JP2569404B2 - Method for immobilizing biofunctional substance and electrode using the same - Google Patents

Method for immobilizing biofunctional substance and electrode using the same

Info

Publication number
JP2569404B2
JP2569404B2 JP62055387A JP5538787A JP2569404B2 JP 2569404 B2 JP2569404 B2 JP 2569404B2 JP 62055387 A JP62055387 A JP 62055387A JP 5538787 A JP5538787 A JP 5538787A JP 2569404 B2 JP2569404 B2 JP 2569404B2
Authority
JP
Japan
Prior art keywords
electrode
metal fine
noble metal
fine particle
particle layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62055387A
Other languages
Japanese (ja)
Other versions
JPS63222256A (en
Inventor
義人 碇山
智明 行足
繁 山内
Original Assignee
国立身体障害者リハビリテ−シヨンセンタ−
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立身体障害者リハビリテ−シヨンセンタ− filed Critical 国立身体障害者リハビリテ−シヨンセンタ−
Priority to JP62055387A priority Critical patent/JP2569404B2/en
Priority to DE3852122T priority patent/DE3852122T2/en
Priority to PCT/JP1988/000256 priority patent/WO1988007193A1/en
Priority to EP88902542A priority patent/EP0304494B1/en
Publication of JPS63222256A publication Critical patent/JPS63222256A/en
Priority to US07/714,901 priority patent/US5256271A/en
Application granted granted Critical
Publication of JP2569404B2 publication Critical patent/JP2569404B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は,生体機能物質の固定化法及びそれを用いた
バイオセンサ用電極に関する。特に,特定の物質を迅速
に,高感度かつ連続的に測定するための電極の微小化技
術とこの技術で得られるバイオセンサに関する。
Description: TECHNICAL FIELD The present invention relates to a method for immobilizing a biofunctional substance and an electrode for a biosensor using the same. In particular, the present invention relates to a technique for miniaturizing an electrode for rapidly, highly sensitively and continuously measuring a specific substance, and a biosensor obtained by this technique.

[従来の技術] 白金や炭素表面に酵素が抗体,微生物等を固定化した
バイオセンサが種々の化学物質,生体物質を迅速かつ連
続的に測定できることは既に知られている。バイオセン
サにおいては生体機能物質は,一つは生体機能物質を含
有した膜を別途調整しておき,これを電極上に貼り付け
る,他は表面を化学処理した電極に酵素等を塗布し,酵
素等と表面との間に共有結合を形成せしめる方法によっ
て固定化されてきた。然し乍ら,バイオセンサの性能
は,再現性,耐久性,高感度,応答速度等によって評価
されるが,前者の方法では応答速度の点で難があり,後
者の方法では固定化密度を大きくすることが困難であっ
た。また,いずれの方法においても,固定化には数段階
の複雑な工程を必要とし,また,一つのセンサ上に数種
類の生体機能物質電極を取り付けた多機能センサとする
には困難があった。
[Prior Art] It is already known that a biosensor in which an enzyme or an microorganism is immobilized on a platinum or carbon surface with an enzyme can quickly and continuously measure various chemical substances and biological substances. In biosensors, one of the biofunctional substances is to separately prepare a film containing the biofunctional substance and paste it on the electrode, and to apply the enzyme or the like to the electrode whose surface has been chemically treated. It has been immobilized by a method of forming a covalent bond between the surface and the like. However, the performance of the biosensor is evaluated based on reproducibility, durability, high sensitivity, response speed, etc. However, the former method has difficulty in terms of response speed, and the latter method requires an increased immobilization density. Was difficult. Further, in any of the methods, immobilization requires several complicated steps, and it is difficult to obtain a multifunctional sensor in which several types of biofunctional material electrodes are mounted on one sensor.

また,従来の固定化酵素電極は平板状の白金表面に酵
素固定化膜が装着させた構造を有している。その作製法
としては,別途調整した固定化酵素膜を白金電極に貼り
合わせる方法,表面を化学処理した平滑な白金電極に酵
素を塗布し固定化する方法などがある。然し乍ら,この
ような方法では微小化が困難である。一方,この微小化
技術として最近注目されているものが半導体集積化技術
がある。この半導体技術を用いる方法では,数mmのサイ
ズの酵素電極も作製できるが,電位検出法であるため
に,感度及び応答などの面で満足のゆく結果が得られな
いもので,現在得られるサイズ以下のミクロ化もかなり
困難視されている。
Further, the conventional immobilized enzyme electrode has a structure in which an enzyme immobilized film is mounted on a flat platinum surface. Examples of the production method include a method in which a separately prepared immobilized enzyme membrane is bonded to a platinum electrode, and a method in which an enzyme is applied to a smooth platinum electrode whose surface is chemically treated to immobilize the enzyme. However, miniaturization is difficult with such a method. On the other hand, a semiconductor integration technology has recently attracted attention as this miniaturization technology. With this method using semiconductor technology, an enzyme electrode with a size of several mm can be manufactured, but since it is a potential detection method, satisfactory results in terms of sensitivity and response cannot be obtained. The following micronization is also considered quite difficult.

[発明が解決しょうとする問題点] 上記のような状況において,本発明者らは,従来のセ
ンサ電極構造と異なり,上記の従来のセンサの欠点を克
服することを目的に,微小化できる生体機能物質電極作
製法で,迅速かつ高感度の測定が可能なバイオセンサ電
極を提供する。また,本発明は,微小電極表面を微粒子
化することにより電極表面を見掛けの電極表面積より数
百倍以上にした,見掛けは微小電極であるにもかかわら
ず検出感度を上げることのできるバイオセンサ電極を提
供することを目的とする。更に,本発明は,電極表面が
微粒子状であるために充分量の生体機能物質を電極の深
部まで浸漬固定化でき,そのために迅速な応答性を有す
るバイオセンサを提供することを目的とする。
[Problems to be Solved by the Invention] In the above-described situation, the present inventors differed from the conventional sensor electrode structure in that the purpose of the present invention was to overcome the above-mentioned drawbacks of the conventional sensor and to minimize the size of the living body. Provided is a biosensor electrode capable of quick and high-sensitivity measurement by a functional material electrode preparation method. In addition, the present invention provides a biosensor electrode capable of increasing the detection sensitivity in spite of the fact that the electrode surface is several hundred times larger than the apparent electrode surface area by atomizing the microelectrode surface. The purpose is to provide. It is another object of the present invention to provide a biosensor having a quick response since a sufficient amount of a biofunctional substance can be immersed and fixed to a deep part of the electrode because the electrode surface is in the form of fine particles.

[発明の構成] [問題点を解決するための手段] 本発明は、上記の技術的な課題を解決するために、電
極表面上に電気化学的に析出、形成させた貴金属微粒子
層を有し、且つ、その貴金属微粒子層は、酵素や抗体に
代表される生体機能物質を含有した溶液に、浸漬させ、
或いは接触させる処理により、該生体機能物質が、直接
に、前記の貴金属微粒子層内に取り込まれていることを
特徴とする分子識別力を有するバイオ電極を提供する。
そして、その貴金属微粒子層内に取り込まれた該生体機
能物質は、更に、架橋処理されているものが好適であ
る。また、その貴金属微粒子層の表面には、更に、該生
体機能物質と貴金属微粒子の安定化を確保するために、
高分子薄膜が形成されている構造が好適である。また、
本発明は、貴金属微粒子を電気化学的に、電極表面上に
析出させ、電極表面上に該貴金属微粒子の層を形成し、
次に、得られた貴金属微粒子層を、酵素や抗体に代表さ
れる生体機能物質を含有した溶液に、浸漬させ、或いは
接触させ、該生体機能物質を、直接に、前記の貴金属微
粒子層内に取り込むことを特徴とする分子識別力を有す
るバイオ電極の製造方法を提供する。
[Constitution of the Invention] [Means for Solving the Problems] The present invention has a noble metal fine particle layer electrochemically deposited and formed on an electrode surface in order to solve the above technical problem. And, the noble metal fine particle layer is immersed in a solution containing a biofunctional substance represented by an enzyme or an antibody,
Alternatively, there is provided a bioelectrode having a molecular discriminating power, wherein the biofunctional substance is directly taken into the noble metal fine particle layer by a contacting treatment.
It is preferable that the biofunctional substance taken into the noble metal fine particle layer is further cross-linked. Further, on the surface of the noble metal fine particle layer, in order to further stabilize the biofunctional substance and the noble metal fine particles,
A structure in which a polymer thin film is formed is preferable. Also,
The present invention electrochemically deposits noble metal fine particles on an electrode surface, and forms a layer of the noble metal fine particles on the electrode surface,
Next, the obtained noble metal fine particle layer is immersed or brought into contact with a solution containing a biofunctional substance represented by an enzyme or an antibody, and the biofunctional substance is directly in the noble metal fine particle layer. Provided is a method for producing a bioelectrode having a molecular discriminating ability characterized by taking in.

本発明による生体機能を有するミクロ電極は,白金な
どからなる微小な電極(例えば,径:10〜100μm)の表
面に酵素などの生体機能物質を含浸させた導電性物質微
粒子層を有する構造の電極である。特に,白金の電気析
出による白金黒表面層を有する電極は,水素還元の触媒
活性が高いことで知られているが,本発明のように,白
金黒を生体機能物質の担体とすることは,従来行われて
いなく。白金板を腐食により多孔質にしてそれに酵素な
どを架橋剤でつなぐ固定化法があるがこの方法で作製し
た多孔体は比表面積が数m2/g程度にしか達しないのが普
通である。更に本発明による白金黒微粒子のサイズをコ
ントロールして,生体機能物質を包括し,固定化する方
法は,従来なかったものである。即ち,本発明による生
体機能物質の固定化方法は,従来化学試薬(架橋剤)を
使用しなければならなかった担体結合法ではなく,化学
処理なしで生体機能物質の直接固定化が行なえるもので
ある。本発明において,被覆に用いられる高分子薄膜は
酵素溶出の完全防止,及び生体適合性の付与のために主
として用いられる。微粒子内部の酵素を架橋剤で連結す
ると酵素は完全に溶出しなくなるため,この場合は表面
の薄膜化は生体適合性の付与が主目的となる。
The microelectrode having a biological function according to the present invention is an electrode having a structure in which a surface of a fine electrode (for example, diameter: 100 to 100 μm) made of platinum or the like and having a conductive material fine particle layer impregnated with a biological functional material such as an enzyme is provided on the surface. It is. In particular, an electrode having a platinum black surface layer formed by electrodeposition of platinum is known to have a high catalytic activity for hydrogen reduction. However, as in the present invention, it is difficult to use platinum black as a carrier for a biofunctional substance. Not done conventionally. There is an immobilization method in which a platinum plate is made porous by corrosion and an enzyme or the like is connected with a cross-linking agent, but the porous body produced by this method usually has a specific surface area of only several m 2 / g. Further, there has been no method of controlling and controlling the size of the platinum black fine particles of the present invention to cover and immobilize the biofunctional substance. That is, the method for immobilizing a biofunctional substance according to the present invention is not a carrier binding method which had to use a conventional chemical reagent (crosslinking agent), but can directly immobilize a biofunctional substance without chemical treatment. It is. In the present invention, the polymer thin film used for coating is mainly used for completely preventing elution of the enzyme and imparting biocompatibility. If the enzyme inside the microparticles is linked by a cross-linking agent, the enzyme will not be completely eluted. In this case, the main purpose of thinning the surface is to provide biocompatibility.

本発明の酵素などの生体機能物質の固定化方法は,例
えば白金黒などの導電性微粒子層中に,その生体機能物
質を固定化するものである。具体的には,該微粒子層を
持つ金属電極を,生体機能物質の水溶液中に浸漬し,或
いは,それを塗布することにより含浸せしめ,次に,生
体機能物質のわずかな溶出を防止し,かつ抗血栓性を付
与するために,アルブミンややヘパリンなどの高分子物
質をその上に含浸せしめ,これを架橋剤により不溶性化
し,不溶性高分子薄膜を形成したものである。このよう
な本発明の固定化方法は,酵素をゲルや高分子中に包括
固定化する,所謂,包括法を金属電極系に適用したもの
と考えることができるが,形成高分子膜は,厚さ数百Å
程度以下の薄膜に仕上げることができ,高分子膜の存在
が,性内機能物質の生体機能の発現の阻害要因になるこ
とはないものである。
The method for immobilizing a biofunctional substance such as an enzyme of the present invention is to immobilize the biofunctional substance in a conductive fine particle layer such as platinum black. Specifically, the metal electrode having the fine particle layer is immersed in an aqueous solution of a biofunctional substance, or impregnated by coating the metal electrode, and then a slight elution of the biofunctional substance is prevented, and In order to impart antithrombotic properties, a polymer substance such as albumin or heparin is impregnated thereon, and this is insolubilized with a crosslinking agent to form an insoluble polymer thin film. Such an immobilization method of the present invention can be considered as applying the so-called entrapment method of entrapping and immobilizing an enzyme in a gel or a polymer to a metal electrode system. Hundreds
It can be made into a thin film of a degree or less, and the presence of the polymer film does not become a hindrance to the expression of the biological function of the intrasexually functional substance.

ここにおいては,「生体機能物質」とは,酵素,抗体
に代表されるもので,各種の酵素,微生物菌体,増殖微
生物,オルガネラ,抗原,抗体,ハプテンなどを含むも
のである。また,本発明において,白金の代わりに,ロ
ジウム,金,炭素などの「導電性物質」を使用出来,
「導電性物質」の微粒子層を該導電性物質表面に形成す
ることができるものは,他に障害のない限り,好適に本
発明において使用できる。
Here, the “biofunctional substance” is represented by enzymes and antibodies, and includes various enzymes, microbial cells, proliferating microorganisms, organelles, antigens, antibodies, haptens, and the like. In the present invention, instead of platinum, a "conductive substance" such as rhodium, gold, or carbon can be used.
Those capable of forming a fine particle layer of “conductive substance” on the surface of the conductive substance can be suitably used in the present invention, unless there is another obstacle.

また,本発明で使用できる高分子物質には,アルブミ
ンなどの蛋白質,或いはヘパリンなどの多糖類などが挙
げられる。架橋剤としては,使用した高分子に対して適
する架橋剤があり,例えば,アルブミンに対しては,グ
ルタールアルデヒド,また,カルボジイミド,マレイミ
ド架橋剤などが用いられる。
Examples of the polymer substance that can be used in the present invention include proteins such as albumin and polysaccharides such as heparin. As the crosslinking agent, there is a crosslinking agent suitable for the polymer used. For example, for albumin, glutaraldehyde, carbodiimide, maleimide crosslinking agent, etc. are used.

本発明の生体機能物質の固定化方法は,バイオセンサ
のミクロ化,多機能可などの多項目計測が要求される臨
床化学分析,携帯型の健康監視システムの開発に,極め
て重要な技術の一つである。即ち,最近,集積回路技術
を用いた各種のマルチバイオセンサが創案されている
が,この点でも本発明による微小電極表面に酵素などを
固定化する方法が重要なものである。更に,本発明で得
られた酵素電極は高感度で,しかも迅速な応答を示すこ
とが明らかである。
The method for immobilizing a biofunctional substance according to the present invention is an extremely important technology for the development of a portable chemical health monitoring system and clinical chemistry analysis that requires multi-item measurement such as micronization of biosensors and multifunctionality. One. That is, recently, various multi-biosensors using integrated circuit technology have been devised. In this regard, the method of immobilizing an enzyme or the like on the surface of the microelectrode according to the present invention is also important. Furthermore, it is clear that the enzyme electrode obtained by the present invention has high sensitivity and shows a quick response.

即ち,本発明により生体機能物質を固定化した導電性
物質層の構造は,第1図に示されるものである。生体機
能物質が図示のように,微粒子導電性微粒子の中に均一
に取り込まれているものである。例えば,基板上に電析
された白金粒子は,電析条件によりカサ高い黒色の粒子
として析出し,電析された白金黒層は水溶液中で強く撹
拌しても簡単に剥離するものではなく,基板白金と同様
に電極の一部となり,言わば,電極内に酵素などの生体
機能物質が一体化された形状のものである。白金黒層
は,アルブミンなどの高分子を含浸させ,架橋剤例えば
グルタルアルデヒドなどで架橋して酵素などが溶出しな
いようにできる。
That is, the structure of the conductive material layer on which the biological functional material is immobilized according to the present invention is as shown in FIG. As shown in the figure, the biofunctional substance is uniformly incorporated into the conductive fine particles. For example, platinum particles deposited on a substrate precipitate as black particles with high bulk depending on the electrodeposition conditions, and the deposited platinum black layer does not easily peel off even when vigorously stirred in an aqueous solution. Like the substrate platinum, it becomes a part of the electrode, so to speak, is a shape in which a biofunctional substance such as an enzyme is integrated in the electrode. The platinum black layer can be impregnated with a polymer such as albumin and cross-linked with a cross-linking agent such as glutaraldehyde to prevent elution of enzymes and the like.

このように高密度に生体機能物質を固定化した導電性
物質を利用すれば,高感度のバイオセンサ用電極が得ら
れる。即ち,例えば,白金黒の表面層を有する白金電極
の白金黒微粒子内部或いは微粒子表面に酵素などを固定
化して作製した電極は,次の実施例に示すように,アン
ペロメトリ法によるバイオセンサ用電極として,高い感
度を有するものとなる。以上の本発明による固定化法を
用いると,微小電極系よりなるバイオセンサを構成する
こともできる。
If a conductive material having a biofunctional substance immobilized at a high density is used, a highly sensitive biosensor electrode can be obtained. That is, for example, an electrode prepared by immobilizing an enzyme or the like inside or on the surface of a platinum black fine particle of a platinum electrode having a platinum black surface layer is used as a biosensor electrode by an amperometry method as shown in the next embodiment. , High sensitivity. By using the above-described immobilization method according to the present invention, a biosensor comprising a microelectrode system can be formed.

本発明に利用する微粒子のサイズ或いは粒子間距離
は,形成条件を変えることにより,コントロールするこ
とができる。
The size of the fine particles or the distance between the particles used in the present invention can be controlled by changing the forming conditions.

このような電極としては,白金以外に,ロジウム,
金,炭素即ち,グラファイトを基板として,その上にロ
ジウム微粒子,金微粒子,白金黒,炭素グラファイト微
粉,或いは,導電性金属酸化物微粒子の微粒子層を形成
したもので,その微粒子層中に生体機能物質を固定化し
たものである。
Such electrodes include, in addition to platinum, rhodium,
Gold, carbon, or graphite as a substrate on which a fine particle layer of rhodium fine particles, gold fine particles, platinum black, carbon graphite fine powder, or conductive metal oxide fine particles is formed. The substance is immobilized.

[実施例] グルコースはグルコースオキシダーゼの存在下でグル
コン酸と過酸化水素に分解されるが,酵素と白金電極を
組合わせて,グルコース濃度に対応した過酸化水素の酸
化電流を測定することにより,グルコース濃度を決定で
きる。この点から,本発明により作製した電極を用い
て,次に,実験を行なった。
[Example] Glucose is decomposed into gluconic acid and hydrogen peroxide in the presence of glucose oxidase. By combining the enzyme with a platinum electrode, the oxidation current of hydrogen peroxide corresponding to the glucose concentration is measured. The glucose concentration can be determined. From this point, an experiment was next performed using the electrode manufactured according to the present invention.

先ず,直径100μmの白金線をソーダガラス管に封入
した。この白金線を研磨し,円形の微小白金電極を得
た。次いで0.5M硫酸水溶液中で銀/塩化銀電極を参照電
極として,該白金電極に電位+1.3Vから−0.25Vの範囲
で100mV/秒の走査速度で電位走査を30分間行なった。上
記の電極を300ppmの酢酸鉛含有の3%塩化白金酸溶液中
に浸し,電流値−50μAで10分間白金黒の電気析出を行
なった。析出した白金黒層の厚さは,約数μmであっ
た。次に,得られた白金黒析出電極を25℃で60秒間風乾
を行なう,その後,0.5M硫酸水溶液中で銀/塩化銀電極
を参照電極として該白金黒析出電極を−0.3Vに30分間保
ち,白金黒析出電極から水素を発生させた。
First, a platinum wire having a diameter of 100 μm was sealed in a soda glass tube. This platinum wire was polished to obtain a circular fine platinum electrode. Then, in a 0.5 M aqueous sulfuric acid solution, the silver / silver chloride electrode was used as a reference electrode, and the platinum electrode was subjected to potential scanning at a potential of +1.3 V to -0.25 V at a scanning speed of 100 mV / sec for 30 minutes. The above electrode was immersed in a 3% chloroplatinic acid solution containing 300 ppm of lead acetate, and electroplating of platinum black was performed at a current value of −50 μA for 10 minutes. The thickness of the deposited platinum black layer was about several μm. Next, the obtained platinum black deposition electrode is air-dried at 25 ° C for 60 seconds, and then the platinum black deposition electrode is kept at -0.3 V for 30 minutes in a 0.5 M aqueous sulfuric acid solution using the silver / silver chloride electrode as a reference electrode. Then, hydrogen was generated from a platinum black deposition electrode.

この白金黒電極を20℃で60秒間風乾させた後に5500単
位のグルコースオキシダーゼを含む燐酸緩衝液(pH6.
8)1mlに20分間浸漬した。再度20℃で30秒風乾した後,
得られた酵素固定化微小電極を用いて,燐酸緩衝液中で
ブドウ糖濃度を測定した。即ち,参照電極(基準電
極),対極(白金),作用極即ち,本発明により作製し
たグルコースオキシダーゼ固定化白金黒電極を用いてグ
ルコースを測定した。各電極をポテンシオスタットに各
々接続し,参照電極に対して作用極を+0.6Vに保持した
状態で,グルコースを注入し,対極と作用極間に流れた
過酸化水素による酸化電流値を測定した。その結果,こ
の電極は100%応答は3秒以内で,しかもグルコースを
第2図に示すように,0.01mg/dlの濃度でも測定でき,測
定範囲も,0.01mg/dl〜100mg/dlの範囲で直線性が示され
た。
The platinum black electrode was air-dried at 20 ° C. for 60 seconds, and then phosphate buffer containing 5500 units of glucose oxidase (pH 6.
8) Dipped in 1 ml for 20 minutes. After air drying again at 20 ℃ for 30 seconds,
The glucose concentration was measured in a phosphate buffer using the obtained enzyme-immobilized microelectrode. That is, glucose was measured using a reference electrode (reference electrode), a counter electrode (platinum), and a working electrode, that is, a glucose oxidase-immobilized platinum black electrode prepared according to the present invention. Each electrode is connected to a potentiostat, and while the working electrode is maintained at +0.6 V with respect to the reference electrode, glucose is injected, and the oxidation current value due to hydrogen peroxide flowing between the counter electrode and the working electrode is measured. did. As a result, this electrode has a 100% response within 3 seconds and can measure glucose at a concentration of 0.01 mg / dl as shown in Fig. 2. The measurement range is 0.01 mg / dl to 100 mg / dl. Indicates linearity.

グルコース(0.9mg/dl)の添加に伴う本発明のセンサ
出力即ち.過酸化水素の酸化電流の変化は,第3図に示
す如く,非常に応答性のよいものであった。前述のよう
に100%応答まで3秒以内であった。センサの応答は極
めて速く,直ちに定常値に達した。以上のように本発明
による生体機能物質の固定化法によるバイオセンサは,
迅速な応答を示し,かつ高感度であり,簡単な方法でミ
クロバイオセンサが作製できることが明らかにされた。
The sensor output of the present invention accompanying the addition of glucose (0.9 mg / dl), ie. The change in the oxidation current of hydrogen peroxide was very responsive, as shown in FIG. As described above, it took less than 3 seconds to reach 100% response. The response of the sensor was extremely fast and reached a steady state value immediately. As described above, the biosensor using the method for immobilizing a biologically functional substance according to the present invention is
It has been shown that a microbiosensor can be produced by a simple method, showing a quick response, high sensitivity, and a simple method.

[発明の効果] 本発明の生体機能物質の固定化方法とそれを利用した
バイオセンサにより,第1に感度よく検出できる電極が
提供できたこと,第2に酵素など生体機能物質を容易に
包括固定化でき,生体機能物質を傷つけずに固定化でき
るために活性がほとんど失われていない生体機能物質固
定化電極が得られること,第3に高密度の生体機能物質
の固定化ができ,迅速な応答性が得られる電極を提供で
きたことなどの顕著な技術的効果が得られた。
[Effects of the Invention] The method for immobilizing a biologically functional substance of the present invention and the biosensor using the same have firstly provided an electrode that can be detected with high sensitivity, and secondly, easily include a biologically functional substance such as an enzyme. The electrode can be immobilized and the biofunctional material can be immobilized without damaging the biofunctional material, so that an electrode with almost no loss of activity can be obtained. Third, high-density biofunctional material can be immobilized and rapid Remarkable technical effects were obtained, such as the provision of an electrode capable of obtaining a high response.

【図面の簡単な説明】[Brief description of the drawings]

第1図Aは,本発明により作製したバイオセンサ電極の
構造を示す断面図である。また第1図Bは,第1図Aの
一部を拡大した断面図であり,生体機能物質を含浸させ
た微粒子表面の構造を示す。 第2図は,本発明のバイオセンサ電極で測定した応答出
力とグルコース濃度の関係を示すグラフである。 第3図は,本発明によるバイオセンサの応答性を示すグ
ラフである。 [主要な部分の符号の説明] 1……導電性物質微粒子 2……生体機能物質微粒子 3……高分子薄膜
FIG. 1A is a sectional view showing the structure of a biosensor electrode manufactured according to the present invention. FIG. 1B is a cross-sectional view in which a part of FIG. 1A is enlarged, and shows the structure of the surface of the fine particles impregnated with a biofunctional substance. FIG. 2 is a graph showing the relationship between the response output measured by the biosensor electrode of the present invention and the glucose concentration. FIG. 3 is a graph showing the responsiveness of the biosensor according to the present invention. [Explanation of Signs of Main Parts] 1... Fine particles of conductive substance 2... Fine particles of biofunctional substance 3.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電極表面上に電気化学的に析出、形成させ
た貴金属微粒子層を有し、且つ、その貴金属微粒子層
は、酵素や抗体に代表される生体機能物質を含有した溶
液に、浸漬させ、或いは接触させる処理により、該生体
機能物質が、直接に、前記の貴金属微粒子層内に取り込
まれていることを特徴とする分子識別力を有するバイオ
電極。
1. A precious metal fine particle layer electrochemically deposited and formed on an electrode surface, and the noble metal fine particle layer is immersed in a solution containing a biofunctional substance represented by an enzyme or an antibody. A bioelectrode having a molecular discriminating power, wherein the biofunctional substance is directly incorporated into the noble metal fine particle layer by a process of causing or contacting the bioelectrode.
【請求項2】該貴金属微粒子層内に取り込まれた該生体
機能物質は、更に、架橋処理されていることを特徴とす
る特許請求の範囲第1項に記載のバイオ電極。
2. The bioelectrode according to claim 1, wherein said biofunctional substance taken into said noble metal fine particle layer is further subjected to a crosslinking treatment.
【請求項3】該貴金属微粒子層の表面には、更に、該生
体機能物質と貴金属微粒子の安定化を確保するために、
高分子薄膜が形成されていることを特徴とする特許請求
の範囲第1又は2項記載のバイオ電極。
3. The surface of the noble metal fine particle layer is further provided on the surface of the noble metal fine particle layer in order to secure stabilization of the biofunctional substance and the noble metal fine particles.
3. The bioelectrode according to claim 1, wherein a polymer thin film is formed.
【請求項4】貴金属微粒子を電気化学的に、電極表面上
に析出させ、電極表面上に該貴金属微粒子の層を形成
し、次に、得られた貴金属微粒子層を、酵素や抗体に代
表される生体機能物質を含有した溶液に、浸漬させ、或
いは接触させ、該生体機能物質を、直接に、前記の貴金
属微粒子層内に取り込むことを特徴とする分子識別力を
有するバイオ電極の製造方法。
4. Precious metal fine particles are electrochemically deposited on an electrode surface to form a layer of the noble metal fine particles on the electrode surface, and then the obtained noble metal fine particle layer is typified by an enzyme or an antibody. A method for producing a bioelectrode having molecular discriminating power, characterized by immersing or contacting a solution containing a biofunctional substance into the noble metal fine particle layer.
【請求項5】更に、架橋処理を施す工程を有することを
特徴とする特許請求の範囲第4項に記載のバイオ電極の
製造方法。
5. The method for producing a bioelectrode according to claim 4, further comprising a step of performing a crosslinking treatment.
【請求項6】また、更に、高分子薄膜形成処理を施す工
程を有することを特徴とする特許請求の範囲第4又は5
項記載のバイオ電極の製造方法。
6. The method according to claim 4, further comprising a step of performing a polymer thin film forming process.
The method for producing a bioelectrode according to the above item.
JP62055387A 1987-03-12 1987-03-12 Method for immobilizing biofunctional substance and electrode using the same Expired - Lifetime JP2569404B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62055387A JP2569404B2 (en) 1987-03-12 1987-03-12 Method for immobilizing biofunctional substance and electrode using the same
DE3852122T DE3852122T2 (en) 1987-03-12 1988-03-11 IMMOBILIZATION OF BIO-FUNCTIONAL MATERIAL, ITEM PRODUCED FROM IT AND MEASURE TO USE IT.
PCT/JP1988/000256 WO1988007193A1 (en) 1987-03-12 1988-03-11 Immobilization of biofunctional material, element prepared therefrom and measurement using the same
EP88902542A EP0304494B1 (en) 1987-03-12 1988-03-11 Immobilization of biofunctional material, element prepared therefrom and measurement using the same
US07/714,901 US5256271A (en) 1987-03-12 1992-06-17 Method of immobilizing biofunctional material, and element prepared thereby, and measurement by using the same element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62055387A JP2569404B2 (en) 1987-03-12 1987-03-12 Method for immobilizing biofunctional substance and electrode using the same

Publications (2)

Publication Number Publication Date
JPS63222256A JPS63222256A (en) 1988-09-16
JP2569404B2 true JP2569404B2 (en) 1997-01-08

Family

ID=12997095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62055387A Expired - Lifetime JP2569404B2 (en) 1987-03-12 1987-03-12 Method for immobilizing biofunctional substance and electrode using the same

Country Status (1)

Country Link
JP (1) JP2569404B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7232511B1 (en) * 2002-01-10 2007-06-19 Panya, Inc. Multi-gas/vapor electrochemical sensor for the detection and monitoring of chemical and biological agents
WO2006009324A1 (en) * 2004-07-23 2006-01-26 Canon Kabushiki Kaisha Enzyme electrode, and device, sensor, fuel cell and electrochemical reactor employing the enzyme electrode
JP4632437B2 (en) * 2004-07-23 2011-02-16 キヤノン株式会社 Enzyme electrode, device having enzyme electrode, sensor, fuel cell, electrochemical reaction device
JP4785505B2 (en) * 2005-11-23 2011-10-05 独立行政法人科学技術振興機構 Enzyme immobilized biosensor
JP6205545B2 (en) 2012-06-25 2017-10-04 合同会社バイオエンジニアリング研究所 Enzyme electrode

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853745B2 (en) * 1977-09-29 1983-12-01 松下電器産業株式会社 enzyme electrode
JPS55129745A (en) * 1979-03-29 1980-10-07 Matsushita Electric Ind Co Ltd Enzyme electrode
JPH061252B2 (en) * 1984-08-31 1994-01-05 株式会社島津製作所 Oxidase electrode

Also Published As

Publication number Publication date
JPS63222256A (en) 1988-09-16

Similar Documents

Publication Publication Date Title
Mann-Buxbaum et al. New microminiaturized glucose sensors using covalent immobilization techniques
Ikariyama et al. Electrochemical fabrication of amperometric microenzyme sensor
Pantano et al. Enzyme‐modified microelectrodes for in vivo neurochemical measurements
McNeil et al. Direct electron transfer bioelectronic interfaces: application to clinical analysis
JP2636917B2 (en) Immobilized enzyme electrode
Stefan Electrochemical sensors in bioanalysis
JP3056221B2 (en) Enzyme electrode and method for producing the same
EP0251915A2 (en) Enzyme sensor
Ikariyama et al. One step fabrication of microbiosensor prepared by the codeposition of enzyme and platinum particles
Ikariyama et al. Micro-enzyme electrode prepared on platinized platinum
EP0304494B1 (en) Immobilization of biofunctional material, element prepared therefrom and measurement using the same
JP3393361B2 (en) Biosensor
Stonehuerner et al. Comparison of colloidal gold electrode fabrication methods: the preparation of a horseradish peroxidase enzyme electrode
US5269903A (en) Microbioelectrode and method of fabricating the same
JPH0697219B2 (en) Electrode for immunosensor and method for manufacturing the same
Wang et al. One-step electropolymeric co-immobilization of glucose oxidase and heparin for amperometric biosensing of glucose
Ikariyama et al. Surface control of platinized platinum as a transducer matrix for micro-enzyme electrodes
JP2569404B2 (en) Method for immobilizing biofunctional substance and electrode using the same
Ikariyama et al. High performance micro-enzyme sensor using platinized microelectrode.
EP0387026A2 (en) Biosensor device
EP0308514B1 (en) Method of fabrication of a biomicroelectrode
JPH0285755A (en) Immune sensor and detection of immune reaction
JP2616331B2 (en) Biosensor
JPS63223556A (en) Method for direct immobilization of biofunctional material and electrode using said method
JP2615391B2 (en) Enzyme analysis system and analysis method using the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term