JP2572637B2 - Configuration of Optical Distance Sensor for Surface Condition Detection - Google Patents

Configuration of Optical Distance Sensor for Surface Condition Detection

Info

Publication number
JP2572637B2
JP2572637B2 JP18778688A JP18778688A JP2572637B2 JP 2572637 B2 JP2572637 B2 JP 2572637B2 JP 18778688 A JP18778688 A JP 18778688A JP 18778688 A JP18778688 A JP 18778688A JP 2572637 B2 JP2572637 B2 JP 2572637B2
Authority
JP
Japan
Prior art keywords
detecting
distance sensor
cylindrical surface
optical distance
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18778688A
Other languages
Japanese (ja)
Other versions
JPH0238806A (en
Inventor
正徳 出澤
源一郎 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP18778688A priority Critical patent/JP2572637B2/en
Publication of JPH0238806A publication Critical patent/JPH0238806A/en
Application granted granted Critical
Publication of JP2572637B2 publication Critical patent/JP2572637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、対象物表面までの距離を検出するための光
学的な距離検出装置に係わり、特に、対象物表面の傾
斜、凹凸、縁、稜線などを検出したり、追跡したりする
のに好適な光学的距離検出センサの構成に関する。
Description: TECHNICAL FIELD The present invention relates to an optical distance detecting device for detecting a distance to a surface of an object, and more particularly to an inclination, unevenness, edge, and the like of the surface of the object. The present invention relates to a configuration of an optical distance detection sensor suitable for detecting or tracking a ridge line or the like.

(従来の技術) 光学的な距離検出には、対象物表面上に光ビームを投
射して生成された輝点像位置を像位置検出手段で検出
し、3角測量の原理に基づいて、輝点の3次元位置を確
定する方法が広く用いられている。光ビーム投射方向へ
の距離を検出する点計測型の距離センサ、また、スリッ
ト光を投射して輝線に沿った距離情報、すなわち断面形
状を取得する光切断法、さらに、格子点状あるいは円環
状の光を投射し、観測される格子点状あるいは円環状パ
ターンのひずみ等の状態から、対象物表面の傾斜、投
射、エッジなどの情報を抽出する方法などが試みられて
いる。
(Prior Art) For optical distance detection, a bright spot image position generated by projecting a light beam on the surface of an object is detected by an image position detecting means, and a bright spot image is detected based on the principle of triangulation. A method for determining a three-dimensional position of a point is widely used. A point measurement type distance sensor that detects the distance in the light beam projection direction, a light cutting method that obtains distance information along the bright line by projecting slit light, that is, a light-section method that obtains a cross-sectional shape, and a lattice point or ring shape A method of projecting such light and extracting information on the inclination, projection, edge, and the like of the surface of the target object from the state of the observed lattice point or annular pattern distortion or the like has been attempted.

(発明が解決しようとする課題) 従来から広く使用されている点計測型の距離検出セン
サを用いて傾斜やエッジなど対象物表面状態を検出する
には、距離センサの機械的移動が必要とされ、対象物の
表面の特徴抽出、追跡などの高速化が困難である。光切
断法では、1個のスリット走査で断面形状が得られるも
のの、特徴抽出特性に方向性があり、追跡にはセンサの
回転等が必要とされる。円環状光あるいは格子点状光の
投射パターンのひずみ観測によるものでは画像処理が必
要とされ、高速化に不利である。また、円環状光を投射
し、一度に全角方向にわたる距離情報を取得する新たな
センサも提案されているが、このセンサも光量不足を生
じたり、角度方向の分解能の向上が困難である。
(Problems to be Solved by the Invention) In order to detect a surface state of an object such as an inclination or an edge using a point measurement type distance detection sensor which has been widely used conventionally, mechanical movement of the distance sensor is required. However, it is difficult to speed up the extraction and tracking of the features of the surface of the object. In the light cutting method, although a cross-sectional shape can be obtained by one slit scan, the feature extraction characteristic has directionality, and tracking requires rotation of a sensor or the like. Image processing is required for observing distortion of the projected pattern of annular light or lattice point light, which is disadvantageous in increasing the speed. In addition, a new sensor that projects an annular light and obtains distance information in all directions at once has been proposed. However, this sensor also has a shortage of light amount and it is difficult to improve the resolution in the angle direction.

(課題を解決するための手段) 上記の課題を解決し、対象物表面の傾斜、エッジの状
態などを高速に抽出でき、しかも等方向の検出特性を得
るために、本発明では、光ビームを走査円筒面母線に沿
って対象物面上に投射し、この対象物面上に輝点を生成
する光ビーム走査投射手段、および前記走査円筒面の中
心軸に垂直であり互いに直交する2軸方向に対する前記
輝点の方位を検出する標点方位検出手段を設けることに
より、光学的距離検出センサを構成したことを特徴とす
る。
(Means for Solving the Problems) In order to solve the above-mentioned problems, it is possible to extract the inclination of the surface of the object, the state of the edge, and the like at a high speed, and to obtain a detection characteristic in an isotropic direction. A light beam scanning and projecting means for projecting onto a target object surface along a scanning cylindrical surface generating line and generating a luminescent spot on the target object surface, and two axial directions perpendicular to the center axis of the scanning cylindrical surface and orthogonal to each other An optical distance detection sensor is provided by providing a target point direction detecting means for detecting the direction of the bright point with respect to.

(作 用) 光ビーム走査投射手段により、光ビームはその通過軌
跡が円筒面(走査円筒面)を構成するように走査され、
対象物表面と走査円筒面との交差部として与えられる円
環状の対象物表面上に輝点が順次投射生成される。前記
走査円筒面の中心軸に垂直な平面内の互いに直交する2
軸方向に対する輝点の方位が標点方位検出手段により検
出される。
(Operation) The light beam is scanned by the light beam scanning and projecting means so that its passing locus forms a cylindrical surface (scanning cylindrical surface).
Bright spots are sequentially projected and generated on an annular object surface provided as an intersection between the object surface and the scanning cylindrical surface. Two orthogonal to each other in a plane perpendicular to the central axis of the scanning cylindrical surface;
The azimuth of the luminescent spot with respect to the axial direction is detected by the reference point azimuth detecting means.

(発明の効果) 本発明によれば、対象物表面上の注目点の周囲の円環
状の軌道に沿った距離情報を高速に取得できる。検出特
性に方向性を有さない。プローブ光としてビーム光が使
用されるので、光量不足の問題を生じない。光ビームを
走査円筒面に沿って順次走査するので、角度方向の分解
能が向上する等の利点を得ることができる。従って、物
体表面の傾斜やエッジなど、あるいはその方向などの特
徴を、その向きに影響されず等方的な検出特性で抽出で
き、対象物表面の追跡などに適した距離センサを実現で
きる。
(Effect of the Invention) According to the present invention, distance information along an annular trajectory around a point of interest on the surface of an object can be acquired at high speed. Has no directivity in detection characteristics. Since the beam light is used as the probe light, the problem of insufficient light quantity does not occur. Since the light beam is sequentially scanned along the scanning cylindrical surface, advantages such as improvement in resolution in the angular direction can be obtained. Therefore, features such as the inclination and edge of the object surface and the direction thereof can be extracted with isotropic detection characteristics without being affected by the direction, and a distance sensor suitable for tracking the surface of the object can be realized.

(実施例) 以下、本発明の実施例を図面を参照しつつ詳細に説明
する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1A図および第1B図は本発明に基づいた表面状態検出
用光学的距離センサの構成の一実施例のそれぞれ平面図
および側面図である。レーザーダイオード等から構成さ
れる光源Sからの光ビームBは、光ビーム走査手段SB
より、半径rの走査円筒面の母線の方向に投射され、走
査円筒面に沿って回転走査される。光ビーム走査手段SB
の具体的な構成は第4図および第5図を参考して以下に
おいて詳述されるが、例えば、距離センサの中心軸AX
および半径rの位置に鏡MAMRを配置し、これらを中心軸
AXの周りに回転すればよい。この様にして走査円筒面母
線に沿って投射された光ビームB,B′,B″により、対象
物O表面上の輝点T,T′,T″が生成される。距離センサ
中心軸AXの周囲に配置された複数の1次元標点方位検出
器Dにより、輝点Tのx方向xmおよびy方向方位ymが検
出される。
1A and 1B are a plan view and a side view, respectively, of an embodiment of the configuration of an optical distance sensor for detecting a surface state according to the present invention. Light beam B from the configured source S from a laser diode or the like, the light beam scanning unit S B, is projected in the direction of the generatrix of the scanning cylindrical surface of radius r, is rotated scanned along the scan cylindrical surface. Light beam scanning means S B
Specific configuration of is detailed below with reference to FIGS. 4 and 5, for example, a mirror M A M R is disposed at a position of the central axis A X and on the radius r of the distance sensor, These are the central axes
All you have to do is rotate around A X. The light spots T, T ', T "on the surface of the object O are generated by the light beams B, B', B" projected along the scanning cylindrical surface generating line. The distance sensor central axis A X plurality of one-dimensional gauge azimuth detector D disposed around the, x-direction x m and y-direction orientation y m of bright point T is detected.

輝点Tの3次元座標値(x,y,z)と、1次元標点方位
検出器Dにより検出されるx方向方位xmおよびy方向方
位ymとの間に次の関係が成り立つ。
3-dimensional coordinate value of the bright point T and (x, y, z), the following relationship between the x-direction orientation x m and y-direction orientation y m which is detected by the 1-dimensional gauge azimuth detector D is satisfied.

輝点のz方向位置は(1)式を変形し、θを消去する
ことにより、次式で算出できる。
The position of the bright point in the z direction can be calculated by the following equation by modifying equation (1) and eliminating θ.

z=ar/(xm 2+ym 21/2 …(3) この(3)式のzの値を(2)式に代入して、輝点の
x座標値、y座標値を定めることができる。
z = ar / (x m 2 + y m 2 ) 1/2 (3) The x value and the y coordinate value of the luminescent spot are determined by substituting the value of z in the expression (3) into the expression (2). be able to.

これらの演算は、1次元標点方位検出器Dからの出力
信号の値xm、ymをアナログ・デジタル変換してコンピュ
ータに入力し実行することができる。また、xm、ymがア
ナログ信号として得られる場合、これらの演算は、アナ
ログ演算回路を用いることによっても実行することがで
きる。そのための演算回路のブロック図の一例を第3図
に示した。アナログ演算回路を用いることによって高速
かつ連続的に実行することができる。
These operations can be executed by converting the values x m and y m of the output signal from the one-dimensional target direction detector D from analog to digital and inputting them to a computer. When x m and y m are obtained as analog signals, these operations can also be performed by using an analog operation circuit. An example of a block diagram of an arithmetic circuit for that purpose is shown in FIG. High-speed and continuous execution can be achieved by using an analog arithmetic circuit.

1次元標点方位検出器Dからの出力xm、ymは乗算器X
により乗算される。この乗算結果xm 2、ym 2は加算器Σに
より加算された後、平方根演算器 によって平方根が求められる。これによって求められた
平方根の値は、割り算器÷に入力され、走査円筒面の半
径rを割る除数として用いられる。割り算器÷からの出
力は係数器aに入力されて、距離zが求められると共
に、1次元標点方位検出器Dからの出力xm、ymと乗算さ
れてx、yが算出される。
Outputs x m and y m from the one-dimensional target direction detector D are multipliers X
Is multiplied by After the multiplication results x m 2 and y m 2 are added by the adder 、, the square root calculator Gives the square root. The value of the square root thus obtained is input to the divider ÷ and used as a divisor for dividing the radius r of the scanning cylindrical surface. The output from the divider ÷ is input to a coefficient unit a, where the distance z is obtained, and is multiplied by the outputs x m and y m from the one-dimensional target direction detector D to calculate x and y.

1次元標点方位検出器Dとしては円筒レンズと1次元
像位置検出素子(ラインセンサ)とを組合せた構造のも
のを用いることができる。特に、撮像レンズと1次元像
位置検出素子との間に平行平面鏡を配置した構造の1次
元標点方位検出器(特願昭61−194743号)を使用するこ
とにより、本発明に基づいた光学的距離センサを著しく
小型化することができる。なお、第1A図および第1B図で
は、1次元標点方位検出器Dを投射光ビームBが描く円
筒面(走査円筒面)の外側に配置しているが、走査円筒
面の内側に配置されてもよい。さらに、複数の1次元標
点方位検出器の代わりに、2次元的標点方位検出器をそ
の検出器検出中心が、記走査円筒面内に配置する構成も
採りうる。
As the one-dimensional target direction detector D, one having a structure in which a cylindrical lens and a one-dimensional image position detecting element (line sensor) are combined can be used. In particular, by using a one-dimensional target direction detector (Japanese Patent Application No. 61-194743) having a structure in which a parallel plane mirror is arranged between an imaging lens and a one-dimensional image position detecting element, an optical system based on the present invention is provided. The distance sensor can be significantly reduced in size. In FIGS. 1A and 1B, the one-dimensional target direction detector D is arranged outside the cylindrical surface (scanning cylindrical surface) drawn by the projection light beam B, but is arranged inside the scanning cylindrical surface. You may. Further, instead of a plurality of one-dimensional target direction detectors, a configuration may be adopted in which a two-dimensional target direction detector is arranged such that the detection center of the two-dimensional target direction detector is located within the scanning cylindrical plane.

第2A図およひ第2B図は、この2次元的標点方位検出器
を用いた場合の表面状態検出用光学的距離センサの構成
を示すそれぞれ平面図および側面図である。2次元的標
点方位検出器D2は2次元的半導体像位置検出器(エリア
センサ)および撮像光学系(レンズ)によって構成され
る。標点方位検出手段以外の他の構成は第1A図および第
1B図に示された構成と同一であり、同様にして対象物O
上に形成された輝点Tのx方向方位xmおよびy方向方位
ymが単一の2次元的標点方位検出器D2により検出され
る。
FIG. 2A and FIG. 2B are a plan view and a side view, respectively, showing the configuration of an optical distance sensor for detecting a surface state when the two-dimensional target direction detector is used. 2-dimensional gauge azimuth detector D 2 is constituted by two-dimensional semiconductor image position detector (area sensor) and the imaging optical system (lens). 1A and FIG.
The configuration is the same as that shown in FIG.
X-direction orientation x m and y directions azimuth of the bright point T formed on
y m is detected by a single two-dimensional target direction detector D 2 .

第4図および第5図に、本発明において用いられる光
ビーム走査手段SBの具体的な構成例を示す。
In FIGS. 4 and 5 illustrates a specific configuration example of a light beam scanning means S B used in the present invention.

第4図に示される光ビーム走査手段SBは、距離センサ
中心軸AX上と、光ビーム投射円筒面の位置に鏡MAとM
Rを、それらが互いに平行になるように配置し、これら
を距離センサ回転軸AXの中心軸上で回転させる構造を有
している。なお、光ビーム投射面の位置に平行鏡MRの代
わりに適当な凹面鏡を配置し、投射ビームを収束させる
ようにすることによって、対象物表面上によりシャープ
な輝点を形成することが可能となる。
Light beam scanning means S B shown in Fig. 4, and the distance sensor central axis A X, the mirror in the position of the light beam projected cylindrical surface M A and M
The R, arranged so that they are parallel to each other, has a structure to rotate on the center axis of the distance sensors rotation axis A X. Incidentally, a suitable concave mirror instead of parallel mirrors M R to the position of the light beam projection plane arranged by so as to converge the incident beam, the upper surface of the object is possible to form a sharp bright spot Become.

第5図に示される光ビーム走査手段SBは、光ビーム投
射円筒面の位置に全周に亘る円錐面鏡MCを固定配置し、
中心軸上の鏡MBのみを回転する構成を有しており、可動
部の慣性を低減でき、高速応答の可能な走査を実現でき
る。
Light beam scanning means S B shown in Fig. 5, a conical surface mirror M C over the entire circumference at the position of the light beam projected cylindrical surface fixedly arranged,
Only mirror M B on the central axis has a structure for rotating a can reduce the inertia of the moving parts, it can be realized a possible scanning speed response.

【図面の簡単な説明】[Brief description of the drawings]

第1A図および第1B図は、1次元標点方位検出器を用いた
場合の本発明に基づく表面状態検出器用光学的距離検出
器センサの構成を示すそれぞれ平面図および側面図、 第2A図および第2B図は、2次元標点方位検出器を用いた
場合の本発明に基づく表面状態検出器用光学的距離検出
器センサの構成を示すそれぞれ平面図および側面図、 第3図は、本発明によって得られる輝点の方位信号から
輝点の位置を算出するアナログ演算回路のブロック図、 第4図および第5図は本発明に用いられる光ビーム走査
手段の具体的構成例を示す斜視図。 (符号の説明) S……光源、 B,B′,B″……光ビーム、 SB……光ビーム走査手段、 T,T′,T″……輝点、 D……1次元標点方位検出器、 I……輝点像、 xm……x方向検出方位、 ym……y方向検出方位、 r……走査円筒面半径、 a……1次元標点方位検出器節点と像面との距離、 O……対象物、 AX……円筒面中心軸、 x,y,z……3次元座標値、 D2……2次元的標点方位検出器、 ×……乗算器、 Σ……加算器、 ÷……割算器、 a……係数器、 MA,MR……鏡、 MC……円錐面鏡。
FIGS. 1A and 1B are a plan view and a side view, respectively, showing the configuration of an optical distance detector sensor for a surface state detector based on the present invention when a one-dimensional gauge azimuth detector is used. FIG. 2B is a plan view and a side view showing the configuration of an optical distance detector sensor for a surface state detector based on the present invention when a two-dimensional target direction detector is used, and FIG. FIG. 4 is a block diagram of an analog arithmetic circuit for calculating the position of a luminescent spot from the obtained azimuth signal of the luminescent spot. FIGS. 4 and 5 are perspective views showing a specific configuration example of a light beam scanning means used in the present invention. (Reference Numerals) S ...... source, B, B ', B " ...... light beam, S B ...... light beam scanning unit, T, T', T" ...... bright spots, D ...... 1 dimensional gauge azimuth detector, I ...... luminescent spot image, x m ...... x direction detecting orientation, y m ...... y direction detecting azimuth, r ...... scan cylindrical surface radius, a ...... 1 dimensional gauge azimuth detector nodes and image Distance from the surface, O: object, A X: central axis of cylindrical surface, x, y, z: three-dimensional coordinate value, D 2: two-dimensional target point direction detector, ×: multiplier , Σ …… Adder, ÷ …… Divider, a… Coefficient unit, M A , M R … Mirror, M C … Conical mirror.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光ビームを走査円筒面の母線方向に沿って
対象物体面上に投射し、対象物体面上に輝点を生成する
光ビーム走査投射手段、および 前記走査円筒面の中心軸に垂直な平面内の互いに直交す
る2軸方向に対する前記輝点の方位を検出する標点方位
検出手段を備えたことを特徴とする対象物の表面状態検
出用光学的距離センサの構成。
1. A light beam scanning and projecting means for projecting a light beam on a target object surface along a generatrix direction of a scanning cylindrical surface to generate a bright spot on the target object surface, and A configuration of an optical distance sensor for detecting a surface state of an object, comprising: a reference point direction detecting means for detecting a direction of the bright spot with respect to two axial directions orthogonal to each other in a vertical plane.
【請求項2】前記標点方位検出手段が、前記走査円筒面
中心軸の周囲に配置され、それぞれの方位検出方向が、
前記走査円筒面中心軸に垂直で互いに直交する軸方向と
された複数の1次元標点方位検出手段であることを特徴
とする請求項(1)記載の表面状態検出用光学的距離セ
ンサの構成。
2. A method according to claim 1, wherein said reference point azimuth detecting means is arranged around a central axis of said scanning cylindrical surface, and each azimuth detecting direction is:
2. A configuration of an optical distance sensor for detecting a surface state according to claim 1, further comprising a plurality of one-dimensional reference point azimuth detecting means arranged in a direction perpendicular to the center axis of the scanning cylindrical surface and orthogonal to each other. .
【請求項3】前記標点方位検出手段が、前記走査円筒面
中心軸上に検出中心を有し、互いに直交する軸方向に対
する輝点方位を検出する2次元的標点方位検出手段であ
ることを特徴とする請求項(1)記載の表面状態検出用
光学的距離センサの構成。
3. The two-dimensional target point direction detecting means having a detection center on the central axis of the scanning cylindrical surface and detecting the direction of a bright point with respect to an axial direction orthogonal to each other. The structure of the optical distance sensor for detecting a surface state according to claim 1, wherein:
JP18778688A 1988-07-27 1988-07-27 Configuration of Optical Distance Sensor for Surface Condition Detection Expired - Fee Related JP2572637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18778688A JP2572637B2 (en) 1988-07-27 1988-07-27 Configuration of Optical Distance Sensor for Surface Condition Detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18778688A JP2572637B2 (en) 1988-07-27 1988-07-27 Configuration of Optical Distance Sensor for Surface Condition Detection

Publications (2)

Publication Number Publication Date
JPH0238806A JPH0238806A (en) 1990-02-08
JP2572637B2 true JP2572637B2 (en) 1997-01-16

Family

ID=16212201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18778688A Expired - Fee Related JP2572637B2 (en) 1988-07-27 1988-07-27 Configuration of Optical Distance Sensor for Surface Condition Detection

Country Status (1)

Country Link
JP (1) JP2572637B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089927A (en) * 2009-10-23 2011-05-06 Fujitsu Ltd Optical scanning apparatus and optical scanning method
CN107084674A (en) * 2017-05-03 2017-08-22 中国航空工业集团公司北京航空精密机械研究所 The method that the shoot laser beam of adjustment laser displacement sensor passes through the centre of gyration

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5539822B2 (en) * 2010-09-16 2014-07-02 山九株式会社 Circular flange strain amount measuring method and circular flange strain amount measuring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089927A (en) * 2009-10-23 2011-05-06 Fujitsu Ltd Optical scanning apparatus and optical scanning method
CN107084674A (en) * 2017-05-03 2017-08-22 中国航空工业集团公司北京航空精密机械研究所 The method that the shoot laser beam of adjustment laser displacement sensor passes through the centre of gyration
CN107084674B (en) * 2017-05-03 2019-08-09 中国航空工业集团公司北京航空精密机械研究所 The method that the shoot laser beam of adjustment laser displacement sensor passes through the centre of gyration

Also Published As

Publication number Publication date
JPH0238806A (en) 1990-02-08

Similar Documents

Publication Publication Date Title
US6128086A (en) Scanning arrangement and method
US6256099B1 (en) Methods and system for measuring three dimensional spatial coordinates and for external camera calibration necessary for that measurement
JP2669223B2 (en) Optical sensor device for rendezvous docking
US5757478A (en) Remote position sensing apparatus and method
CN102538679A (en) Image correlation displacement sensor
US4787748A (en) Synchronous optical scanning apparatus
JP2572637B2 (en) Configuration of Optical Distance Sensor for Surface Condition Detection
JPH05135155A (en) Three-dimensional model constitution device using successive silhouette image
Araki et al. High speed and continuous rangefinding system
JP2650281B2 (en) Surface shape measurement method by scanning electron microscope
JPH0612252B2 (en) Automatic three-dimensional shape measurement method
JPH05164519A (en) Measuring instrument for three-dimensional shape of structure surrounding railroad track
JPH0337513A (en) Three-dimensional position/speed measuring apparatus
JP3633675B2 (en) 3D shape identification method
JP3396949B2 (en) Method and apparatus for measuring three-dimensional shape
JP3396950B2 (en) Method and apparatus for measuring three-dimensional shape
RU2021623C1 (en) Specklegram processing method
JPH06186035A (en) Three-dimenisonal position measuring system
JPS6189504A (en) Measuring device of body shape of 3-dimensional body
JPH0524591A (en) Measuring method for airframe position of vertical take-off and landing aircraft
JPH10185515A (en) Coil position detector
JPH06180216A (en) Parts position/attitude measuring instrument
JPH0690031B2 (en) Configuration of non-contact optical distance detection probe
JPS6180008A (en) Shape measuring apparatus
CN116164669A (en) Three-dimensional scanner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees