JP2570718Y2 - Vacuum insulation structure - Google Patents

Vacuum insulation structure

Info

Publication number
JP2570718Y2
JP2570718Y2 JP1990129840U JP12984090U JP2570718Y2 JP 2570718 Y2 JP2570718 Y2 JP 2570718Y2 JP 1990129840 U JP1990129840 U JP 1990129840U JP 12984090 U JP12984090 U JP 12984090U JP 2570718 Y2 JP2570718 Y2 JP 2570718Y2
Authority
JP
Japan
Prior art keywords
support member
spring
heat insulating
heat
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1990129840U
Other languages
Japanese (ja)
Other versions
JPH0484968U (en
Inventor
忠雄 山路
洋 山崎
茂 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP1990129840U priority Critical patent/JP2570718Y2/en
Publication of JPH0484968U publication Critical patent/JPH0484968U/ja
Application granted granted Critical
Publication of JP2570718Y2 publication Critical patent/JP2570718Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Packages (AREA)
  • Thermal Insulation (AREA)
  • Pressure Vessels And Lids Thereof (AREA)
  • Thermally Insulated Containers For Foods (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は極低温用真空断熱容器などで使用される真空
断熱材の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Industrial Field of the Invention The present invention relates to the structure of a vacuum heat insulating material used in a vacuum heat insulating container for cryogenic use.

従来の技術 極低温用真空断熱容器などにあっては、真空断熱部を
高真空としているが、内外槽間には大気圧が加わり、こ
れを支持するための材料が必要である。また、パーライ
トなどの粉末真空断熱においては真空層に粉末断熱材が
充填されているとはいえ、大気圧を支持できるものでは
ない。そこで、支持材が必要であり、材質としてFPR系
の樹脂材料等の支持部材が使われている。
2. Description of the Related Art In a vacuum heat insulating container for cryogenic use, the vacuum heat insulating portion is made to have a high vacuum. However, atmospheric pressure is applied between the inner and outer tanks, and a material for supporting this is required. In vacuum heat insulation of powder such as pearlite, the vacuum layer is filled with a powder heat insulating material, but cannot support atmospheric pressure. Therefore, a support member is required, and a support member such as an FPR resin material is used as the material.

考案が解決しようとする課題 上記のように、真空断熱部の内外槽間には1気圧(約
1kgf/cm2)の大気圧がかかるので、内外槽がその大気圧
に抗して構造を形成できるためにこの条件は、内外槽材
料を厚くするとともに、内外槽間に支持部材を入れるこ
とである。この場合、支持部材はヒートブリッジとなる
ので、強度があって、しかも比較的熱伝導率が低い材料
として、FRP樹脂が考えられる。しかし、真空断熱容器
が高温の保温、断熱に使われる場合、あるいは多数の支
持部材が使われて樹脂のアウトガスが無視できない場
合、これを改良する必要がある。
Problems to be Solved by the Invention As described above, one atmosphere (approximately
Atmospheric pressure of 1 kgf / cm 2 ) is applied, so that the inner and outer tanks can form a structure against the atmospheric pressure. This condition is achieved by thickening the inner and outer tank materials and inserting a support member between the inner and outer tanks. is there. In this case, since the support member is a heat bridge, FRP resin is considered as a material having strength and relatively low thermal conductivity. However, when the vacuum insulation container is used for heat insulation and heat insulation at a high temperature, or when a large number of support members are used and resin outgas cannot be ignored, it is necessary to improve this.

本考案はこの課題を解決するもので、耐熱あるいはア
ウトガス対策として、たとえば、オーステナイト系ステ
ンレス鋼などの金属製の支持部材を採用し、高温の保
温、断熱のために使用できる真空断熱材の構造を提供す
ることを目的とするものである。
The present invention solves this problem by adopting a metal support member such as austenitic stainless steel as a heat-resisting or outgassing countermeasure. It is intended to provide.

課題を解決するための手段 真空断熱構造は、それぞれ大気圧を受ける2枚の平ら
な面材どうしの間に真空断熱層を形成し、この真空断熱
層における2枚の面材間に、弾性変形可能なリング状ま
たはコイルばね状または板ばね状の金属製の支持部材
を、互いに適当間隔をあけて複数介装して構成したもの
である。
Means for Solving the Problems The vacuum heat insulating structure forms a vacuum heat insulating layer between two flat face materials each receiving the atmospheric pressure, and elastically deforms between the two face materials in the vacuum heat insulating layer. A plurality of possible ring-shaped, coil-spring-shaped or leaf-spring-shaped metal supporting members are interposed at appropriate intervals.

作用 上記構成により、弾性変形可能なリング状またはコイ
ルばね状または板ばね状の金属にて支持部材を形成し、
この支持部材をたとえば格子状あるいは千鳥状に互いに
間隔をあけて配置した場合、いずれの場合でも、大気圧
の受圧面積から決まる支持部材の剛性に対して、ヒート
ブリッジの評価を行っても、この支持部材を中実体で構
成する場合に比べ、小断面積かつ長伝導経路となる形状
であるため、真空断熱による熱伝導率は、たとえば10-3
kcal/mh℃程度のレベルに押えることができ、高温の保
温、断熱として使用することができる真空断熱材構造が
得られた。
According to the configuration described above, the supporting member is formed of a ring-shaped or coil spring-shaped or leaf spring-shaped metal that can be elastically deformed,
When the support members are arranged at intervals from each other in, for example, a lattice shape or a staggered shape, in any case, even when the heat bridge is evaluated for the rigidity of the support member determined from the pressure receiving area of the atmospheric pressure, It compared with a case of constituting the support member in a solid body, since it is a shape which is smaller cross-sectional area and length conducting path, the thermal conductivity due to the vacuum thermal insulation, for example, 10 -3
A vacuum heat insulating material structure that can be held down to a level of about kcal / mh ° C and can be used as high-temperature insulation and heat insulation was obtained.

実施例 以下本考案の一実施例を図面に基づいて説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図は本考案の一実施例の真空断熱材構造の要部断
面図、第2図(a)(b)は同真空断熱材構造における
支持部材の一例を示す正面図および側面図、第3図は同
支持部材の配置と受圧面積の関係を説明する図、第4図
は同支持部材の変形量を説明する図、第5図(a)
(b)は同支持部材の配列を説明する図、第6図(a)
(b)はそれぞれ同支持部材の他の例を示す斜視図、第
7図および第8図はコイルばね状およびリング状支持部
材を通過する熱量を説明するための図である。
FIG. 1 is a sectional view of a main part of a vacuum heat insulating material structure according to an embodiment of the present invention. FIGS. 2 (a) and 2 (b) are a front view and a side view showing an example of a support member in the vacuum heat insulating material structure. 3 is a view for explaining the relationship between the arrangement of the support member and the pressure receiving area, FIG. 4 is a view for explaining the amount of deformation of the support member, and FIG.
FIG. 6B is a view for explaining the arrangement of the support members, and FIG.
(B) is a perspective view showing another example of the support member, and FIGS. 7 and 8 are diagrams for explaining the amount of heat passing through the coil spring-like and ring-like support members.

第1図において、1は間隔tをあけて配置された2枚
の平らな面材であり、その間に第2図に示すようなリン
グ状の支持部材2が互いにlのピッチをあけて配設され
ており、 四方の領域の第3図に示すような受圧面積Sが大気圧
(1kgf/cm2)を分担支持することになる。その荷重をF
とすると、分担支持する受圧面積SはS=l2とみなせ
るので、F=Skgfの荷重がそれぞれの支持部材2に加わ
ることになる。ここで、支持部材2は耐熱あるいはアウ
トガス対策として、たとえば、オーステナイト系ステン
レス鋼などの金属製の材質で構成されている。
In FIG. 1, reference numeral 1 denotes two flat face members arranged at an interval t, between which ring-shaped support members 2 as shown in FIG. 2 are arranged at a pitch of 1 from each other. Has been The pressure receiving area S in the four regions as shown in FIG. 3 supports the atmospheric pressure (1 kgf / cm 2 ). The load is F
Then, since the pressure receiving area S to be supported and shared can be regarded as S = l 2 , a load of F = Skgf is applied to each support member 2. Here, the support member 2 is made of a metal material such as austenitic stainless steel as a measure against heat or outgassing.

一方、支持部材2は面材2間の間隔すなわち真空断熱
層の厚さtは荷重によって、第4図に示すように、tか
ら(t−δ)に変形するが、支持部材2は金属製である
ので、これを弾性変形させることができ、その形状はば
ね的に弾性のある構造にすることが要求される。また、
この支持部材2はヒートブリッジとなるので、出来るだ
け断面積が小さく、伝導長さの長いものが必要である。
On the other hand, the supporting member 2 is deformed from t to (t−δ) by the load, as shown in FIG. Therefore, it can be elastically deformed, and its shape is required to have a spring-like elastic structure. Also,
Since the support member 2 serves as a heat bridge, it is necessary that the support member 2 has as small a sectional area as possible and a long conductive length.

この支持部材2の配置は、第5図(a)(b)に示す
ように、格子状あるいは千鳥状などのものが考えられ
る。
As shown in FIGS. 5 (a) and 5 (b), the arrangement of the support members 2 may be a lattice or a staggered arrangement.

また、支持部材2は第1図のリング状のもの以外に、
第6図(a)(b)に示すように、コイルばね状または
板ばね状のものなどで構成してもよい。
The supporting member 2 is not limited to the ring-shaped member shown in FIG.
As shown in FIGS. 6 (a) and 6 (b), a coil spring or a leaf spring may be used.

次に、支持部材2のばね構造の効果およびヒートブリ
ッジの評価を行うと、以下のようになる。
Next, the effect of the spring structure of the support member 2 and the evaluation of the heat bridge are as follows.

支持部材2がピッチlcmで配置されているとすると、
支持部材2は前述のようにピッチlcmに等しい領域 の大気圧を支持することになり、支持すべき面積をSと
するとS=l2cm2となる。一方、大気圧は約1kgf/cm2
あるので、支持部材2に作用する力はF=Skgfとなり、
ばね定数をKとすると、F=S=Kδとなる。ここで、
δは支持部材2の変形量である。
Assuming that the support members 2 are arranged at a pitch of lcm,
The support member 2 has an area equal to the pitch lcm as described above. And the area to be supported is S, so that S = l 2 cm 2 . On the other hand, since the atmospheric pressure is about 1 kgf / cm 2 , the force acting on the support member 2 is F = Skgf,
Assuming that the spring constant is K, F = S = Kδ. here,
δ is the amount of deformation of the support member 2.

支持部材2は断面積を大きくしてきわめて剛となし、
真空断熱材に大気圧がかかったときに、真空断熱層の厚
さtcmが不変であることが一番良いが、今10%程度許容
されるとすると、δ=0.1tとなる。したがって、必要ば
ね定数KはK=F/0.1tとなる。
The supporting member 2 is made extremely rigid by increasing the cross-sectional area,
It is best that the thickness tcm of the vacuum heat-insulating layer does not change when atmospheric pressure is applied to the vacuum heat-insulating material. However, if about 10% is allowed now, δ = 0.1 t. Therefore, the required spring constant K is K = F / 0.1t.

一例を以下に示す。真空断熱層の厚さtを3cm、大気
圧による真空断熱層の圧縮変位を10%とすると、支持部
材2の変形量δはδ=0.3cmとなる。いまピッチlを10c
mとすると受圧面積SはS=100cm2となり、したがって
荷重Kは F=100cm2×1kgf/cm2=10kgf となる。したがって必要ばね定数Kは となり、この程度のばね定数をもつ支持部材2を採用す
れば、ばね状支持構造として効果的である。
An example is shown below. Assuming that the thickness t of the vacuum heat insulating layer is 3 cm and the compression displacement of the vacuum heat insulating layer due to the atmospheric pressure is 10%, the deformation amount δ of the support member 2 is δ = 0.3 cm. Now pitch 10c
If m, the pressure receiving area S is S = 100 cm 2 , and thus the load K is F = 100 cm 2 × 1 kgf / cm 2 = 10 kgf. Therefore, the required spring constant K is When the support member 2 having such a spring constant is adopted, it is effective as a spring-like support structure.

(1) 円筒状コイルばねの場合、 このときのばね定数は次式で与えられる。(1) In the case of a cylindrical coil spring, the spring constant at this time is given by the following equation.

ここでd=材料の直径(cm) Na=有効巻数 D=コイルの平均径(cm) (内径D1、外径D2とすると、 D=(D1+D2)/2) G=横弾性係数(kg/cm2) (ステンレスの場合G7.5×105kgf/cm2) いま、d=0.6cm,Na=4,D=3cmとすると、 となり、ばね状支持構造の効果が得られる。 Wherein the diameter of d = material (cm) Na = average diameter of the effective turns D = coil (cm) (inside diameter D 1, when the outer diameter D 2, D = (D 1 + D 2) / 2) G = transverse elasticity Coefficient (kg / cm 2 ) (Stainless steel G7.5 × 10 5 kgf / cm 2 ) Now, if d = 0.6 cm, Na = 4, D = 3 cm, And the effect of the spring-like support structure is obtained.

このコイルばね状の支持部材が存在する個所はヒート
ブリッジとなり、熱量が通過する。次にこの熱量Qを求
めると、以下のようになる。
The location where the coil spring-shaped support member exists serves as a heat bridge, through which heat passes. Next, the calorific value Q is obtained as follows.

第7図に示すようなコイルばねにおいて、コイルばね
状線材の長さl′は l′πDNa=π・3・4=37.7cm コイルばね線材の断面積Aは コイルばね線材をオーステナイト系ステンレス鋼とす
ると、その熱伝導率λは λ=14Kcal/mh℃ となるので、コイルばね線材を通過する熱量Qは、 ここでΔTは面材間の温度差 また、コイルばねは受圧面積S(=100cm2)にかかる
大気圧荷重を支持するので、受圧面積S中で唯一のヒー
トブリッジであり、したがって、受圧面積Sで除すと、
平均の熱流速qは となり、見掛けの熱通過率KHは KH=0.105 Kcal/m2h℃ となる。また見掛け熱伝導率λHは λH=KH・t =0.105(Kcal/m2h℃)×0.03(m) =0.00315Kcal/mh℃ となる。真空断熱層が高真空状態であると、熱伝導率は
10-3Kcal/m2h℃レベルであるので、コイルばね状の支
持部材2のヒートブリッジの影響はそれ程大きいとは云
えず、実用上あまり問題とはならない。
In the coil spring as shown in FIG. 7, the length l 'of the coil spring-like wire is l'πDNa = π ・ 3.4 = 37.7 cm. The sectional area A of the coil spring wire is Assuming that the coil spring wire is austenitic stainless steel, the thermal conductivity λ is λ = 14 Kcal / mh ° C. Therefore, the amount of heat Q passing through the coil spring wire is Here, ΔT is the temperature difference between the face materials. Further, since the coil spring supports the atmospheric pressure load applied to the pressure receiving area S (= 100 cm 2 ), it is the only heat bridge in the pressure receiving area S, and therefore, the pressure receiving area S Divided by
The average heat flow q And the apparent heat transmission coefficient K H is K H = 0.105 Kcal / m 2 h ° C. The apparent thermal conductivity λ H is λ H = K H · t = 0.105 (Kcal / m 2 h ° C.) × 0.03 (m) = 0.00315 Kcal / mh ° C. When the vacuum insulation layer is in a high vacuum state, the thermal conductivity becomes
Since it is at the level of 10 -3 Kcal / m 2 h ° C., the effect of the heat bridge of the coil spring-like support member 2 is not so large, and does not cause a problem in practical use.

(2) リングばねの場合 このときのばね定数は次式で与えられる。(2) In the case of a ring spring The spring constant at this time is given by the following equation.

ここで、γ=リングの有効半径(cm) E=弾性率 (kg/cm2) (オーステナイト系ステンレス鋼とすると、E=1.97×
10-6kg/cm2) I=リングの断面二次モーメント いまリング状の支持部材を第8図に示すように、偏平
の形状にし、リング断面Aを A=a×b=0.104×0.2cm2 とすると、断面二次モーメントは したがって、γ=1.4cmとすると となり、ばね状支持構造の効果が得られる。
Here, γ = effective radius of the ring (cm) E = elasticity (kg / cm 2 ) (If austenitic stainless steel is used, E = 1.97 ×
10 -6 kg / cm 2 ) I = Second moment of area of the ring Now, the ring-shaped support member is made flat as shown in FIG. 8, and the ring section A is A = a × b = 0.104 × 0.2 cm. When 2, the second moment is Therefore, if γ = 1.4 cm, And the effect of the spring-like support structure is obtained.

次に、このリングばね状の支持部材が通過する熱量Q
を求めると、以下のようになる。
Next, the amount of heat Q that this ring-spring-like support member passes through
Is obtained as follows.

このリングばねは受圧面積Sの中で唯一のヒートブリ
ッジであり、したがって受圧面積で除すと、平均熱流速
qは となり、見掛けの熱通率KHは KH=0.124 Kcal/m2h℃ となる。また見掛け熱伝導率λHは λH=KH・t =0.124(Kcal/m2h℃)×0.03(m) =0.00372 Kcal/mh℃ となる。真空断熱層が高真空状態であると、熱伝導率は
10-3Kcal/mh℃レベルであると、コイルばね状の場合と
同様にリング状の支持部材のヒートブリッジの影響はそ
れほど大きくなく、実用上あまり問題とはならない。
This ring spring is the only heat bridge in the pressure receiving area S, and therefore, when divided by the pressure receiving area, the average heat flow rate q becomes The apparent heat conductivity K H is K H = 0.124 Kcal / m 2 h ° C. The apparent thermal conductivity λ H is λ H = K H · t = 0.124 (Kcal / m 2 h ° C.) × 0.03 (m) = 0.00372 Kcal / mh ° C. When the vacuum insulation layer is in a high vacuum state, the thermal conductivity becomes
At a level of 10 −3 Kcal / mh ° C., the effect of the heat bridge of the ring-shaped support member is not so large as in the case of the coil spring shape, and does not cause much problem in practical use.

考案の効果 以上のように、本考案によれば、支持部材を弾性変形
可能なリング状またはコイルばね状または板ばね状に形
成された金属で構成するので、たとえば10%程度の変形
量を許容するばね定数をもった形状に構成することがで
きて、有効な大気圧の支持構造にすることができ、しか
も、リング状またはコイルばね状または板ばね状であっ
て、中実体で構成する場合に比べて小断面積かつ長伝導
経路となる形状であるため、ヒートブリッジの評価を行
っても、真空断熱による熱伝導率は、たとえば10-3Kcal
/mh℃程度のレベルに押えることができ、高温の保温、
断熱として使用することが可能となる。たとえば、オー
ステナイト系ステンレス鋼で製作すると、耐熱温度は45
0℃程度までは使用が可能となり、高温の用途に対して
も真空断熱の適用が可能である。
Effect of the Invention As described above, according to the present invention, since the support member is made of a metal formed in an elastically deformable ring shape, coil spring shape, or leaf spring shape, for example, a deformation amount of about 10% is allowed. When it is made of a ring, coil spring, or leaf spring, and can be made of a solid body Since it has a small cross-sectional area and a long conduction path as compared to the above, even if the heat bridge is evaluated, the thermal conductivity due to vacuum insulation is, for example, 10 -3 Kcal
/ mh ℃, can be kept at a high temperature,
It can be used as heat insulation. For example, when made of austenitic stainless steel, the heat resistance temperature is 45
It can be used up to about 0 ° C, and vacuum insulation can be applied to high temperature applications.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本考案の一実施例の真空断熱材構造の要部正面
図、第2図(a)(b)は同真空断熱材構造における支
持部材の一例を示す正面図および側面図、第3図は同支
持部材の配置と受圧面積の関係を説明する図、第4図は
同支持部材の変形量を説明する図、第5図(a)(b)
は同支持部材の配列を説明する図、第6図(a)(b)
はそれぞれ同支持部材の他の例を示す斜視図、第7図は
ばね状支持部材を通過する熱量を説明するための概略正
面図、第8図(a)(b)はリング状支持部材を通過す
る熱量を説明するための断面図および正面図である。 1……面材、2……支持部材。
FIG. 1 is a front view of a main part of a vacuum heat insulating material structure according to an embodiment of the present invention, and FIGS. 2 (a) and 2 (b) are a front view and a side view showing an example of a support member in the vacuum heat insulating material structure. 3 is a view for explaining the relationship between the arrangement of the support member and the pressure receiving area, FIG. 4 is a view for explaining the amount of deformation of the support member, and FIGS. 5 (a) and 5 (b).
FIGS. 6A and 6B are views for explaining the arrangement of the support members.
Is a perspective view showing another example of the support member, FIG. 7 is a schematic front view for explaining the amount of heat passing through the spring-like support member, and FIGS. 8 (a) and (b) show the ring-like support member. It is the sectional view and front view for explaining the amount of heat which passes. 1 ... face material, 2 ... support member.

フロントページの続き (56)参考文献 実開 昭50−93859(JP,U) 実開 昭63−52055(JP,U) 国際公開89/9860(WO,A1)Continuation of the front page (56) References Japanese Utility Model Showa 50-93859 (JP, U) Japanese Utility Model Showa 63-52055 (JP, U) International Publication 89/9860 (WO, A1)

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】それぞれ大気圧を受ける2枚の平らな面材
どうしの間に真空断熱層を形成し、この真空断熱層にお
ける2枚の面材間に、弾性変形可能なリング状またはコ
イルばね状または板ばね状の金属製の支持部材を、互い
に適当間隔をあけて複数介装して成る真空断熱材構造。
A vacuum heat insulating layer is formed between two flat face materials each receiving atmospheric pressure, and an elastically deformable ring or coil spring is provided between the two face materials in the vacuum heat insulating layer. Heat insulating material structure comprising a plurality of metal-like or leaf-spring-like metal support members interposed at appropriate intervals.
JP1990129840U 1990-11-30 1990-11-30 Vacuum insulation structure Expired - Lifetime JP2570718Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1990129840U JP2570718Y2 (en) 1990-11-30 1990-11-30 Vacuum insulation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1990129840U JP2570718Y2 (en) 1990-11-30 1990-11-30 Vacuum insulation structure

Publications (2)

Publication Number Publication Date
JPH0484968U JPH0484968U (en) 1992-07-23
JP2570718Y2 true JP2570718Y2 (en) 1998-05-13

Family

ID=31877220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1990129840U Expired - Lifetime JP2570718Y2 (en) 1990-11-30 1990-11-30 Vacuum insulation structure

Country Status (1)

Country Link
JP (1) JP2570718Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150233519A1 (en) * 2014-02-14 2015-08-20 Kenneth Teasdale Thermally insulated panel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5093859U (en) * 1973-12-28 1975-08-07
CA1328724C (en) * 1988-04-15 1994-04-26 David K. Benson Compact vacuum insulation

Also Published As

Publication number Publication date
JPH0484968U (en) 1992-07-23

Similar Documents

Publication Publication Date Title
US4402358A (en) Heat pipe thermal switch
CN1027924C (en) Isolator for pressure transmitter
EP0191251B1 (en) Bidirectional seal
US20190354148A1 (en) Conducting heat through a hinge
JP2570718Y2 (en) Vacuum insulation structure
US20110041945A1 (en) Automotive Exhaust Pipe
JP7133250B1 (en) Insulation device and insulation method for pipes and containers
US3102655A (en) Support system for double-walled containers
US5031665A (en) Curved pipe section having refractory lining and central section of flexible insulating material
US3357589A (en) Suspension system for multi-walled storage tank
JPH06281088A (en) Vacuum heat-insulating flexible hose
CN112145811A (en) Be applied to elastic support subassembly of LNG double-walled pipe
JPS634876Y2 (en)
JPH0735186Y2 (en) Ceramic piping joint structure
JPH0660707B2 (en) Multi-tube structure
KR20210062631A (en) Metal gasket
JP2582984Y2 (en) Penetration structure such as nozzle of membrane of low temperature storage tank
JP7409867B2 (en) Bimetal piping, insulation piping and refrigeration systems
JP2600899B2 (en) Metal carrier for exhaust gas purification catalyst
JPS60249788A (en) Flexible pipe
US11378342B2 (en) Tube bundle-type heat exchanger, tube base, and method for sealing same
RU1805263C (en) Bimetal bellows compensator
Wolf Heat pipe thermal switch
WO2022102777A1 (en) Thermal insulation device and thermal insulation method for pipe and container
JPH0222559Y2 (en)