JP2573046B2 - Fluidized bed gasification method and fluidized bed gasification furnace - Google Patents

Fluidized bed gasification method and fluidized bed gasification furnace

Info

Publication number
JP2573046B2
JP2573046B2 JP63299550A JP29955088A JP2573046B2 JP 2573046 B2 JP2573046 B2 JP 2573046B2 JP 63299550 A JP63299550 A JP 63299550A JP 29955088 A JP29955088 A JP 29955088A JP 2573046 B2 JP2573046 B2 JP 2573046B2
Authority
JP
Japan
Prior art keywords
fluidized
furnace
bed
gas
side edges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63299550A
Other languages
Japanese (ja)
Other versions
JPH02147692A (en
Inventor
晶作 藤並
孝裕 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP63299550A priority Critical patent/JP2573046B2/en
Publication of JPH02147692A publication Critical patent/JPH02147692A/en
Application granted granted Critical
Publication of JP2573046B2 publication Critical patent/JP2573046B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、流動層を用いるガス化方法及びガス化炉に
関するものである。
Description: TECHNICAL FIELD The present invention relates to a gasification method and a gasification furnace using a fluidized bed.

〔従来の技術〕[Conventional technology]

石灰ガス化炉は、1920年代から1950年代にかけて移動
層炉、流動層炉、気流層炉と相次いで実用化された。そ
の後もそれぞれのガス化方式について多くのガス化炉の
開発が行われたが、現在でもなお実用炉として稼働して
いるのは、移動層炉のLurgiと気流層炉のKoppers Totze
k炉を数えるにすぎない。最近新たに気流層炉のTexaco
炉がこの中に加わろうとしている。
Lime gasifiers were put into practical use successively in the 1920s and 1950s, with moving-bed, fluidized-bed, and gas-bed reactors. Since then, many gasifiers have been developed for each gasification method.However, still operating as a commercial furnace are moving bed reactor Lurgi and gas bed reactor Koppers Totze.
We only count furnaces. Recently, Texaco, a new gas-bed reactor
A furnace is about to join in.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来流動層炉が使用できる石炭は、0.5〜3mmの粉炭と
されてきた。これより大きいと流動化を阻害するし、こ
れより小さいと完全にガス化されないまま未反応チヤー
として生成ガスに同伴して炉外へ飛散してしまう。
Conventionally, coal that can be used in a fluidized bed furnace has been pulverized coal of 0.5 to 3 mm. If it is larger than this, fluidization will be hindered, and if it is smaller than this, it will not be completely gasified and will be scattered outside the furnace as unreacted char with the produced gas.

これを防ぐためこれまでの流動層炉では、石炭を炉に
投入する前の前処理として、石炭をあらかじめ粉砕機等
を用いて破砕・整粒することが不可欠の要素であつた。
この前処理により、所定の粒径範囲に入らない石炭は利
用できず、石炭の歩留りをある程度犠牲にせざるを得な
かつた。
In order to prevent this, in the conventional fluidized bed furnace, it was an essential element to pre-crush and size the coal using a pulverizer or the like as a pretreatment before charging the coal into the furnace.
As a result of this pretreatment, coal that does not fall within the predetermined particle size range cannot be used, and the yield of coal has to be sacrificed to some extent.

このような粉砕設備は、設備費用、運転費用、あるい
は保守費用がかさみ、関連作業の手間を要し、設備のた
めの設置スペースを要するといつた欠点を有するばかり
でなく、運転中の異物のかみ込みによる機械部品の損傷
や動力の上昇に起因して破砕設備が停止し、さらには炉
の運転自体を停止せねばならないといつた重大な支障を
招く場合があった。
Such crushing equipment has high equipment cost, operation cost, or maintenance cost, requires labor of related work, has disadvantages such as requiring an installation space for the equipment, and also has a disadvantage that foreign matter during operation is reduced. In some cases, the crushing equipment was stopped due to damage to mechanical parts or increased power due to the bite, and furthermore, serious troubles such as when the operation of the furnace itself had to be stopped were caused.

また、従来の流動層では、層内全体を活発な流動化状
態で均一に保とうとしたため、生成ガスに同伴して炉外
へ飛散する未反応チヤーの量が多く、高いガス化効率を
得られなかつた。飛散チヤーをサイクロン等の補集装置
を用いて分離・回収し、ガス化炉に供給しても、再び未
反応のまま飛散してしまい、いたずらに捕集装置の負荷
を増すのみで、ガス化効率を改善するまでには至らなか
つた。こうした現象は粉化する性質を有する石炭ほど著
しかつた。
In addition, in the conventional fluidized bed, since the entire inside of the bed was to be kept uniformly in an active fluidized state, the amount of unreacted char scattered out of the furnace accompanying the produced gas was large, and high gasification efficiency was obtained. Never Even if scattered chars are separated and collected using a cyclone or other collection device and supplied to the gasification furnace, they are scattered without reacting again, and merely increasing the load on the collection device unnecessarily increases gasification. The efficiency has not been improved yet. These phenomena were more pronounced in coals having powdering properties.

さらに従来の流動層炉では、ガス化原料である石炭自
身を流動媒体としたために、供給量とのバランスがとれ
ず流動層高が不安定となつたり、アツシユ主体の流動層
に変じたときに粒径の細かさからバブリングを生じて石
炭とガス化剤との接触が悪くなる等、運転操作に支障を
来すことがあつた。
Furthermore, in the conventional fluidized-bed furnace, since the coal itself, which is the gasification raw material, was used as the fluidizing medium, the supply amount could not be balanced and the height of the fluidized bed became unstable, or when it changed to a fluidized bed mainly composed of ash. The fineness of the particle size causes bubbling, resulting in poor contact between the coal and the gasifying agent.

一方、ガス化炉の規模について見ると、各方式とも現
在運転中のもので500〜1000t/dが最大級であり、これよ
り大容量のものは未だに実現されていない。発電用の微
粉炭燃焼炉が8000t/dクラスの規模であるのに比べ、ま
た、石炭ガス化の将来の市場規模から3000〜5000t/dが
適正規模であることを考えれば、スケールアップの問題
はいかにも大きいと言わざるを得ない。
On the other hand, regarding the scale of the gasification furnace, each system is currently in operation and the largest is 500 to 1000 t / d, and those with larger capacities have not yet been realized. Compared to pulverized coal combustion furnaces for power generation of 8000t / d class, and considering that the future scale of coal gasification is 3,000-5000t / d, the scale up problem is It must be said that it is very large.

流動層方式のこのような問題点を解決するために、深
層流動層や二段流動層やガス化或は高温化による灰の凝
集化等が試みられているが、何れについてもなお次のご
とき欠点を有するものであつた。
In order to solve such problems of the fluidized bed system, a deep fluidized bed, a two-stage fluidized bed, and agglomeration of ash by gasification or high temperature have been tried. It had disadvantages.

これは流動層炉に限らずあらゆる方式に共通してい
るが、石炭などのガス化原料を、炉に投入する前の前処
理として粉砕・整粒を行なうことが不可欠であり、粉砕
設備に関する諸々の費用、手間或はスペース上の損失の
みならず、破砕設備の運転中のトラブルのために、炉の
運転に支障を来すことがある。またこうした前処理のた
めに、所定の粒径範囲に入らない石炭は利用できず、石
炭の歩留りはある程度犠牲にせざるをえなかつた。
This is not limited to fluidized bed furnaces, but is common to all systems, but it is indispensable to carry out grinding and sizing as a pretreatment before gasification raw materials such as coal are introduced into the furnace. In addition to the cost, labor, and space loss, the operation of the furnace may be hindered due to troubles during the operation of the crushing equipment. In addition, due to such pretreatment, coal that does not fall within a predetermined particle size range cannot be used, and the yield of coal has to be sacrificed to some extent.

石炭粒子の層内滞留時間を長くとろうとした深層流
動層は、チヤー飛散の問題の解決にあまり有効ではなか
つた。また深層流動層は、炉高を高くするとともに、炉
の重量を増し、さらには炉壁からの熱損失を大きくする
結果となつた。
Deep fluidized beds, which attempt to increase the coal particle's residence time in the bed, have not been very effective in solving the problem of charring. The deep fluidized bed also increased the furnace height, increased the weight of the furnace, and increased the heat loss from the furnace wall.

二段流動層ガス化は、下段炉にて上段炉からのチヤ
ーを燃焼させ、そこで生じた高温の燃焼ガスを上段炉に
導き、上段炉に供給された石炭の乾留を行なうというも
のであり、メタン濃度の割合に高いガスが得られるのが
特徴である。上段炉でタールを生成しないためには1000
℃近い温度を必要とするが、これに必要な熱量を下段炉
におけるチヤーの燃焼でまかなうのはかなり難しい操作
を伴う。燃焼速度を上げようと温度を高くすれば、当然
灰の溶融の問題が生じる。しかし最近の報告では、こう
した問題もある程度克服され、かなり高いガス化効率が
出るようになつてきている。ただし上下の二段炉となる
ことにより、深層流動層以上に炉高が高く、装置が複雑
になる問題がある。
Two-stage fluidized-bed gasification is to burn the char from the upper furnace in the lower furnace, guide the high-temperature combustion gas generated there to the upper furnace, and carbonize the coal supplied to the upper furnace, The feature is that a gas with a high methane concentration ratio can be obtained. 1000 for not producing tar in the upper furnace
Although it requires a temperature close to 0 ° C., it is quite difficult to cover the amount of heat required by burning the char in the lower furnace. If the temperature is increased to increase the burning rate, the problem of ash melting naturally arises. However, recent reports have overcome these problems to some extent and have led to significantly higher gasification efficiencies. However, there is a problem in that the furnace becomes higher than the deep fluidized bed due to the two-stage furnace in the upper and lower stages, and the apparatus becomes complicated.

高温化による灰の凝集排出は、排出口の構造並びに
条件が非常に難しく、未反応の石炭粒子を同伴してしま
う問題を生じている。
The cohesive discharge of ash due to high temperature has a problem that the structure and conditions of the discharge port are very difficult, and unreacted coal particles are entrained.

本発明は、こうした従来の欠点を除き、有用な流動層
ガス化方法及びガス化炉を提供することを目的とするも
のである。
An object of the present invention is to provide a useful fluidized-bed gasification method and a gasification furnace that eliminate such conventional disadvantages.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明は、ガス化炉の炉底部より上方に向けて噴出せ
しめた流動化ガスにより、流動媒体を流動化して形成せ
しめた流動層により、石炭等をガス化する流動層ガス化
方法において、前記流動層は、水平面断面が矩形状の流
動層室内に保持され、前記流動化ガスは、中央部よりも
両側縁部が低く形成されているガス分散機構から噴出せ
しめられ、前記炉底の中央部付近における流動化ガスの
質量速度を0.5〜3Gmfとし、該中央部の両側縁部におけ
る流動化ガス速度を4〜20Gmfとし、該両側縁流動層の
上方において、両側縁部の流動化ガスの上向き流路をさ
えぎり、かつ炉の中央に向けて転向せしめ、炉底の中央
部には、流動媒体が沈降する移動層を形成し、両側縁部
には流動媒体が活発に流動化している両側縁流動層を形
成し、前記流動媒体を、前記移動層内で沈降せしめ、該
移動層の下部で前記両側縁部に移行せしめ、前記両側縁
流動層内で上昇せしめ、該両側縁流動層上部で前記転向
する流動化ガスにより前記移動層の頂部に向けて転向せ
しめて、炉内を循環せしめつつ前記移動層に石炭等を供
給して該石炭等のガス化を行なわしめることを特徴とす
る流動層ガス化方法。
The present invention relates to a fluidized bed gasification method for gasifying coal or the like with a fluidized bed formed by fluidizing a fluidized medium with a fluidized gas ejected upward from a furnace bottom of a gasification furnace, The fluidized bed is held in a fluidized bed chamber having a rectangular cross section in a horizontal plane, and the fluidized gas is ejected from a gas dispersion mechanism formed with both side edges lower than a central portion, and a central portion of the furnace bottom is provided. The mass velocity of the fluidizing gas in the vicinity is 0.5 to 3 Gmf, the fluidizing gas velocity in the both side edges of the central part is 4 to 20 Gmf, and the fluidizing gas in the both side edges is upward above the fluid bed in the both sides. The flow path is blocked and turned toward the center of the furnace, forming a moving bed in which the flowing medium sinks in the center of the furnace bottom, and both side edges where the flowing medium is actively fluidized on both side edges. Forming a fluidized bed and adding the fluidized medium to the The sedimentation in the moving bed, the transition to the both side edges below the moving bed, the rising in the both side fluidized bed, and the top of the moving bed by the turning fluidized gas above the both side fluidized bed. A fluidized bed gasification method comprising supplying coal or the like to the moving bed while circulating in the furnace and gasifying the coal or the like.

〔具体例〕〔Concrete example〕

本発明を、酸素とスチームをガス化剤として用いて石
炭をガス化する場合について説明する。
The present invention will be described for the case where coal is gasified using oxygen and steam as gasifying agents.

第1図は、流動層ガス化炉を用いた石炭ガス化のフロ
ーの一例である。サイロ1に貯留された石炭は、供給装
置2によりガス化炉3に定量供給される。一方酸素とス
チームの混合ガスからなるガス化剤は、熱交換器5によ
り予熱された後に、流動化ガスとしてガス化炉3に供給
され、石炭と反応する。
FIG. 1 is an example of a flow of coal gasification using a fluidized-bed gasification furnace. The coal stored in the silo 1 is supplied to the gasification furnace 3 by the supply device 2 in a fixed amount. On the other hand, the gasifying agent composed of the mixed gas of oxygen and steam is supplied to the gasifier 3 as a fluidizing gas after being preheated by the heat exchanger 5 and reacts with the coal.

ガス化炉3にて生成したガスは、二段のサイクロン4
によりガス中に含まれる固形物を分離する。一段目のサ
イクロンで分離される固形物中には、未反応チヤーが含
まれるので、再びガス化炉3に供給される。二段目のサ
イクロンで分離された固形物は灰として排出され、ホツ
パー9に貯留される。生成ガスは熱交換器5により降温
し、次いで水洗浄塔6により冷却・洗浄された後に、ア
ルカリ洗浄塔7により硫化水素の除去を行なう。こうし
て精製された生成ガスは、ガスホルダー8に貯留され
る。なおガス洗浄設備から出る廃水は廃水処理設備10に
供給され、無害化処理される。
The gas generated in the gasifier 3 is a two-stage cyclone 4
Separates the solids contained in the gas. Since the solids separated by the first-stage cyclone include unreacted char, they are supplied to the gasification furnace 3 again. The solid separated in the second stage cyclone is discharged as ash and stored in the hopper 9. The temperature of the produced gas is lowered by the heat exchanger 5, then cooled and washed by the water washing tower 6, and then the hydrogen sulfide is removed by the alkali washing tower 7. The product gas thus purified is stored in the gas holder 8. The wastewater from the gas cleaning equipment is supplied to the wastewater treatment equipment 10 and detoxified.

ガス化炉3について説明する。 The gasifier 3 will be described.

第2図に示すごとく、ガス化炉3の炉底部には流動化
用のガス化剤の分散板20が備えられている。分散板20は
両側縁部が中央部より低く、炉の中心線36に対してほぼ
対称な山形断面状に形成されている。両側縁部には不燃
物及び灰分排出口30が接続され、32,33のスクリユーコ
ンベアにより、粗大な不燃物が流動媒体とともに排出さ
れる。
As shown in FIG. 2, a dispersing plate 20 of a gasifying agent for fluidization is provided at the bottom of the gasification furnace 3. The dispersing plate 20 has both side edges lower than the central portion, and is formed in a substantially symmetrical mountain cross section with respect to the center line 36 of the furnace. Incombustibles and ash discharge ports 30 are connected to both side edges, and coarse incombustibles are discharged together with the fluid medium by a screw conveyor of 32,33.

予熱された酸素とスチームの混合ガスからなるガス化
剤は、分散板20から炉内に噴出し、傾斜壁24に当たつて
垂直面内の旋回流となり、珪砂などの流動媒体をこれに
沿つて動かしめて旋回流動層35が形成される。さらに後
述するように炉内中央に下降移動層34が形成され、この
下降移動層34及び旋回流動層35によつて石炭は短時間に
ガス化反応を完結させるため、粉砕・整粒を行なわなく
とも流動化を阻害することなく高いガス化効率を得るこ
とが出来る。
The gasifying agent consisting of the preheated mixed gas of oxygen and steam is ejected from the dispersion plate 20 into the furnace, and hits the inclined wall 24 to form a swirling flow in a vertical plane, and the flowing medium such as silica sand flows along the swirling flow. The swirling fluidized bed 35 is formed. Further, as described later, a descending moving bed 34 is formed in the center of the furnace, and the coal is gasified by the descending moving bed 34 and the swirling fluidized bed 35 in a short time. In both cases, high gasification efficiency can be obtained without inhibiting fluidization.

予熱された酸素とスチームの混合ガスからなるガス化
剤は、導入部の室21,22,23を経て分散板20から上方に噴
出せしめられている。両側縁部の室21,23から噴出する
ガス化剤の質量速度は流動層を形成するのに十分な大き
さを有するが、中央部の室22から噴出するガス化剤の質
量速度は前者よりも小さく選ばれている。例えば室21,2
3より噴出する流動化ガスの質量速度は4〜20Gmf、好ま
しくは6〜12Gmfであるのに対し、室22より噴出する流
動化ガスの質量速度は0.5〜3Gmf、好ましくは1〜2.5Gm
fに選ばれる。ここで1Gmfは流動化開始質量速度であ
る。
The gasifying agent composed of the preheated mixed gas of oxygen and steam is ejected upward from the dispersion plate 20 through the chambers 21, 22, and 23 of the introduction section. The mass velocity of the gasifying agent ejected from the chambers 21 and 23 on both sides is large enough to form a fluidized bed, but the mass velocity of the gasifying agent ejected from the central chamber 22 is higher than the former. Is also small. For example, room 21,2
The mass velocity of the fluidizing gas ejected from 3 is 4 to 20 Gmf, preferably 6 to 12 Gmf, whereas the mass velocity of the fluidizing gas ejected from the chamber 22 is 0.5 to 3 Gmf, preferably 1 to 2.5 Gmf.
Selected as f. Here, 1 Gmf is a fluidization start mass velocity.

中央部の室22から噴出する流動化ガス中の酸素濃度
は、両側縁部の室21,23から噴出する流動化ガスよりも
低いか、あるいはスチームのみとしてもよい。
The oxygen concentration in the fluidizing gas ejected from the center chamber 22 may be lower than that of the fluidizing gas ejected from the chambers 21 and 23 on both side edges, or may be only steam.

室の数は3以上の任意の数が選ばれる。多数の場合で
も、流動化ガスの質量速度は中心に近いものを小、両側
縁部に近いものを0.5〜3Gmf、両側縁部に近いものを4
〜20Gmfとなるようにする。両側縁部の室21,23の直上に
流動化ガスの上向き流路をさえぎり、流動化ガスを炉中
央に向けて反射転向せしめる反射壁として傾斜壁24が設
けられている。傾斜壁24の上側は、傾斜壁24と反対の傾
斜を有する傾斜面25が設けられ、流動媒体が堆積するの
を防ぐようになつている。
The number of chambers is selected as an arbitrary number of 3 or more. Even in many cases, the mass velocity of the fluidizing gas is small for those near the center, 0.5 to 3 Gmf for those near both edges, and 4 for those near both edges.
It should be ~ 20Gmf. An inclined wall 24 is provided just above the chambers 21 and 23 at both side edges as a reflecting wall that interrupts the upward flow path of the fluidizing gas and turns the fluidizing gas toward the center of the furnace. On the upper side of the inclined wall 24, an inclined surface 25 having an inclination opposite to that of the inclined wall 24 is provided so as to prevent accumulation of the flowing medium.

炉内天井部27には、供給装置2の出口31に連なる石炭
投入口28が、中央部の室22に対応するように設けられて
いる。
A coal inlet 28 connected to the outlet 31 of the supply device 2 is provided in the furnace ceiling 27 so as to correspond to the chamber 22 in the center.

ガス化炉3の原理につき説明する。通常の流動層にお
いては、流動媒体は沸騰している水のごとき激しい流動
状態を形成しているが、室22の上方の流動媒体は弱い流
動状態にある移動層34を形成する。この移動層34の幅
は、上方は狭いが、裾の方は分散板20の傾斜の作用も相
まつてやや広がつており、そこでは室21,23からの大き
な質量速度のガス化剤の噴射を受け、流動化され上方に
吹き上げられる。こうして裾の流動媒体が除かれるで、
室22の直上の流動媒体の層は自重で降下する。この層の
上方には、後述のごとく旋回流を伴う流動層35からの流
動媒体が補給される。これを繰り返して室22の上方の流
動媒体は、弱い流動状態の下降移動層34を形成する。室
21,23上に移動した流動媒体は流動化され上方に吹き上
げられるが、傾斜壁24により反射転回して炉の中央に向
いて旋回し、前述の下降移動層34の頂部に移動し、徐々
に降下し、移動層34の裾に至つて流動化され再び吹き上
がつて循環する。一部の流動媒体は、旋回流として流動
層35の中で旋回循環する。
The principle of the gasifier 3 will be described. In a normal fluidized bed, the fluidized medium forms a vigorous fluidized state, such as boiling water, while the fluidized medium above chamber 22 forms a weakly fluidized moving bed. The width of the moving layer 34 is narrow at the top, but slightly wider at the bottom due to the effect of the inclination of the dispersing plate 20, where the injection of the gasifier with a high mass velocity from the chambers 21 and 23 is performed. The fluid is fluidized and blown up. This removes the fluid medium at the bottom,
The bed of fluidized medium immediately above chamber 22 descends under its own weight. Above this layer, a fluid medium from a fluidized bed 35 with a swirling flow is supplied as described later. By repeating this, the flowing medium above the chamber 22 forms the downward moving layer 34 in a weak flowing state. Room
The fluid medium that has moved above the fluidizers 21 and 23 is fluidized and blown up.However, the fluid medium is reflected and turned by the inclined wall 24, turns toward the center of the furnace, and moves to the top of the descending moving bed 34 described above, gradually It descends, reaches the bottom of the moving bed 34, is fluidized, blows up again, and circulates. Some of the fluid medium circulates in the fluidized bed 35 as a swirling flow.

このような流動状態のガス化炉3に、石炭投入口28か
ら投入された石炭は、下降移動層34の頂部に落下する。
ここでは流動媒体は側縁部から中央に向かつて流れてい
るので、石炭はこの流れに巻き込まれて下降移動層34の
頂部に容易にもぐり込む。従つて、粒径の細かいものま
でも下降移動層34の中に入り込むことが出来るので、従
来の流動層におけるごとく、スクリユーフイーダにより
流動層内に直接供給するような機械的トラブルを招き易
い方法を採らなくて済む。また活発な流動化により、生
成ガスに同伴して未反応のまま炉外へ飛散するようなこ
とをかなり防ぐことができる。
The coal charged into the gasification furnace 3 in such a flowing state from the coal charging port 28 falls to the top of the descending moving bed 34.
Here, the flowing medium flows from the side edge toward the center, so that the coal is entrained in this flow and easily penetrates into the top of the descending moving bed 34. Therefore, since even fine particles can enter the descending moving bed 34, mechanical troubles such as feeding directly into the fluidized bed by the screw feeder as in the conventional fluidized bed are likely to occur. You don't have to take a method. In addition, the active fluidization can considerably prevent the unreacted particles from being scattered outside the furnace together with the generated gas.

下降移動層34の中では、石炭の乾留反応が主体的に、
ガス化反応が部分的に行なわれ、ガスとチヤーが生成す
る。ここで生成したガスは上方または水平方向に抜け、
チヤーは流動媒体と共に両側縁部の流動層部35へと移動
し、流動化ガスとして供給された酸素とスチームの混合
ガスからなるガス化剤と、部分燃焼をともなうガス化反
応を引き起こす。下降移動層34の中で生成するガスは、
ガス化剤の質量速度が小さいので、燃焼による損失を減
らすことができる。下降移動層34と流動層35において生
成したガスは、層上方のフリーボード部29にて混合し、
高温雰囲気下でさらにガス化反応が進行する。下降移動
層34は、流動化が比較的穏やかなので、生成したチヤー
のうち粒径がかなり細かいものでも、通常の流動層のよ
うにガス化されずに飛散するようなことは起らない。例
え一部が飛散しても、炉外でサイクロン4により捕集し
て、再度炉に戻せば、比較的容易にガス化することが可
能である。このように本ガス化炉では、前述した二段ガ
ス化ときわめて類似した反応が、移動層34と流動層35に
分かれて起きている。
In the descending moving bed 34, the carbonization reaction of coal is predominant,
The gasification reaction is partially performed, producing gas and char. The gas generated here escapes upward or horizontally,
The char moves together with the fluidized medium to the fluidized bed 35 on both side edges, and causes a gasification reaction with partial combustion with a gasifying agent comprising a mixed gas of oxygen and steam supplied as a fluidizing gas. The gas generated in the descending moving bed 34 is
Since the mass velocity of the gasifying agent is small, the loss due to combustion can be reduced. The gas generated in the descending moving bed 34 and the fluidized bed 35 is mixed in the freeboard section 29 above the bed,
The gasification reaction further proceeds in a high temperature atmosphere. Since the fluidization of the descending moving bed 34 is relatively gentle, even if the generated particles have a considerably small particle size, they do not scatter without being gasified as in a normal fluidized bed. Even if a part is scattered, if it is collected by the cyclone 4 outside the furnace and returned to the furnace again, it can be relatively easily gasified. As described above, in the present gasifier, a reaction very similar to the two-stage gasification described above occurs separately in the moving bed 34 and the fluidized bed 35.

下降移動層34に数10mm程度の大きな石炭を落下せしめ
て供給した場合、これは瞬時に室22の上まで落下するの
ではなく、下降移動層34の流動媒体の流れと共に徐々に
降下する。さらに下降移動層34と流動層35を隔てる仕切
り壁がないので、粒径の大きな石炭でも仕切り壁へ引つ
かからずに、下降移動層34から流動層35への移動を円滑
に行なうことができ、また流動媒体の流れを阻害するこ
ともない。
When a large coal of about several tens of mm is dropped and supplied to the descending moving bed 34, the coal does not fall instantly onto the chamber 22, but gradually descends with the flow of the fluid medium in the descending moving bed 34. Furthermore, since there is no partition wall separating the descending moving bed 34 and the fluidized bed 35, even the coal having a large particle diameter can be smoothly moved from the descending moving bed 34 to the fluidized bed 35 without being attracted to the partition wall. Also, it does not hinder the flow of the fluid medium.

そのため石炭はかなり大きなものでも、下降移動層34
の中で徐々に下降しながら乾留が行なわれ、下降移動層
34の両端に達するころには大半が細片化したチヤーにな
るので、両側縁部の流動層35の形成を阻害することはな
い。従つて石炭はあらかじめ粉砕機等で破砕・整粒する
必要がなく、破砕設備一式を省略することができるのみ
ならず、破砕プロセスにおけるトラブルにより、ガス化
炉の運転に重大な支障を来すようなことを防ぐことがで
きる。また移動層34中における反応は、通常の流動層中
に比べれば穏やかに進行するので、大粒径の石炭を供給
しても急速なガス発生による圧力変動を生じたりはしな
い。このため本ガス化炉の運転操作はきわめて容易とな
る。
Therefore, even if the coal is quite large,
The carbonization is performed while gradually descending in the
By the time it reaches the both ends of 34, most of it will be in the form of fragmented char, so that it does not hinder the formation of the fluidized bed 35 on both side edges. Therefore, coal does not need to be crushed and sized in advance with a crusher or the like, and not only can the crushing equipment be omitted, but also trouble in the crushing process may cause serious problems in the operation of the gasifier. Can be prevented. Further, since the reaction in the moving bed 34 proceeds more smoothly than in a normal fluidized bed, even if coal having a large particle diameter is supplied, pressure fluctuation due to rapid gas generation does not occur. For this reason, the operation of the gasification furnace becomes extremely easy.

破砕設備が不要となるため、石炭のように簡単に破砕
できない廃木材などのバイオマス原料や廃プラスチツク
を、ガス化原料として利用することが可能となる。廃木
材は発生量に季節変動があるので、石炭と混合利用する
ことでガス化原料の多様化や原料コストの引き下げを図
ることが出来る。また破砕の困難な粗大不燃物を含むよ
うな、例えば現状では埋立て処分されている燃焼不適ご
みを、ガス化原料として用いることもできる。
Since crushing equipment is not required, biomass raw materials such as waste wood and waste plastic which cannot be easily crushed like coal can be used as gasification raw materials. Since the amount of waste wood generated varies seasonally, it is possible to diversify gasification raw materials and reduce raw material costs by mixing and using it with coal. Further, for example, unburnable waste that is currently disposed in landfill and that contains coarse incombustible materials that are difficult to crush can also be used as a gasification raw material.

ガス化炉の能力は下降移動層34の沈降速度で決まると
考えられる。発明者らの研究によれば、室22から噴出す
る流動化ガスの質量速度が小さすぎると、下降移動層34
は流動性を失つて堆積を生じ、逆に大きすぎると活発な
流動層となつて下降移動層34は形成されなくなる。この
間の質量速度では、室22への流動化ガス量を増大すれ
ば、下降移動層34は流動性を増して沈降速度は大とな
る。沈降速度が大であるということは、流動媒体の循環
量が大なることを意味し、ガス化能力が増大することに
なる。
It is considered that the capacity of the gasifier is determined by the settling speed of the descending moving bed. According to the study of the inventors, if the mass velocity of the fluidizing gas ejected from the chamber 22 is too low, the descending moving bed 34
Loses fluidity to cause accumulation, while if too large, it becomes an active fluidized bed and the downward moving layer 34 is not formed. At the mass velocity during this time, if the amount of the fluidizing gas to the chamber 22 is increased, the descending moving bed 34 increases the fluidity and the sedimentation velocity becomes large. A high sedimentation velocity means that the circulation amount of the fluid medium is large, and the gasification capacity is increased.

本ガス化炉では、炉内に仕切り板等の障害物が全くな
いことにより、点検、補修が著しく容易になる。また流
動層が保持されているガス化炉の水平面断面の形状が矩
形なので、異なる能力のガス化炉を設計するのに、同一
断面で幅のみを変えれば良く、設計或は製作が容易とな
る。発明者らの研究によれば、炉幅を大きく変えても流
動媒体の旋回効果はあまり変わらない。
In the present gasifier, inspection and repair become extremely easy because there are no obstacles such as partition plates in the furnace. Also, since the shape of the horizontal cross section of the gasification furnace holding the fluidized bed is rectangular, it is only necessary to change the width in the same cross section to design gasification furnaces with different capacities, making it easier to design or manufacture . According to the study by the inventors, even if the furnace width is largely changed, the swirling effect of the fluidized medium does not change much.

本発明により、次のごとき実用上極めて大なる効果を
有する、流動層ガス化方法及びガス化炉を提供すること
が出来る。
According to the present invention, it is possible to provide a fluidized-bed gasification method and a gasification furnace having the following extremely large practical effects.

粒径の大きな原料でも、移動層の中で速やかに拡散
し、十分なガス化効率を上げられるので、原料をあらか
じめ破砕・整粒する必要が無くなる。
Even a raw material having a large particle diameter can be quickly diffused in the moving bed and a sufficient gasification efficiency can be increased, so that it is not necessary to crush and size the raw material in advance.

原料の無破砕供給が可能となるため、破砕設備の一
切が不要となり、費用、手間およびスペース上有利にな
るばかりではなく、破砕プロセスにおけるトラブルに起
因して炉が停止する、などの炉の運転に対する重大な支
障が生ずるのを防ぐことが出来る。
Since the raw material can be supplied without crushing, all crushing equipment is not required, which not only saves cost, labor and space, but also operates the furnace such as shutting down the furnace due to trouble in the crushing process. It is possible to prevent the occurrence of a serious problem with respect to.

同じく、炉の上部より原料を落下させるので、従来
の流動層内に直接供給する方法に比べ、供給装置の機械
的トラブルを極力減らすことが出来る。
Similarly, since the raw material is dropped from the upper part of the furnace, the mechanical trouble of the supply device can be reduced as much as possible in comparison with the conventional method of directly supplying the fluidized bed.

同じく、用いる原料の歩留りを向上させることがで
きる。
Similarly, the yield of the raw materials used can be improved.

同じく、石炭と廃木材や廃プラスチツクとの混合利
用のようなやり方が可能となり、原料の多様化や原料コ
ストの引き下げが図れる。さらに破砕上問題になる不燃
物を含むようなものを、ガス化原料として用いることも
可能となる。
Similarly, it is possible to use a method of mixing coal with waste wood and waste plastic, thereby diversifying raw materials and reducing raw material costs. Further, it is possible to use a material containing incombustible substances which is a problem in crushing as a gasification raw material.

同じく、原料中に含まれる微粉の割合が減り、しか
も移動層の不活発な流動化の中で乾留による微粉化が行
なわれるので、飛散する未反応チヤーの量が少なく、従
つてガス化効率を高くできる。例え飛散しても、捕集し
た後の再ガス化が比較的容易であることもガス化効率の
向上につながる。
Similarly, since the ratio of fine powder contained in the raw material is reduced, and the fine powder is formed by dry distillation in the inactive fluidization of the moving bed, the amount of scattered unreacted char is small, and the gasification efficiency is accordingly reduced. Can be higher. Even if scattered, the relatively easy regasification after collection also leads to an improvement in gasification efficiency.

流動媒体の移動層における沈降速度を大となし、炉
内循環量を増し、ガス化容量の増大を図ることができ
る。また、移動層の沈降速度の制御幅を大きくすること
ができる。
The sedimentation velocity of the fluidized medium in the moving bed can be increased, the amount of circulation in the furnace can be increased, and the gasification capacity can be increased. Further, the control width of the settling speed of the moving bed can be increased.

移動層における反応は比較的穏やかなため、大粒径
の原料が投入されても、圧力変動は小さく、運転操作は
きわめて容易である。
Since the reaction in the moving bed is relatively mild, even if a raw material having a large particle diameter is charged, the pressure fluctuation is small, and the operation is extremely easy.

ガス化炉が一室で、しかも浅層の流動層であるた
め、炉高が低くなり、炉壁からの熱損失を小さく出来
る。また建設費上のメリツトも大きい。
Since the gasification furnace is a single chamber and has a shallow fluidized bed, the furnace height is reduced, and heat loss from the furnace wall can be reduced. The advantages of construction costs are also great.

流動媒体に珪砂を用いるため、層高が安定であり、
原料とガス化剤との接触も良好である。
Since silica sand is used as the fluid medium, the bed height is stable,
The contact between the raw material and the gasifying agent is also good.

流動層の平面形状が矩形で、炉を幅方向(第2図の
紙面に直角の方向)に延長することにより、流動層、移
動層の作動条件をあまり変えることなく一基の炉の容量
を増大することが出来る。
By extending the furnace in the width direction (perpendicular to the plane of FIG. 2), the fluidized bed is rectangular in shape, and the capacity of one furnace can be reduced without changing the operating conditions of the fluidized bed and moving bed. Can increase.

ガス分散機構が、中央部より両側縁部が低く形成さ
れているので、移動層の裾における流動媒体の移動が円
滑となり、流動媒体の循環を促進する。また、粗大な不
燃物の円滑な排出を可能とする。
Since the gas dispersing mechanism is formed so that both side edges are lower than the center, the movement of the fluid medium at the foot of the moving bed is smooth, and the circulation of the fluid medium is promoted. In addition, it enables smooth discharge of coarse incombustibles.

【図面の簡単な説明】[Brief description of the drawings]

第1図は石炭ガス化のフロー図、第2図は石炭ガス化炉
の断面図を示す。 1……サイロ、2……供給装置、3……ガス化炉、4…
…サイクロン、5……熱交換器、6……水洗浄塔、7…
…アルカリ洗浄塔、8……ガスホルダー、9……灰ホツ
パー、10……廃水処理設備、20……分散板、21,22,23…
…室、24……傾斜壁、25……傾斜壁、26……炉壁、27…
…天井壁、28……石炭投入口、29……フリーボード、30
……不燃物排出口、31……供給装置、32,33……スクリ
ユーコンベア、34……下降移動層、35……流動層、36…
…中心線。
FIG. 1 is a flow chart of coal gasification, and FIG. 2 is a sectional view of a coal gasification furnace. 1 ... silo, 2 ... supply device, 3 ... gasifier, 4 ...
... cyclone, 5 ... heat exchanger, 6 ... water washing tower, 7 ...
... Alkaline washing tower, 8 ... Gas holder, 9 ... Ash hopper, 10 ... Waste water treatment equipment, 20 ... Dispersion plate, 21,22,23 ...
… Room, 24 …… inclined wall, 25 …… inclined wall, 26 …… furnace wall, 27…
... Ceiling wall, 28 ... Coal inlet, 29 ... Free board, 30
…… Incombustibles outlet, 31… Supply device, 32,33… Screw conveyor, 34… Downward moving bed, 35 …… Fluidized bed, 36…
… Center line.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガス化炉の炉底部より上方に向けて噴出せ
しめた流動化ガスにより、流動媒体を流動化して形成せ
しめた流動層により、石炭等をガス化する流動層ガス化
方法において、 前記流動層は、水平面断面が矩形状の流動層室内に保持
され、前記流動化ガスは、中央部よりも両側縁部が低く
形成されているガス分散機構から噴出せしめられ、 前記炉底の中央部付近における流動化ガスの質量速度を
0.5〜3Gmfとし、該中央部の両側の両側縁部における流
動化ガス速度を4〜20Gmfとし、 該両側縁部の上方において、両側縁部の流動化ガスの上
向き流路をさえぎり、かつ炉の中央に向けて転向せし
め、 炉底の中央部には、流動媒体が沈降する移動層を形成
し、両側縁部には流動媒体が活発に流動化している両側
縁流動層を形成し、 前記流動媒体を、前記移動層内で沈降せしめ、該移動層
の下部で前記両側縁部に移行せしめ、前記両側縁流動層
内で上昇せしめ、該両側縁流動層上部で前記転向する流
動化ガスにより前記移動層の頂部に向けて転向せしめ
て、炉内を循環せしめつゝ前記移動層に石炭等を供給し
て該石炭等のガス化を行なわしめることを特徴とする流
動層ガス化方法。
1. A fluidized bed gasification method for gasifying coal or the like with a fluidized bed formed by fluidizing a fluidized medium with a fluidized gas ejected upward from the bottom of the gasification furnace, The fluidized bed is held in a fluidized-bed chamber having a rectangular cross section in a horizontal plane, and the fluidized gas is ejected from a gas dispersion mechanism having both side edges lower than a central portion, The mass velocity of the fluidizing gas near the
0.5 to 3 Gmf, the fluidizing gas velocity at both side edges on both sides of the central portion is 4 to 20 Gmf, and above the both side edges, the upward flow path of the fluidizing gas on both side edges is blocked, and Turning toward the center, forming a moving bed in which the fluidized medium settles at the center of the furnace bottom, and forming both-sided fluidized beds in which the fluidized medium is actively fluidizing at both side edges; The medium is allowed to settle in the moving bed, migrate to the side edges at the lower part of the moving bed, and rise in the both side fluidized beds, and the turning fluidizing gas is used at the upper part of the both side fluidized beds. A fluidized-bed gasification method, comprising turning coal toward the top of a moving bed and circulating it in a furnace to supply coal or the like to the moving bed and gasifying the coal or the like.
【請求項2】前記流動化ガスが、空気とスチームとの混
合物又は酸素とスチームとの混合物である特許請求の範
囲第1項記載の流動層ガス化方法。
2. The fluidized bed gasification method according to claim 1, wherein said fluidizing gas is a mixture of air and steam or a mixture of oxygen and steam.
【請求項3】前記流動媒体が、珪砂である特許請求の範
囲第1項記載の流動層ガス化方法。
3. The method for gasifying a fluidized bed according to claim 1, wherein said fluidized medium is silica sand.
【請求項4】炉内下部に、水平面断面が矩形状の流動層
室を備え、炉内底部に流動化ガス分散機構を備え、該分
散機構は、中央よりも両側縁部が低く形成されており、
該ガス分散機構のうち両側縁部における流動化ガス質量
速度を4〜20Gmfとし、中央部における流動化ガス質量
速度を0.5〜3Gmfとなるように構成し、前記両側縁部の
真上に流動化ガスの上向き流炉をさえぎり、流動化ガス
を炉内中央に向けて反射転向せしめる傾斜壁を備え、炉
内上部にガス化原料投入口が設けられていることを特徴
とする流動層ガス化炉。
4. A fluidized bed chamber having a rectangular cross section in a horizontal plane is provided at a lower portion in the furnace, and a fluidizing gas dispersion mechanism is provided at a bottom portion of the furnace, and the dispersion mechanism is formed so that both side edges are formed lower than the center. Yes,
The gas dispersing mechanism is configured such that the fluidized gas mass velocity at both side edges is 4 to 20 Gmf, and the fluidized gas mass velocity at the center is 0.5 to 3 Gmf, and the fluidization is performed just above the both side edges. A fluidized-bed gasification furnace comprising an inclined wall for intercepting an upward flow gas and redirecting the fluidized gas toward the center of the furnace, and a gasification material inlet at an upper part of the furnace. .
【請求項5】前記ガス分散機構の前記両側縁部に、灰分
の排出口が接続されている特許請求の範囲第4項記載の
流動層ガス化炉。
5. The fluidized-bed gasifier according to claim 4, wherein ash discharge ports are connected to the both side edges of the gas dispersion mechanism.
【請求項6】前記移動層部に接する炉壁に、ガス化生成
物であるチャーの供給口が接続されている特許請求の範
囲第4項記載の流動層ガス化炉。
6. The fluidized-bed gasification furnace according to claim 4, wherein a supply port for a char, which is a gasification product, is connected to a furnace wall in contact with said moving bed portion.
JP63299550A 1988-11-29 1988-11-29 Fluidized bed gasification method and fluidized bed gasification furnace Expired - Lifetime JP2573046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63299550A JP2573046B2 (en) 1988-11-29 1988-11-29 Fluidized bed gasification method and fluidized bed gasification furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63299550A JP2573046B2 (en) 1988-11-29 1988-11-29 Fluidized bed gasification method and fluidized bed gasification furnace

Publications (2)

Publication Number Publication Date
JPH02147692A JPH02147692A (en) 1990-06-06
JP2573046B2 true JP2573046B2 (en) 1997-01-16

Family

ID=17874069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63299550A Expired - Lifetime JP2573046B2 (en) 1988-11-29 1988-11-29 Fluidized bed gasification method and fluidized bed gasification furnace

Country Status (1)

Country Link
JP (1) JP2573046B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3153091B2 (en) * 1994-03-10 2001-04-03 株式会社荏原製作所 Waste treatment method and gasification and melting and combustion equipment
US5922090A (en) * 1994-03-10 1999-07-13 Ebara Corporation Method and apparatus for treating wastes by gasification
KR100445363B1 (en) * 1995-11-28 2004-11-03 가부시키 가이샤 에바라 세이사꾸쇼 Waste treatment apparatus and method through vaporization
US6902711B1 (en) 1996-04-23 2005-06-07 Ebara Corporation Apparatus for treating wastes by gasification
US5980858A (en) 1996-04-23 1999-11-09 Ebara Corporation Method for treating wastes by gasification
US5900224A (en) * 1996-04-23 1999-05-04 Ebara Corporation Method for treating wastes by gasification
JP4076233B2 (en) 1996-06-25 2008-04-16 株式会社荏原製作所 Method and apparatus for gasification and melting treatment of solid waste
US7285144B2 (en) 1997-11-04 2007-10-23 Ebara Corporation Fluidized-bed gasification and combustion furnace
WO1999031202A1 (en) 1997-12-18 1999-06-24 Ebara Corporation Fuel gasifying system
JP2004212032A (en) * 2002-11-15 2004-07-29 Ebara Corp Fluidized bed gasification furnace
JP2005314549A (en) * 2004-04-28 2005-11-10 Ishikawajima Harima Heavy Ind Co Ltd Gasification furnace apparatus
EP2123978A1 (en) * 2008-05-23 2009-11-25 Alstom Technology Ltd Process for using a facility for combusting carbonaceous materials and relating facility

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833451B2 (en) * 1979-09-11 1983-07-20 株式会社荏原製作所 Fluidized bed thermal reactor
JPS5794095A (en) * 1980-12-04 1982-06-11 Mitsubishi Heavy Ind Ltd Fluidized bed gasification furnace

Also Published As

Publication number Publication date
JPH02147692A (en) 1990-06-06

Similar Documents

Publication Publication Date Title
AU2011336788B2 (en) Method and apparatus for particle recycling in multiphase chemical reactors
JP4454045B2 (en) Swivel melting furnace and two-stage gasifier
US5154732A (en) Apparatus for gasifying or combusting solid carbonaceous
CN100577775C (en) Coal gasification device for circulating fluidized bed and manufacturing method thereof
US3981690A (en) Agglomerating combustor-gasifier method and apparatus for coal gasification
US5243922A (en) Advanced staged combustion system for power generation from coal
US4165717A (en) Process for burning carbonaceous materials
JP2573046B2 (en) Fluidized bed gasification method and fluidized bed gasification furnace
US3957458A (en) Gasifying coal or coke and discharging slag frit
EP0007807A1 (en) A method of gasifying an ash-containing fuel in a fluidized bed
JP6594206B2 (en) Second stage gasifier in staged gasification
US4085707A (en) Combustion or part-combustion in fluidized beds
EA017334B1 (en) Method and device for the entrained-flow gasification of solid fuels under pressure
US3840353A (en) Process for gasifying granulated carbonaceous fuel
Hamel et al. Autothermal two-stage gasification of low-density waste-derived fuels
KR850000823B1 (en) Method for producing molten iron from iron oxide with coal & oxygen
CN201046952Y (en) Circulating fluidized bed gasification apparatus
US4969404A (en) Ash classifier-cooler-combustor
US3171369A (en) Combustion of carbonaceous solids
US3957457A (en) Gasifying coal or coke and discharging ash agglomerates
US3968052A (en) Synthesis gas manufacture
Kikuchi et al. Ash-agglomerating gasification of coal in a spouted bed reactor
US3437561A (en) Agglomerating coal hydrocarbonization process
US4680035A (en) Two stage slagging gasifier
JP3938981B2 (en) Gas recycling method for waste gasification

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13