JP2577107Y2 - Heat dissipation structure of submarine cable repeater - Google Patents
Heat dissipation structure of submarine cable repeaterInfo
- Publication number
- JP2577107Y2 JP2577107Y2 JP1992054720U JP5472092U JP2577107Y2 JP 2577107 Y2 JP2577107 Y2 JP 2577107Y2 JP 1992054720 U JP1992054720 U JP 1992054720U JP 5472092 U JP5472092 U JP 5472092U JP 2577107 Y2 JP2577107 Y2 JP 2577107Y2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- submarine cable
- spring
- heat pipe
- repeater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Laying Of Electric Cables Or Lines Outside (AREA)
- Cable Accessories (AREA)
- Springs (AREA)
Description
【0001】[0001]
【産業上の利用分野】本考案は、通信用海底ケーブルの
中継器の内部で発生する熱を効率よく外部に放熱するた
めの構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure for efficiently radiating heat generated inside a repeater of a communication submarine cable to the outside.
【0002】通信用海底ケーブルには、長い距離の伝送
によって減衰した信号を増幅再生するために、増幅器を
具えた中継器が一定の間隔で設けられている。海底ケー
ブルの使用状態においては、この中継器の電子回路が動
作し、そのための電力消費に対応する熱が発生する。密
閉された容器中で発熱すると、この熱が蓄積された場合
は容器中の温度が上昇し、電子装置の動作不良の原因に
なる。このため、海底ケーブル中継器には放熱構造を具
えることが必要である。[0002] In a submarine cable for communication, repeaters having amplifiers are provided at regular intervals in order to amplify and reproduce a signal attenuated by transmission over a long distance. In the state of use of the submarine cable, the electronic circuit of the repeater operates and generates heat corresponding to the power consumption. When heat is generated in a closed container, if the heat is accumulated, the temperature in the container increases, which causes malfunction of the electronic device. For this reason, it is necessary for the submarine cable repeater to have a heat dissipation structure.
【0003】このような海底ケーブル中継器の放熱構造
としては、内部の発熱部分と中継器の外側耐水圧容器と
を熱的に結合し、内部の熱を外部の海水に近い外側容器
に逃がす構造が一般的である。しかしながら、海底ケー
ブルを海底に敷設する場合に、船上設備の通過中などに
おいて、中継器が振動や衝撃を受けるため、発熱部分で
ある内部ユニットと外側耐水圧容器との間の相対的な位
置が変動するが、これまで、このような問題に対処し得
る適当な放熱構造が存在していなかった。[0003] As a heat dissipation structure of such a submarine cable repeater, there is a structure in which an internal heat generating portion is thermally coupled to an outer water-resistant vessel of the repeater, and internal heat is released to an outer vessel close to the outer seawater. Is common. However, when laying submarine cables on the seabed, the relative position between the internal unit, which is the heat-generating part, and the outer water-resistant vessel is affected because the repeater receives vibrations and impacts, for example, when passing onboard equipment. Although fluctuating, heretofore, there has been no suitable heat dissipation structure that can address such problems.
【0004】熱を輸送するための手段として、例えばヒ
ートパイプがよく知られている。これは、密封した管内
に作動流体として気相と液相に相互に変化しやすい媒体
を封入し、その相変化の潜熱を仲介にして流動によって
熱を輸送する装置である。管内の作動流体は、高温側で
は周囲から熱を吸収して蒸発して気体となり、気体の状
態で低温側に流動し、低温側では周囲に熱を放出して液
体になる。この液体は毛細管現象を利用して高温側に返
送される。従って、作動流体が高温側と低温側との間を
相変化しながら循環してヒートパイプの高温側の熱を低
温側に効率よく輸送することができる。[0004] As a means for transporting heat, for example, a heat pipe is well known. This is a device in which a medium which is easily changed into a gas phase and a liquid phase as a working fluid is sealed in a sealed tube, and heat is transported by flow through the latent heat of the phase change. The working fluid in the pipe absorbs heat from the surroundings and evaporates to a gas on the high temperature side, flows to a low temperature side in a gaseous state, and releases heat to the surroundings to a liquid on a low temperature side. This liquid is returned to the high temperature side by utilizing the capillary phenomenon. Therefore, the working fluid circulates between the high-temperature side and the low-temperature side while changing phase, and the heat on the high-temperature side of the heat pipe can be efficiently transported to the low-temperature side.
【0005】海底ケーブル中継器においては、内部ユニ
ットは、振動衝撃から内部ユニットを守るための緩衝体
を介して外部の耐水圧容器中に収められており、中継器
が振動や衝撃を受けた時に内部ユニットと耐水圧容器と
が相対的に動き得る自由度を有する緩衝構造が必要であ
るが、これに放熱構造としてヒートパイプを適用しよう
とすると、ヒートパイプは、従来専ら伝熱的特性の観点
からのみ製作されており、これと緩衝構造との併存は不
可能であるという問題がある。In a submarine cable repeater, the internal unit is housed in an external water-resistant container via a buffer for protecting the internal unit from vibration and impact. It is necessary to provide a buffer structure that has a degree of freedom in which the internal unit and the water-resistant vessel can move relative to each other. However, there is a problem that it cannot be coexisted with the buffer structure.
【0006】従来、ヒートパイプは熱伝導の良い金属で
できており、自由に伸び縮みできないものであった。こ
のため、振動や変形等によって相対的に位置が変化する
物体間での熱伝達に対しては適用できなかった。従来、
この問題を解決するため、パイプをコルゲート状にして
可撓性を持たせる方法が用いられているが、図6に示す
ようなコルゲートヒートパイプの場合、 (1) 軸方向の伸縮の長さをあまり大きくとれない、 (2) 形状が複雑で製造が困難なため高価である、 (3) 材料の塑性変形によっているのでバネのように動作
に再現性がない、 (4) 衝撃や振動による繰り返し変形に対する信頼性に欠
ける、 等の問題があった。Conventionally, heat pipes are made of metal having good heat conductivity and cannot be freely expanded and contracted. Therefore, it cannot be applied to heat transfer between objects whose positions relatively change due to vibration, deformation, and the like. Conventionally,
In order to solve this problem, a method is used in which the pipe is made corrugated to have flexibility. In the case of a corrugated heat pipe as shown in FIG. 6, (1) the length of expansion and contraction in the axial direction is reduced. Not very large, (2) expensive due to complex shape and difficult to manufacture, (3) not reproducible in operation like a spring due to plastic deformation of material, (4) repetition by impact or vibration There were problems such as lack of reliability for deformation.
【0007】[0007]
【考案が解決しようとする課題】本考案の目的は、上述
のような現状に鑑み、新規なヒートパイプ構造を用いた
海底ケーブル中継器の放熱構造を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a heat radiating structure of a submarine cable repeater using a novel heat pipe structure in view of the above situation.
【0008】[0008]
【課題を解決するための手段】本考案の海底ケーブル中
継器の放熱構造は、発熱源である内部ユニットと吸熱源
である外部の耐水圧容器との間を、一部または全部がバ
ネ材料からなりバネ構造を有するヒートパイプで結合し
たことを特徴とする。The heat radiating structure of the submarine cable repeater according to the present invention has a structure in which a part or all of a spring material is provided between an internal unit as a heat source and an external water pressure vessel as a heat absorbing source. It is characterized by being connected by a heat pipe having a spring structure.
【0009】このような本考案によれば、ヒートパイプ
とバネとを一体化し、熱を輸送すべき2点間の相対的な
位置が変動してもこれに追随でき、動作の再現性及び繰
り返し変形に対する信頼性の高いバネ特性とヒートパイ
プの高性能な熱伝達特性とを合わせ持つヒートパイプを
用いて、高性能な海底ケーブル中継器の放熱構造を実現
することができる。According to the present invention, the heat pipe and the spring are integrated, so that even if the relative position between two points to which heat is to be transferred fluctuates, it can follow the change, and the reproducibility and repetition of operation can be achieved. By using a heat pipe having both a highly reliable spring characteristic against deformation and a high-performance heat transfer characteristic of the heat pipe, a high-performance heat dissipation structure of a submarine cable repeater can be realized.
【0010】[0010]
【発明の実施の形態】次に、図面を用いて本考案の実施
例を説明する。図1は、本考案による放熱構造を適用し
た海底ケーブル中継器の断面図である。図中、10は海底
ケーブル中継器、11は耐水圧容器、12はヒートパイプ、
13は内部ユニットである。ヒートパイプ12は発熱源であ
る内部ユニット10と吸熱源である外部の耐水圧容器11の
間に介在している。このような構成となっているので、
ヒートパイプ12は静的状態で内部ユニット10から耐水圧
容器11に熱伝達するのみならず、海底に敷設する場合
に、船上設備の通過中などにおいて、耐水圧容器11が振
動や衝撃を受けるときは、耐水圧容器11と内部ユニット
10の相対的な位置関係の変化に追随して無理なく伸縮す
ることができ、効率よく熱伝達を行うとともに、ヒート
パイプ12自体が緩衝バネとしても作用し、内部ユニット
10に対する振動衝撃を緩和することができる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a submarine cable repeater to which a heat dissipation structure according to the present invention is applied. In the figure, 10 is a submarine cable repeater, 11 is a water-resistant vessel, 12 is a heat pipe,
13 is an internal unit. The heat pipe 12 is interposed between the internal unit 10 as a heat source and the external water-resistant vessel 11 as a heat absorbing source. With such a configuration,
The heat pipe 12 not only transfers heat from the internal unit 10 to the watertight vessel 11 in a static state, but also when the watertight vessel 11 is subjected to vibration or impact, for example, when laying on the seabed, for example, while passing through onboard equipment. Is a watertight vessel 11 and internal unit
It can expand and contract naturally following the change in the relative positional relationship of 10, and efficiently conducts heat transfer, and the heat pipe 12 itself also acts as a buffer spring,
Vibration and shock to 10 can be reduced.
【0011】本考案の海底ケーブル中継器の放熱構造に
用いるヒートパイプ12としては、図2に示すように、コ
イル状に成形したものを用いることができる。このよう
なヒートパイプ12は、コイルバネとしての特性を合わせ
持つので、図2(a),(b),(c)に示すように、熱を伝達す
べき2点A,Bの軸方向の伸縮(引っ張り、縮め)、曲
げ、回転等に自由に追随できる。図2はコイル状バネに
ついて伸縮、曲げ、回転動作を例示したものであるが、
一般的なバネの場合にもこれらの動作が可能であること
は明らかである。As the heat pipe 12 used in the heat radiating structure of the submarine cable repeater of the present invention, as shown in FIG. 2, a pipe formed in a coil shape can be used. Since such a heat pipe 12 also has characteristics as a coil spring, as shown in FIGS. 2 (a), (b) and (c), expansion and contraction of two points A and B at which heat should be transmitted in the axial direction. (Pull, shrink), bend, rotate, etc. FIG. 2 illustrates the expansion, contraction, bending, and rotation operations of the coil spring.
Obviously, these operations are possible even in the case of a general spring.
【0012】図3は、本考案の海底ケーブル中継器の放
熱構造に用いるヒートパイプ12として、一部だけをコイ
ル状に成形し、伸縮回転自在な構造としたものの例を示
す図である。また、図4は、一部をコイル状に成形し、
伸縮回転自在な構造としたヒートパイプ12の別の例を示
す図である。また、図5は一部をコイル状に成形し、伸
縮回転自在な構造としたヒートパイプ12の更に別の例を
示す図である。ここでは、ヒートパイプ12の一部をU字
形のバネに成形している。FIG. 3 is a diagram showing an example of a heat pipe 12 used in the heat dissipation structure of the submarine cable repeater of the present invention, which is formed only in a part into a coil shape so as to be freely expandable, contractible and rotatable. FIG. 4 shows a part formed into a coil shape.
FIG. 8 is a view showing another example of the heat pipe 12 having a structure that can be extended, retracted, and rotated. FIG. 5 is a view showing still another example of the heat pipe 12 which is partly formed into a coil shape and has a structure which can be freely expanded, contracted and rotated. Here, a part of the heat pipe 12 is formed into a U-shaped spring.
【0013】この外、特に図面では説明していないが、
更に、真っ直ぐなパイプ構造のまま曲げ変形に対するバ
ネあるいは軸回転に対するバネ(トーションバー)とす
ること、径の小さいコイルに成形したものを更に径の大
きいコイルに成形した2重コイルとすることもできる。In addition, although not particularly described in the drawings,
Furthermore, a spring against bending deformation or a spring (torsion bar) against shaft rotation can be used as a straight pipe structure, or a double coil formed from a coil having a smaller diameter into a coil having a larger diameter can be used. .
【0014】本考案で用いるヒートパイプ12用のバネ材
料としては、一般的にバネとして使用される金属材料で
あり、ばね鋼、硬鋼、ピアノ線、ばね用炭素鋼、弁ばね
用炭素鋼、弁ばね用Cr-V鋼、弁ばね用Si-Cr 鋼、ば
ね用Si-Cr 鋼、ばね用ステンレス、黄銅、ベリリウム
銅、りん青銅、洋白等を用いることができる。これらの
内、りん青銅、ベリリウム銅は弾性限が高く、バネ材料
として優れているほか、熱伝導性および耐食性もよいの
で本考案の放熱構造に用いるヒートパイプの材料として
特に適している。The spring material for the heat pipe 12 used in the present invention is a metal material generally used as a spring, such as spring steel, hard steel, piano wire, carbon steel for spring, carbon steel for valve spring, Cr-V steel for valve springs, Si-Cr steel for valve springs, Si-Cr steel for springs, stainless steel for springs, brass, beryllium copper, phosphor bronze, nickel silver, etc. can be used. Of these, phosphor bronze and beryllium copper are particularly suitable as materials for heat pipes used in the heat radiation structure of the present invention because they have high elasticity limits, are excellent as spring materials, and have good thermal conductivity and corrosion resistance.
【0015】[0015]
【考案の効果】以上説明したように、本考案によれば、
海底ケーブル中継器の内部ユニットと耐水圧容器とを一
部または全部がバネ材料からなるヒートパイプで結合
し、従来困難であった相対的な位置関係が変動する2点
間の熱輸送を、高い信頼性で且つ効率よく行うことがで
きるようになり、海底ケーブル中継器の性能の向上に資
するところ大である。[Effects of the Invention] As described above, according to the present invention,
The internal unit of the submarine cable repeater and the watertight vessel are partly or wholly connected by a heat pipe made of a spring material to increase the heat transfer between two points where the relative positional relationship has been difficult, which has been difficult in the past. It can be performed reliably and efficiently, and greatly contributes to improvement of the performance of the submarine cable repeater.
【図1】本考案による放熱構造を適用した海底ケーブル
中継器の断面図である。FIG. 1 is a sectional view of a submarine cable repeater to which a heat dissipation structure according to the present invention is applied.
【図2】バネ材の動作を説明する図であり、(a)は引
っ張り、(b)は曲げ、(c)は回転動作を示してい
る。FIGS. 2A and 2B are diagrams for explaining the operation of a spring material, wherein FIG. 2A shows tension, FIG. 2B shows bending, and FIG.
【図3】ヒートパイプの一部をコイルバネとする例を示
す図である。FIG. 3 is a diagram showing an example in which a part of a heat pipe is formed as a coil spring.
【図4】ヒートパイプの一部をコイルバネとする他の例
を示す図である。FIG. 4 is a diagram showing another example in which a part of the heat pipe is used as a coil spring.
【図5】ヒートパイプの一部をU字形バネとする例を示
す図である。FIG. 5 is a diagram showing an example in which a part of a heat pipe is formed as a U-shaped spring.
【図6】従来のコルゲートヒートパイプを示す図であ
る。FIG. 6 is a view showing a conventional corrugated heat pipe.
10 海底ケーブル中継器 11 耐水圧容器 12 ヒートパイプ 13 内部ユニット Reference Signs List 10 Submarine cable repeater 11 Waterproof vessel 12 Heat pipe 13 Internal unit
Claims (1)
る外部の耐水圧容器との間を、一部または全部がバネ材
料からなりバネ構造を有するヒートパイプで結合したこ
とを特徴とする海底ケーブル中継器の放熱構造。An undersea floor characterized in that a part or the whole of an internal unit serving as a heat source and an external water-resistant vessel serving as a heat absorbing source is connected by a heat pipe made of a spring material and having a spring structure. Heat dissipation structure of cable repeater.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1992054720U JP2577107Y2 (en) | 1992-08-04 | 1992-08-04 | Heat dissipation structure of submarine cable repeater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1992054720U JP2577107Y2 (en) | 1992-08-04 | 1992-08-04 | Heat dissipation structure of submarine cable repeater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0622773U JPH0622773U (en) | 1994-03-25 |
JP2577107Y2 true JP2577107Y2 (en) | 1998-07-23 |
Family
ID=12978643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1992054720U Expired - Fee Related JP2577107Y2 (en) | 1992-08-04 | 1992-08-04 | Heat dissipation structure of submarine cable repeater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2577107Y2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7823374B2 (en) * | 2006-08-31 | 2010-11-02 | General Electric Company | Heat transfer system and method for turbine engine using heat pipes |
US20100289198A1 (en) * | 2009-04-28 | 2010-11-18 | Pete Balsells | Multilayered canted coil springs and associated methods |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3230344A1 (en) * | 1981-08-18 | 1983-03-10 | Dresser Europe S.A., 1160 Bruxelles | Mining machine |
JPH03137494A (en) * | 1989-07-14 | 1991-06-12 | Furukawa Electric Co Ltd:The | Heat pipe type heat transporter |
JPH0443724U (en) * | 1990-08-07 | 1992-04-14 | ||
JPH0566095A (en) * | 1991-04-09 | 1993-03-19 | Akutoronikusu Kk | Heat joint device and manufacture thereof |
-
1992
- 1992-08-04 JP JP1992054720U patent/JP2577107Y2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0622773U (en) | 1994-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3146005A (en) | Vacuum insulated conduits and insulated joining means | |
US7921913B2 (en) | Vacuum insulated dewar flask | |
CN100472115C (en) | Capillary weld extension with thermal isolation | |
JP2005214503A (en) | Casing having heat radiating function and heat radiation member | |
WO2003087695A1 (en) | Self-excited vibration heat pipe and computer with the heat pipe | |
JP2577107Y2 (en) | Heat dissipation structure of submarine cable repeater | |
US3712053A (en) | Thermal-mechanical energy transducer device | |
US2537024A (en) | Heat exchanger finned tube | |
BR0011010A (en) | Insulated tube structure and methods of making such structures | |
JPH0346355A (en) | Heat-transportation device of heat-pipe system | |
US6056019A (en) | Apparatus for acoustically isolating a high pressure steam pipe in a flooded structure | |
US20070295484A1 (en) | Superconducting tube | |
JPS6158980B2 (en) | ||
JPH10132477A (en) | Flexible heat pipe device | |
JP4044997B2 (en) | Cooling device for outdoor installation type communication equipment card | |
JP2596219Y2 (en) | Flat heat pipe | |
JP2019220654A (en) | Thermoelectric generator and cooling device | |
JPH0766579A (en) | Heat conductive cooling structure | |
JPS60232496A (en) | Heat exchanger | |
JP2004003807A (en) | Self-excited vibration heat pipe | |
CN211740211U (en) | Sea ice tracker | |
CN113433778B (en) | Heat dissipation module and camera | |
SU1190135A1 (en) | Vibroinsulating compensator of temperature deformation | |
JP2003270071A (en) | Diaphragm-sealed pressure transmitter | |
JPS60169089A (en) | Boiling heat transfer surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |