JP2564387Y2 - Temperature compensated crystal oscillator - Google Patents
Temperature compensated crystal oscillatorInfo
- Publication number
- JP2564387Y2 JP2564387Y2 JP1991029632U JP2963291U JP2564387Y2 JP 2564387 Y2 JP2564387 Y2 JP 2564387Y2 JP 1991029632 U JP1991029632 U JP 1991029632U JP 2963291 U JP2963291 U JP 2963291U JP 2564387 Y2 JP2564387 Y2 JP 2564387Y2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- characteristic
- equation
- capacitor
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Oscillators With Electromechanical Resonators (AREA)
Description
【0001】[0001]
【産業上の利用分野】本考案は、特性曲線のバラツキの
大きなATカットされた水晶振動子の温度補償範囲を可
能にする温度補償型水晶発振器に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature-compensated crystal oscillator which enables a temperature-compensated range of an AT-cut crystal resonator having a large characteristic curve variation.
【0002】[0002]
【従来の技術】ATカットされた水晶振動子に対して、
低温領域から高温領域まで温度補償可能な温度補償型水
晶発振器として、図4に示すように、ATカットされた
水晶振動子41の一端に増幅器42を接続し、他端にコ
ンデンサと負の温度特性をもつサーミスタの並列接続し
た低温領域補償回路43及び高温領域補償回路44とを
接続した温度補償型水晶発振器が既に知られていた(特
公昭64−1969号公報参照)。2. Description of the Related Art For an AT-cut crystal unit,
As shown in FIG. 4, an amplifier 42 is connected to one end of an AT-cut crystal oscillator 41, and a capacitor and a negative temperature characteristic are connected to the other end as a temperature-compensated crystal oscillator capable of temperature compensation from a low-temperature region to a high-temperature region. A temperature-compensated crystal oscillator in which a low-temperature region compensating circuit 43 and a high-temperature region compensating circuit 44, which are connected in parallel with a thermistor, is already known (see Japanese Patent Publication No. 64-1969).
【0003】これにより、低温領域から高温領域にわた
る広い温度領域で、安定した温度補償が可能な水晶水晶
発振器が達成される。As a result, a crystal oscillator capable of performing stable temperature compensation in a wide temperature range from a low temperature region to a high temperature region is achieved.
【0004】[0004]
【従来技術の課題】しかしながら、上述の温度補償型水
晶発振器で温度補償可能な水晶振動子は、その固有周波
数−温度特性が図2のV、W、Xのように、基準点Oに
対して第1象限と第3象限にのみに特性が存在する、即
ち単調増加の3次曲線の特性の水晶振動子に限られ、例
えば、3次の曲線の極大値、極小値が第2象限又は第4
象限にある特性Y、Zは、補償の対象外の水晶振動子と
されていた。2. Description of the Related Art However, the above-described crystal resonator which can be temperature-compensated by the temperature-compensated crystal oscillator has its natural frequency-temperature characteristic with respect to a reference point O as shown by V, W and X in FIG. The characteristic exists only in the first quadrant and the third quadrant, that is, the characteristic is limited to the crystal oscillator having the characteristic of the monotonically increasing cubic curve. For example, the maximum value and the minimum value of the cubic curve are in the second quadrant or the third quadrant. 4
The characteristics Y and Z in the quadrant were regarded as the quartz oscillators not to be compensated.
【0005】このため、上述の単調増加の3次の曲線の
特性の水晶振動子を得るために、水晶基板から特別な角
度でカットされた水晶振動子が使用され、高価で且つ入
手困難など種々の問題点があった。For this reason, in order to obtain a quartz oscillator having the above-described monotonically increasing cubic curve characteristic, a quartz oscillator cut at a special angle from a quartz substrate is used. There was a problem.
【0006】本考案は上述の問題に鑑みて案出されたも
のであり、その目的は、3次関数の周波数−温度特性曲
線の極大値、極小値が第2象限又は第4象限にある、一
般的な水晶振動子においても、低温領域から高温領域ま
での広い温度領域で温度補償可能な温度補償型水晶発振
器である。The present invention has been devised in view of the above-mentioned problem, and has as its object that the maximum value and the minimum value of the frequency-temperature characteristic curve of the cubic function are in the second quadrant or the fourth quadrant. This is a temperature-compensated crystal oscillator that can perform temperature compensation in a wide temperature range from a low temperature range to a high temperature range even in a general crystal resonator.
【0007】[0007]
【問題点を解決するための具体的な手段】上述の問題点
を解決するため本考案が提案する具体的な手段は、温度
を横軸、周波数を縦軸とし、基準温度及び当該基準温度
における周波数を原点とする座標に対して、周波数温度
特性の極大値、極小値が第2象限、第4象限となる3次
の曲線特性を有するATカットされた水晶振動子の一端
に増幅器を、該水晶振動子の他端に直列的に、該水晶振
動子の3次の特性曲線の原点を中心に左回転させて、前
記極大値、極小値が夫々第3象限、第1象限となる3次
の曲線特性となるように補正する温度補償用コンデン
サ、コンデンサと負の温度特性を有するサーミスタとを
並列的に接続して成る低温領域補償回路、コンデンサと
負の温度特性を有するサーミスタとを並列的に接続して
成る高温領域補償回路を、夫々接続したことを特徴とす
る温度補償型水晶発振器である。Concrete means for solving the problems The concrete means proposed by the present invention for solving the above-mentioned problems is that the horizontal axis represents the temperature, the vertical axis represents the frequency, the reference temperature and the reference temperature. An amplifier is provided at one end of an AT-cut crystal resonator having a cubic curve characteristic in which a maximum value and a minimum value of a frequency temperature characteristic are in a second quadrant and a fourth quadrant with respect to coordinates having a frequency as an origin. A third rotation in which the local maximum value and the local minimum value become the third quadrant and the first quadrant, respectively, by being rotated counterclockwise around the origin of the tertiary characteristic curve of the crystal resonator in series with the other end of the crystal resonator. Temperature compensating capacitor that corrects to have the curve characteristic of, a low-temperature region compensating circuit in which a capacitor and a thermistor having a negative temperature characteristic are connected in parallel, and a capacitor and a thermistor having a negative temperature characteristic are connected in parallel. High-temperature region compensation circuit connected to The is a temperature compensated crystal oscillator, characterized in that the respective connections.
【0008】[0008]
【作用】上述の構成の温度補償型水晶発振器によれば、
水晶振動子の固有周波数−温度特性曲線を、水晶振動子
の他端に接続した温度補償用コンデンサで、単調増加の
3次曲線にその傾きを補正する。このように単調増加の
周波数−温度特性を有する水晶振動子及び温度補償用コ
ンデンサを、低温領域補償回路及び高温領域補償回路と
が直列的に接続された温度補償回路で温度補償をおこな
う。According to the temperature compensated crystal oscillator having the above configuration,
The slope of the natural frequency-temperature characteristic curve of the crystal unit is corrected to a monotonically increasing cubic curve by a temperature compensation capacitor connected to the other end of the crystal unit. The temperature compensation circuit in which the low-temperature region compensation circuit and the high-temperature region compensation circuit are connected in series to the crystal unit having the monotonically increasing frequency-temperature characteristic and the temperature compensation capacitor is performed.
【0009】これにより、従来では、広い温度範囲で温
度補償が不可能であった水晶振動子であっても、簡単に
温度補償が可能となり、特別な角度で水晶基板をカット
する必要はなく、その実用性は究めて大きなものとな
る。As a result, even in the case of a crystal unit which could not be temperature-compensated in a wide temperature range in the past, temperature compensation can be easily performed, and it is not necessary to cut the crystal substrate at a special angle. Its practicality is extremely large.
【0010】[0010]
【実施例】以下、本考案の温度補償型水晶発振器を図面
を用いて説明する。図1は温度補償型水晶発振器の回路
図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a temperature compensated crystal oscillator according to the present invention. FIG. 1 is a circuit diagram of a temperature compensated crystal oscillator.
【0011】図において、1はATカットされた水晶振
動子、2は増幅回路、3は温度補償用コンデンサ、4は
低温領域補償回路、5は高温領域補償回路である。In FIG. 1, reference numeral 1 denotes an AT-cut crystal resonator, reference numeral 2 denotes an amplifier circuit, reference numeral 3 denotes a temperature compensation capacitor, reference numeral 4 denotes a low-temperature region compensation circuit, and reference numeral 5 denotes a high-temperature region compensation circuit.
【0012】水晶振動子1は、水晶原石からAT方向に
切断された水晶辺に電極を形成したものであり、基本周
波数が1MHz〜30MHzである。The quartz resonator 1 has electrodes formed on a quartz side cut in the AT direction from a rough quartz crystal and has a fundamental frequency of 1 MHz to 30 MHz.
【0013】増幅回路2は、水晶振動子1の一端に接続
されるものであり、トランジスタTr、コンデンサ
C1 、C2 、C3 、抵抗R1 〜R4 から構成されてい
る。即ちこの増幅回路2では水晶振動子1の発振を増幅
するとともに、増幅回路2のコンデンサC1 、C2 によ
って、コルピッツ発振回路における水晶振動子1の一方
の入出力コンデンサ成分を形成している。The amplifier circuit 2, which is connected to one end of the crystal resonator 1, the transistor Tr, a capacitor C 1, C 2, C 3, and a resistor R 1 to R 4. That amplifies the oscillation of the amplifier circuit 2, crystal oscillator 1, the capacitor C 1, C 2 of the amplifier circuit 2, which forms one of the input and output capacitor components of the crystal oscillator 1 in Colpitts oscillation circuit.
【0014】温度補償用コンデンサ3は、水晶振動子1
の他端に接続され、水晶振動子1が有する固有周波数−
温度特性を、所定傾きを有する周波数−温度特性に補正
するものである。この温度補償用コンデンサ3の温度係
数、容量を水晶振動子1の固有周波数−温度特性に応じ
て適宜設定すれば、水晶振動子1と温度補償用コンデン
サ3とを直列接続した周波数−温度特性が、基準点に対
して第1象限及び第3象限のみを通る単調増加の3次の
曲線に補正できる。The temperature compensating capacitor 3 is a crystal oscillator 1
Is connected to the other end of the crystal oscillator 1 and has a natural frequency −
The temperature characteristic is corrected to a frequency-temperature characteristic having a predetermined slope. If the temperature coefficient and the capacitance of the temperature compensating capacitor 3 are appropriately set in accordance with the natural frequency-temperature characteristics of the crystal unit 1, the frequency-temperature characteristics in which the crystal unit 1 and the temperature compensating capacitor 3 are connected in series are obtained. Can be corrected to a monotonically increasing cubic curve passing through only the first and third quadrants with respect to the reference point.
【0015】低温領域補償回路4は、コンデンサC4 と
負の特性サーミスタTh1 と可変抵抗R5 とを並列に接
続して構成されている。低温領域補償回路4によって、
水晶振動子1及び温度補償用コンデンサ3の低温領域、
例えば20℃以下の周波数−温度特性を傾きを補正する
働きをする。即ち、図2の第3象限に単調増加する特性
の傾きを小さくして、平坦化する。The low temperature region compensation circuit 4 is configured by connecting a capacitor C 4 , a negative characteristic thermistor Th 1 and a variable resistor R 5 in parallel. By the low temperature region compensation circuit 4,
Low temperature region of the crystal unit 1 and the temperature compensating capacitor 3;
For example, it functions to correct the slope of the frequency-temperature characteristic of 20 ° C. or less. That is, the characteristic is monotonically increased in the third quadrant of FIG.
【0016】高温領域補償回路5は、コンデンサC5 と
負の特性サーミスタTh2 とを並列に接続して構成され
ている。高温領域補償回路5によって、水晶振動子1及
び温度補償用コンデンサ3の高温領域、例えば20℃以
上の周波数−温度特性を傾きを補正する働きをする。即
ち、図2の第1象限に存在する単調増加の傾きを小さく
して、平坦化する。The high temperature region compensation circuit 5 is configured by connecting a capacitor C 5 and a negative characteristic thermistor Th 2 in parallel. The high-temperature region compensation circuit 5 functions to correct the inclination of the frequency-temperature characteristics of the crystal resonator 1 and the temperature compensating capacitor 3 in the high-temperature region, for example, 20 ° C. or more. That is, the flattening is performed by decreasing the inclination of the monotonous increase existing in the first quadrant of FIG.
【0017】上述の温度補償型水晶発振器によれば、先
ず、水晶振動子1の固有周波数−温度特性の3次曲線を
温度補償用コンデンサ3で、単調増加の3次曲線に補正
して、次の段階で、低温領域の補償、高温領域の補償を
行うものである。即ち、図2の特性図において、特性
Y、Zのような特性を、特性V、W、Xのように変換し
て、この状態で低温領域から高温領域までの補償を行
う。According to the above-described temperature-compensated crystal oscillator, first, the cubic curve of the natural frequency-temperature characteristic of the crystal unit 1 is corrected to a monotonically increasing cubic curve by the temperature compensating capacitor 3. In this step, compensation for the low-temperature region and compensation for the high-temperature region are performed. That is, in the characteristic diagram of FIG. 2, characteristics such as characteristics Y and Z are converted into characteristics V, W and X, and in this state, compensation is performed from a low temperature region to a high temperature region.
【0018】次に、水晶振動子1を見掛け上単調増加の
周波数−温度特性に補正する温度補償用コンデンサ3の
設定について説明する。Next, the setting of the temperature compensating capacitor 3 for correcting the crystal oscillator 1 to apparently monotonically increasing frequency-temperature characteristics will be described.
【0019】まず、設定手順として、 水晶振動子1の等価回路の直列共振周波数fs、等価
並列容量CO 、等価並列容量C1 を求める。 水晶振動子1の周波数−温度特性より近似した3次式
の3乗の項の係数a、2乗の項の係数b、1乗の項の係
数c及び基準温度TO を求める。 水晶振動子1の基準温度TO における負荷容量CL0を
決定する。 水晶振動子1の温度による周波数変動が零になるよう
に、温度補償用コンデンサ3の負荷容量CL の所定温度
特性を求める。 この特性の極小点、極大点となる温度、負荷容量、傾
きを求める。 基準温度TO において、CT0なる容量値で、温度係数
kcのコンデンサと、温度係数零のCA なる容量値のコ
ンデンサとの直列回路が、で求めた温度で、その容量
値と温度傾きが等しいとして、容量値CT0、温度係数k
cを決定する。 先の負荷容量CL の所望値からの温度特性を差し引
いた新しい負荷容量CLを求める。First, as a setting procedure, a series resonance frequency fs, an equivalent parallel capacitance C O , and an equivalent parallel capacitance C 1 of an equivalent circuit of the crystal unit 1 are obtained. The coefficient a of the cubic term of the cubic equation approximated from the frequency-temperature characteristic of the crystal unit 1, the coefficient b of the second order term, the coefficient c of the first order term, and the reference temperature T O are obtained. The load capacitance C L0 of the crystal unit 1 at the reference temperature T O is determined. As frequency variation with temperature of the crystal resonator 1 becomes zero, obtaining the predetermined temperature characteristic of the load capacitance C L of the temperature compensating capacitor 3. The temperature, load capacity, and slope at which the characteristic has the minimum and maximum points are determined. At a reference temperature T O , a series circuit of a capacitor having a temperature coefficient kc with a capacitance value of C T0 and a capacitor having a capacitance value of C A with a temperature coefficient of zero has a capacitance value and a temperature gradient at a temperature determined by: Are equal, the capacitance value C T0 and the temperature coefficient k
Determine c. For a new load capacitance C L obtained by subtracting the temperature characteristic from the desired value of the previous load capacitance C L.
【0020】一般に水晶振動子の発振周波数は以下の
(1)式で示される。Generally, the oscillation frequency of a crystal oscillator is expressed by the following equation (1).
【0021】[0021]
【数1】 (Equation 1)
【0022】水晶振動子の温度特性は、直列共振周波数
fs(T) で代表し、CO 、C1は温度に対して不変
と仮定する。一般にATカットされた水晶振動子の周波
数−温度特性は3次の曲線(3次式e)で近似されるの
で、周囲温度Tの直列共振周波数fs(T) は基準温度T
O とすれば、(2)式で表される。尚、fs(0) は基準
温度TO における共振周波数である。The temperature characteristic of the crystal unit is represented by the series resonance frequency fs (T) , and it is assumed that C O and C 1 are invariant with respect to temperature. In general, the frequency-temperature characteristics of an AT-cut quartz resonator are approximated by a cubic curve (cubic equation e), so that the series resonance frequency fs (T) of the ambient temperature T is equal to the reference temperature T
If it is O , it is expressed by equation (2). Note that fs (0) is the resonance frequency at the reference temperature T O.
【0023】[0023]
【数2】 (Equation 2)
【0024】[0024]
【数3】 (Equation 3)
【0025】ここで、a、b、cは比例定数である。Here, a, b and c are proportional constants.
【0026】(2)を(1)に代入すると、次の(4)
式となる。By substituting (2) for (1), the following (4)
It becomes an expression.
【0027】[0027]
【数4】 (Equation 4)
【0028】つぎに、負荷容量の所望温度特性について
考察する。Next, the desired temperature characteristics of the load capacity will be considered.
【0029】(4)において、周囲温度T=TO におい
て、fs(T) =f(0) 、e=0であるから、f(0) は
(5)式で表される。[0029] In (4), at ambient temperature T = T O, fs (T ) = f (0), because it is e = 0, f (0) is expressed by equation (5).
【0030】[0030]
【数5】 (Equation 5)
【0031】周囲温度Tが変動しても周波数の温度変化
がない。即ちfs(T) =f(0) で一定であるように、C
L (T) を変化させれば、水晶振動子の温度補償が理想的
に行われることになる。この時の負荷容量CL (T) 温度
特性値が求める所望値である。(4)式=(5)式とし
て計算すると、(6)式となる。Even if the ambient temperature T fluctuates, there is no frequency temperature change. That is, C is such that fs (T) = f (0) is constant.
If L (T) is changed, the temperature compensation of the crystal unit is ideally performed. The load capacitance CL (T) temperature characteristic value at this time is a desired value to be obtained. When the calculation is performed as Expression (4) = Expression (5), Expression (6) is obtained.
【0032】[0032]
【数6】 (Equation 6)
【0033】(6)式を温度Tで微分すると(7)式と
なる。Differentiating equation (6) with temperature T gives equation (7).
【0034】[0034]
【数7】 (Equation 7)
【0035】この(7)式の極値(極大値または極小
値)を求めるが、(2)式をTで2回微分して、極値と
して計算すると、(9)式となる。The extreme value (maximum value or minimum value) of the equation (7) is obtained. When the equation (2) is differentiated twice by T and calculated as an extreme value, the equation (9) is obtained.
【0036】[0036]
【数8】 (Equation 8)
【0037】[0037]
【数9】 (Equation 9)
【0038】(9)式において、零とおいて、TをT’
として求める。In equation (9), T is set to zero and T is set to T '.
Asking.
【0039】[0039]
【数10】 (Equation 10)
【0040】ここで、T’は温度に対する周波数の変化
率が極大又は極小となる温度をしめしている。Here, T 'indicates a temperature at which the rate of change of the frequency with respect to the temperature becomes maximum or minimum.
【0041】このT’を(3)式のTの微分式に代入し
て、eXNを(11)式で示す。By substituting this T 'into the differential equation of T in equation (3), eXN is expressed by equation (11).
【0042】[0042]
【数11】 [Equation 11]
【0043】次に、(6)式、(7)式に(10)式を
代入して、極値の温度における負荷容量CL (T')とその
傾きdCL (T')/dTを計算する。Next, equation (10) is substituted into equations (6) and (7) to calculate the load capacitance CL (T ') and its slope dCL (T') / dT at the extreme temperature. .
【0044】[0044]
【数12】 (Equation 12)
【0045】[0045]
【数13】 (Equation 13)
【0046】即ち、基準温度TO での負荷容量CL O な
る水晶振動子で、周波数の温度変動を零にするには、
(6)式で示すような負荷容量が必要であり、その温度
変化の割合の極値は(13)式で、その温度は(10)
式のT’で、容量値は(12)式で与えられる。[0046] That is, in the load capacitance CL O becomes crystal oscillator at a reference temperature T O, to zero the temperature variation of the frequency,
The load capacity as shown in the equation (6) is required, and the extreme value of the temperature change rate is the equation (13), and the temperature is (10)
At T ′ in the equation, the capacitance value is given by equation (12).
【0047】次に、温度補償用コンデンサ3による傾き
補正について説明する。Next, the inclination correction by the temperature compensating capacitor 3 will be described.
【0048】温度補償用コンデンサ3の温度係数をKc
とすると、温度特性CT(T) は(14)式となる。The temperature coefficient of the temperature compensating capacitor 3 is Kc
Then, the temperature characteristic CT (T) becomes the equation (14).
【0049】[0049]
【数14】 [Equation 14]
【0050】ここで、温度補償用コンデンサ3が温度係
数Kcのコンデンサと温度係数が零の固定コンデンサC
A の直列回路で考え、その総合の容量を水晶振動子1の
負荷容量CL (T) と考えと、(15)式となる。Here, the temperature compensating capacitor 3 is a capacitor having a temperature coefficient Kc and a fixed capacitor C having a temperature coefficient of zero.
Considering the series circuit of A, and considering the total capacitance as the load capacitance CL (T) of the crystal unit 1, the expression (15) is obtained.
【0051】[0051]
【数15】 (Equation 15)
【0052】さらに、(15)式をTで微分する。Further, the equation (15) is differentiated by T.
【0053】[0053]
【数16】 (Equation 16)
【0054】先に求めた(10)式を(15)、(1
6)式に代入する。The previously obtained equation (10) is replaced by (15), (1)
6) Substitute in equation.
【0055】[0055]
【数17】 [Equation 17]
【0056】[0056]
【数18】 (Equation 18)
【0057】(12)、(13)式のM1 、M2 と(1
7)(18)式を等しいと置き、Kc、CT(0) を求め
る。M 1 , M 2 in equations (12) and (13) and (1
7) Kc and CT (0) are obtained by setting equation (18) to be equal.
【0058】[0058]
【数19】 [Equation 19]
【0059】[0059]
【数20】 (Equation 20)
【0060】(19)式を(20)式に代入する。The equation (19) is substituted into the equation (20).
【0061】[0061]
【数21】 (Equation 21)
【0062】(19)式を(21)式に代入する。The equation (19) is substituted into the equation (21).
【0063】[0063]
【数22】 (Equation 22)
【0064】(19)式を(22)式に代入する。The equation (19) is substituted into the equation (22).
【0065】[0065]
【数23】 (Equation 23)
【0066】(22)式で与えられるCT(0) に等しい
か又は小さな容量値で、(23)式で与えられるKcに
等しい温度係数をもつ温度補償用コンデンサを使用すれ
ば、水晶振動子1と温度補償用コンデンサ3との温度−
周波数特性の3次曲線が単調増加となり、基準温度TO
を原点として、第1象限及び第3象限を通る曲線とな
る。By using a temperature compensating capacitor having a capacitance value equal to or smaller than CT (0) given by the equation (22) and having a temperature coefficient equal to Kc given by the equation (23), Between the capacitor and the temperature compensating capacitor 3-
The cubic curve of the frequency characteristic increases monotonically, and the reference temperature T O
Is the origin, and a curve passes through the first quadrant and the third quadrant.
【0067】このように、水晶振動子1の温度−周波数
特性を温度補償用コンデンサ3を接続して第1象限及び
第3象限を通る温度−周波数特性曲線に補正した後、特
公昭64−1969に開示された手法で、温度補償を行
う。 例えば、水晶振動子の特性 直列共振周波数:16.587MHz 等価直列容量 :15.7fF 等価直列容量 : 4pF 周波数−温度特性の3次曲線 a=1.049×10-10 b=−5.43×10-10 c=−3.031×10-7 基準温度 TO =25 補償用コンデンサとして 容量値33.331pF 温度係数Kc=−1848.94PPM/℃ 低温領域温度補償回路4として、 サーミスタ基準抵抗 7.04775Ω 温度特性 3000 並列容量 99.2981pF 高温領域温度補償回路5として、 サーミスタ基準抵抗 957.532Ω 温度特性 3500 並列容量 99.5266pF として、水晶発振器の温度補償をおこなった。As described above, after the temperature-frequency characteristic of the crystal unit 1 is corrected to a temperature-frequency characteristic curve passing through the first quadrant and the third quadrant by connecting the temperature compensating capacitor 3, the Japanese Patent Publication No. 64-1969 is disclosed. The temperature is compensated by the method disclosed in (1). For example, the characteristics of a crystal resonator. Series resonance frequency: 16.587 MHz. Equivalent series capacitance: 15.7 fF. Equivalent series capacitance: 4 pF. Third-order curve of frequency-temperature characteristics: a = 1.049 × 10 −10 b = −5.43 × 10 −10 c = −3.031 × 10 −7 Reference temperature T O = 25 Capacitance value 33.331 pF as compensation capacitor Temperature coefficient Kc = −1848.94 PPM / ° C. Thermistor reference resistance 7 as low temperature region temperature compensation circuit 4 The temperature compensation of the crystal oscillator was performed with the thermistor reference resistance 957.532Ω as the thermistor reference resistance 957.532Ω as the high temperature region temperature compensating circuit 5 and with the parallel characteristic 99.5266 pF as the high temperature region temperature compensation circuit 5.
【0068】その結果を、図3に示す。FIG. 3 shows the result.
【0069】図において、線Sは補償後の周波数−温度
特性であり、線Tは補償前の周波数−温度特性であり、
線Uは補償値である。In the figure, a line S represents frequency-temperature characteristics after compensation, and a line T represents frequency-temperature characteristics before compensation.
Line U is the compensation value.
【0070】図3の線Tからあきらかなように、基準温
度25℃を原点として、第2象限、第4象限を通過する
周波数−温度特性を有する水晶振動子であっても、線S
のように温度補償後には、−30〜+75℃の温度範囲
で、±1PPMの変動内に補償が可能となる。As is apparent from the line T in FIG. 3, even if the crystal unit has frequency-temperature characteristics passing through the second and fourth quadrants with the reference temperature of 25 ° C. as the origin, the line S
As described above, after the temperature compensation, compensation can be performed within a variation of ± 1 PPM in a temperature range of −30 to + 75 ° C.
【0071】以上のように、本考案によれば、従来で温
度補償が困難であった基準温度を原点として、第2象
限、第4象限を通過する周波数−温度特性を有する水晶
振動子であっても、温度補償用コンデンサ3の特性を適
宜設定することによって、容易に温度補償が可能とな
り、通常の水晶振動子1であっても、広い温度領域に渡
って温度補償が可能となる。As described above, according to the present invention, there is provided a crystal resonator having a frequency-temperature characteristic that passes through the second and fourth quadrants with reference to the reference temperature at which temperature compensation has conventionally been difficult. However, by appropriately setting the characteristics of the temperature compensating capacitor 3, the temperature can be easily compensated, and even with the ordinary crystal resonator 1, the temperature can be compensated over a wide temperature range.
【0072】[0072]
【考案の効果】以上のように、本考案よれば、一般的な
水晶振動子においても、低温領域から高温領域までの広
い温度領域で温度補償可能な温度補償型水晶発振器とな
る。As described above, according to the present invention, a temperature-compensated crystal oscillator capable of performing temperature compensation in a wide temperature range from a low temperature region to a high temperature region even in a general crystal resonator.
【図1】本考案の温度補償型発振回路の回路図である。FIG. 1 is a circuit diagram of a temperature compensated oscillation circuit according to the present invention.
【図2】水晶振動子の温度−周波数との関係を示す特性
図である。FIG. 2 is a characteristic diagram showing a relationship between a temperature and a frequency of a crystal resonator.
【図3】本考案の温度補償型発振回路による補償度合い
を示す特性図である。FIG. 3 is a characteristic diagram showing a degree of compensation by the temperature compensated oscillation circuit of the present invention.
【図4】従来の温度補償型発振回路の回路図である。FIG. 4 is a circuit diagram of a conventional temperature compensated oscillation circuit.
1、41 水晶振動子 2、42 増幅回路 3 温度補償用コンデンサ 4、43 低温領域補償回路 5、44 高温領域補償回路 1, 41 crystal oscillator 2, 42 amplifying circuit 3 capacitor for temperature compensation 4, 43 low-temperature region compensation circuit 5, 44 high-temperature region compensation circuit
Claims (1)
度及び当該基準温度における周波数を原点とする座標に
対して、周波数温度特性の極大値、極小値が第2象限、
第4象限となる3次の曲線特性を有するATカットされ
た水晶振動子の一端に増幅器を、該水晶振動子の他端に
直列的に、 該水晶振動子の3次の特性曲線の原点を中心に左回転さ
せて、前記極大値、極小値が夫々第3象限、第1象限と
なる3次の曲線特性となるように補正する温度補償用コ
ンデンサ、 コンデンサと負の温度特性を有するサーミスタとを並列
的に接続して成る低温領域補償回路、 コンデンサと負の温度特性を有するサーミスタとを並列
的に接続して成る高温領域補償回路を、 夫々接続したことを特徴とする温度補償型水晶発振器。The temperature is represented on the horizontal axis, the frequency on the vertical axis, and the reference temperature.
Degrees and the frequency at the reference temperature as the origin.
On the other hand, the maximum value and the minimum value of the frequency temperature characteristic are in the second quadrant,
An amplifier is provided at one end of an AT-cut crystal resonator having a third-order curve characteristic serving as a fourth quadrant, and the origin of a third-order characteristic curve of the crystal resonator is serially connected to the other end of the crystal resonator. A temperature compensating capacitor which is rotated left to the center to correct the local maximum value and the local minimum value so as to have a cubic curve characteristic of a third quadrant and a first quadrant, respectively; a capacitor and a thermistor having a negative temperature characteristic; Temperature-compensated crystal oscillator characterized in that a low-temperature region compensation circuit is connected in parallel with a capacitor, and a high-temperature region compensation circuit is connected in parallel with a capacitor and a thermistor having a negative temperature characteristic. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1991029632U JP2564387Y2 (en) | 1991-04-26 | 1991-04-26 | Temperature compensated crystal oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1991029632U JP2564387Y2 (en) | 1991-04-26 | 1991-04-26 | Temperature compensated crystal oscillator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04123613U JPH04123613U (en) | 1992-11-10 |
JP2564387Y2 true JP2564387Y2 (en) | 1998-03-09 |
Family
ID=31913457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1991029632U Expired - Lifetime JP2564387Y2 (en) | 1991-04-26 | 1991-04-26 | Temperature compensated crystal oscillator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2564387Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016187153A (en) * | 2015-03-27 | 2016-10-27 | セイコーエプソン株式会社 | Oscillator, electronic apparatus, and mobile body |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0781846B2 (en) * | 1985-01-09 | 1995-09-06 | 株式会社東芝 | Pattern edge measuring method and device |
JPS6249331A (en) * | 1985-08-28 | 1987-03-04 | Nec Corp | Thin high-polymer film elememt having photoresponsiveness |
JPS6249332A (en) * | 1985-08-29 | 1987-03-04 | Tokuyama Soda Co Ltd | Electrochromic display element |
-
1991
- 1991-04-26 JP JP1991029632U patent/JP2564387Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04123613U (en) | 1992-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001267847A (en) | Temperature compensated crystal oscillator and method for compensating temperature or the oscillator | |
WO2005020427A1 (en) | Temperature compensated piezoelectric oscillator and electronic apparatus comprising it | |
JPH01108801A (en) | Temperature compensation type pizo- electric oscillator | |
JP2564387Y2 (en) | Temperature compensated crystal oscillator | |
US4051446A (en) | Temperature compensating circuit for use with a crystal oscillator | |
JP2713214B2 (en) | Temperature compensation device for crystal oscillation circuit | |
US20040108911A1 (en) | Temperature compensated crystal oscillator | |
JPH0716414U (en) | Temperature compensated crystal oscillator circuit | |
JPH10294617A (en) | Temperature compensated crystal oscillator | |
JPH051128Y2 (en) | ||
JPH10135738A (en) | Temperature compensation crystal oscillator | |
JP2975386B2 (en) | Digital temperature compensated oscillator | |
WO2021157122A1 (en) | Oscillator, temperature compensating circuit, and crystal vibrating element | |
WO2021140695A1 (en) | Oscillator, temperature compensation circuit, and temperature compensation method | |
JP2917154B2 (en) | Temperature compensated crystal oscillator | |
JP2784118B2 (en) | Temperature compensated crystal oscillator | |
JPH026243B2 (en) | ||
JP3211134B2 (en) | Calculation method of oscillation frequency of crystal unit | |
JP3243680B2 (en) | Frequency correction method for digitally controlled oscillator | |
JPS6316042B2 (en) | ||
JP2002299957A (en) | Method for correcting temperature characteristics of crystal oscillator | |
JP2640131B2 (en) | Temperature compensated crystal oscillator | |
JPH09307355A (en) | Oscillator | |
JPH06291550A (en) | Digital type temperature compensation piezoelectric oscillator and communication equipment | |
JP2750886B2 (en) | Temperature sensitive voltage generating circuit and temperature compensating element using the same |