, the peak value detection circuit is constituted by a digital circuit, and the digital circuit includes ( A) Apply the voltage of the battery being charged to one input terminal, apply the resistance-divided voltage from the constant voltage power supply to the other input terminal, and apply the output voltage of the D / A converter to both input terminals. A first voltage comparison circuit that compares applied voltages and generates an output of the comparison result; and (b) a clock pulse generator, a pulse counter, and a D / D for obtaining an analog value corresponding to the output of the first voltage comparison circuit. A converter and (c) one input terminal are the first voltage The input of the D / A converter is connected to one input terminal of the comparator circuit and the other input terminal is divided by a resistor, and the applied voltage of both input terminals is compared. And a second voltage comparison circuit for detecting.
JP2314870A 1990-11-20 1990-11-20 Rechargeable battery charging method Expired - Fee Related JP2577656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2314870A JP2577656B2 (en) 1990-11-20 1990-11-20 Rechargeable battery charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2314870A JP2577656B2 (en) 1990-11-20 1990-11-20 Rechargeable battery charging method

Publications (2)

Publication Number Publication Date
JPH04185238A JPH04185238A (en) 1992-07-02
JP2577656B2 true JP2577656B2 (en) 1997-02-05

Family

ID=18058613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2314870A Expired - Fee Related JP2577656B2 (en) 1990-11-20 1990-11-20 Rechargeable battery charging method

Country Status (1)

Country Link
JP (1) JP2577656B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380727A (en) * 1986-09-20 1988-04-11 株式会社 三社電機製作所 Charge completion detector
JPS63213428A (en) * 1987-02-26 1988-09-06 株式会社 三社電機製作所 Detector for charge completion
JPS63257425A (en) * 1987-04-10 1988-10-25 松下電器産業株式会社 Secondary battery charge control circuit

Also Published As

Publication number Publication date
JPH04185238A (en) 1992-07-02

Similar Documents

Publication Publication Date Title
US5352967A (en) Method and apparatus for charging storage batteries to full capacity
US4387332A (en) Apparatus for successively charging rechargeable batteries
JP4499966B2 (en) Secondary battery charging circuit
US5541491A (en) Battery charging apparatus
JPH095366A (en) Method and equipment for highly accurate relative digital-voltage measurement
JPH0919073A (en) Method of boosting charge for secondary battery
JP2577656B2 (en) Rechargeable battery charging method
JP3242985B2 (en) Rechargeable battery charging circuit
JP4079590B2 (en) Pack battery and battery charging method
JP3220797B2 (en) Rechargeable battery charging method
JPH07123604A (en) Charger for secondary battery
JPH10223261A (en) Charging device
JP3223539B2 (en) Quick charger
US11616384B2 (en) Battery charger with constant current control loop
JP3601032B2 (en) Charge control device, charger, and battery pack
JPH10136577A (en) Charger
JP2874287B2 (en) Method for determining memory effect of storage battery and charger for memory effect
JPS6013252Y2 (en) charging device
JP3580414B2 (en) Rechargeable battery charging circuit
JP3151275B2 (en) Rechargeable battery charging circuit
JPH04325836A (en) Battery charger
JPH08214467A (en) Secondary battery charging circuit
JP4145010B2 (en) Battery pulse charging method
JPH07110109B2 (en) Charger
JPH0522876A (en) Charge control circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees