JP2560804B2 - Method for manufacturing wear resistant Al alloy member - Google Patents

Method for manufacturing wear resistant Al alloy member

Info

Publication number
JP2560804B2
JP2560804B2 JP63251616A JP25161688A JP2560804B2 JP 2560804 B2 JP2560804 B2 JP 2560804B2 JP 63251616 A JP63251616 A JP 63251616A JP 25161688 A JP25161688 A JP 25161688A JP 2560804 B2 JP2560804 B2 JP 2560804B2
Authority
JP
Japan
Prior art keywords
hard particles
alloy
molten
particles
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63251616A
Other languages
Japanese (ja)
Other versions
JPH02101177A (en
Inventor
原嗣 小山
政宏 仲川
孝明 金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63251616A priority Critical patent/JP2560804B2/en
Publication of JPH02101177A publication Critical patent/JPH02101177A/en
Application granted granted Critical
Publication of JP2560804B2 publication Critical patent/JP2560804B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • B23K35/327Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C comprising refractory compounds, e.g. carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、例えば自動車用エンジンのピストンの如
く、耐摩耗性が要求される部位を有する各種部品に好適
に使用されるAl合金部材の製造方法に関し、特にレーザ
ビームやTIGアーク等の高密度エネルギー源を用いてAl
合金基材表面に他の材料を合金化(アロイング)して耐
摩耗性が高い表面合金化層を形成したAl合金部材の製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an Al alloy member that is preferably used for various parts having a portion requiring wear resistance, such as a piston of an automobile engine. , Especially using a high density energy source such as laser beam or TIG arc
The present invention relates to a method for producing an Al alloy member in which a surface alloyed layer having high wear resistance is formed by alloying (alloying) another material on the surface of an alloy base material.

従来の技術 耐摩耗性が要求される部位に適用されるAl合金部材の
耐摩耗性を局部的に向上させるための方法としては、従
来からメッキや陽極酸化処理、あるいは溶射等の表面処
理を施して、耐摩耗性の高い表面処理層を形成する方法
が知られているが、いずれの場合も基材に対する表面処
理層の密着性が充分でないところから、高面圧下で使用
した場合に充分な耐久性を確保できないという問題があ
った。
Conventional technology As a method for locally improving the wear resistance of Al alloy members that are applied to the areas where wear resistance is required, conventionally, plating, anodizing treatment, or surface treatment such as thermal spraying has been performed. Therefore, a method for forming a surface-treated layer having high wear resistance is known, but in any case, since the adhesion of the surface-treated layer to the substrate is not sufficient, it is sufficient when used under high surface pressure. There was a problem that durability could not be secured.

そこで最近ではAl合金基材における耐摩耗性が要求さ
れる部位の表面に、レーザやTIGアーク等の高密度エネ
ルギーを用いて耐摩耗性向上元素であるNiやCrなどを合
金化させる方法が特開昭61−166982号、特開昭61−1669
84号、さらには特願昭62−243518号において提案されて
いる。すなわちAl合金基材の表面の耐摩耗性が要求され
る部位にNiやCrなどの合金化材料を配し、その上から高
密度エネルギーを印加して、基材表面層と合金化材料と
を同時に溶融させた後、直ちに再凝固させて、基材のAl
に対しNiやCrが合金化された耐摩耗性に優れた合金化層
を形成する方法である。このような方法によれば、耐摩
耗性に優れた合金化層は母材のAl合金と一体化している
ため密着性が高く、高面圧下で使用しても剥離等の問題
を生じない。
Therefore, recently, a method of alloying wear resistance improving elements such as Ni and Cr on the surface of the portion of the Al alloy base material where wear resistance is required by using high density energy such as laser or TIG arc Kai 61-166982, JP 61-1669
No. 84, and Japanese Patent Application No. 62-243518. That is, an alloying material such as Ni or Cr is placed on the surface of the Al alloy base material where abrasion resistance is required, and high-density energy is applied from above the base material surface layer and the alloying material. After melting at the same time, re-solidify immediately and
On the other hand, it is a method of forming an alloyed layer excellent in wear resistance in which Ni or Cr is alloyed. According to such a method, the alloyed layer having excellent wear resistance is integrated with the Al alloy as the base material, so that the adhesion is high and no problem such as peeling occurs even when used under high surface pressure.

ところでAl合金基材における耐摩耗性や、摺動相手材
との間での凝着を防止する性能(耐凝着性)を向上させ
るための合金化材料としては、前記各提案に示されてい
る合金化材料のうちでも、特願昭62−243518号に示され
ているCrが最も有効であると考えられる。この特願昭62
−243518号の提案による耐摩耗性Al合金部材は、Al合金
からなる基材の耐摩耗性が要求される部位の表面にCrを
合金化させて、金属間化合物CrAl7が面積率で10〜50%
の範囲内でAlマトリックス中に分散晶出している合金化
層が形成されたものである。このようにCrを合金化した
場合、合金化層中に硬質な金属間化合物CrAl7が分散し
ているために耐摩耗性、耐凝着性が優れるばかりでな
く、他の合金化材料例えばNiを用いた場合と比較して合
金化層の組織の均一性が優れるとともに合金濃度の制御
性も良いなど合金化性に著しく優れる。
By the way, as an alloying material for improving the wear resistance of the Al alloy base material and the performance (anti-adhesion resistance) of preventing the adhesion with the sliding counterpart material, it has been shown in the above proposals. Among the alloyed materials, Cr shown in Japanese Patent Application No. 62-243518 is considered to be the most effective. This Japanese Patent Application Sho 62
The wear-resistant Al alloy member proposed by No. 243518 is formed by alloying Cr on the surface of the site where the wear resistance of the base material made of an Al alloy is required, and the intermetallic compound CrAl 7 has an area ratio of 10 ~ 50%
Within this range, an alloyed layer in which dispersed crystals were crystallized in the Al matrix was formed. When Cr is alloyed in this way, not only is the wear resistance and adhesion resistance excellent because the hard intermetallic compound CrAl 7 is dispersed in the alloyed layer, other alloying materials such as Ni In comparison with the case of using, the alloying layer is excellent in homogeneity of the structure and the controllability of the alloy concentration is also excellent, and the alloying property is remarkably excellent.

発明が解決しようとする課題 前述のようにAl合金基材にCrを合金化してCrAl7が晶
出した合金化層を形成する場合、合金化性は著しく優れ
ており、また耐摩耗性および耐凝着性は基材のAl合金と
比較すれば格段に向上するが、Al合金部材の用途や使用
環境によっては、より高い耐摩耗性や耐凝着性が要求さ
れる場合があり、その場合には上述のCrの合金化だけで
は未だ不充分であった。すなわち、Cr濃度を高めて金属
間化合物CrAl7の面積率を高めることによってある程度
は耐摩耗性、耐凝着性を高めることは可能であるが、そ
れにも限界があるのが実情であった。
Problems to be Solved by the Invention As described above, when forming an alloyed layer in which CrAl 7 is crystallized by alloying Cr on the Al alloy base material, alloyability is remarkably excellent, and wear resistance and resistance Adhesion is significantly improved compared to the base Al alloy, but higher wear resistance and adhesion resistance may be required depending on the application and use environment of the Al alloy member. However, the above-mentioned alloying of Cr was still insufficient. That is, although it is possible to improve the wear resistance and the adhesion resistance to some extent by increasing the Cr concentration and increasing the area ratio of the intermetallic compound CrAl 7 , it is the fact that there is a limit to that.

この発明は以上の事情を背景としてなされたもので、
耐摩耗性、耐凝着性が著しく優れた合金化層を有するAl
合金部材の製造方法を提供することを目的とするもので
ある。
This invention was made against the background of the above circumstances.
Al with an alloyed layer with outstanding wear resistance and adhesion resistance
It is an object of the present invention to provide a method for manufacturing an alloy member.

課題を解決するための手段 本願発明者等は前述の問題を解決するべく鋭意実験・
検討を重ねた結果、Crと同時に各種金属の炭化物や窒化
物あるいは硼化物などの硬質粒子を合金化させ、金属間
化合物CrAl7と硬質粒子とを分散させた合金化層を形成
することによって、より優れた耐摩耗性、耐凝着性が得
られることを見出した。またこの場合、炭化物や窒化
物、硼化物などの硬質粒子を予めCrによりコーティング
しておき、そのCrコーティング硬質粒子を合金化材料と
して用いることによって、上述のような優れた特性を有
する合金化層が得られることを見出した。
Means for Solving the Problems The inventors of the present application have conducted diligent experiments to solve the above problems.
As a result of repeated studies, alloying hard particles such as carbides and nitrides or borides of various metals simultaneously with Cr, by forming an alloyed layer in which intermetallic compound CrAl 7 and hard particles are dispersed, It has been found that more excellent abrasion resistance and adhesion resistance can be obtained. Further, in this case, carbide or nitride, hard particles such as boride are previously coated with Cr, and by using the Cr-coated hard particles as an alloying material, an alloyed layer having the above-mentioned excellent properties is obtained. It was found that

したがって本願の請求項1の発明の耐摩耗性Al合金部
材の製造方法は、Al合金からなる基材における耐摩耗性
が要求される部位の表面に、WC,W2C,TiC,NbC,VC,MoC,Cr
3,C2,TaCを含む炭化物、あるいはTiN,CrNを含む窒化
物、あるいはCrB,NiB,TaBを含む硼化物のうちの1種、
またはこれらのうちの2種以上からなる硬質粒子をCrで
被覆してなる複合粒子の粉末を配置し、その上から高密
度エネルギーを印加して前記複合粒子中のCrと前記基材
表面とを急速溶融し、前記硬質粒子を溶融Crに包まれた
状態で溶融Al合金に混合させ、その後、前記溶融Crおよ
び溶融Alを急速凝固させることにより、前記硬質粒子を
前記基材の断面に対する面積率が5〜30%で均一に分散
させ、かつその周囲に金属間化合物CrAl7を、前記硬質
粒子を除いた部分に対する面積率が5〜50%で晶出させ
た合金化層を形成することを特徴とするものである。
Therefore, according to the method for producing a wear resistant Al alloy member of the invention of claim 1 of the present application, WC, W 2 C, TiC, NbC, VC is formed on the surface of the portion of the base material made of Al alloy where wear resistance is required. , MoC, Cr
One of carbide containing 3 , C 2 , TaC, nitride containing TiN, CrN, or boride containing CrB, NiB, TaB,
Alternatively, a powder of composite particles obtained by coating hard particles composed of two or more of these with Cr is disposed, and high density energy is applied from above to separate Cr in the composite particles and the surface of the base material. Rapid melting, mixing the hard particles in a molten Al alloy in a state of being wrapped in molten Cr, then rapidly solidifying the molten Cr and molten Al, the area ratio of the hard particles to the cross section of the substrate Of 5 to 30% are dispersed uniformly, and the intermetallic compound CrAl 7 is crystallized around the alloyed layer in an area ratio of 5 to 50% with respect to the portion excluding the hard particles. It is a feature.

作用 この発明のAl合金部材の製造方法における合金化層
は、炭化物や窒化物、硼化物などの硬質粒子が均一に分
散しているとともに、その硬質粒子以外の部分、すなわ
ちAlマトリックス中に金属間化合物であるCrAl7が微細
に分散晶出した構成となっている。
Action The alloyed layer in the method for producing an Al alloy member of the present invention, hard particles such as carbides, nitrides and borides are uniformly dispersed, and parts other than the hard particles, that is, intermetallic in the Al matrix. The compound CrAl 7 is finely dispersed and crystallized.

ここで、硬質粒子としては、WC,W2C,TiC,NbC,VC,MoC,
Cr3,C2,TaCなどの炭化物、あるいはTiN,CrNなどの窒化
物、あるいはCrB,NiB,TaBなどの硼化物のうちの1種ま
たはこれらのうちの2種以上を用いることができるが、
これらはいずれも著しく硬質であり、したがってこれら
の硬質粒子が分散していることによって、著しく優れた
耐摩耗性を発揮させることが可能である。但し、これら
の硬質粒子は合金処理時に外的に付加されるものである
から、比較的大径とならざるを得ず、そのため硬質粒子
をAlマトリックス中に分散させただけでは硬質粒子を取
囲むAlマトリックスが軟質であるため耐凝着性が充分に
向上せず、また耐摩耗性も必ずしも充分には向上しな
い。しかるにこの発明による合金化層では比較的大径の
硬質粒子を取囲むAlマトリックス中にAlとCrとの金属間
化合物CrAl7が微細に晶出しており、このCrAl7はAlマト
リックスと比較して格段に硬質であるから、硬質粒子を
取囲むAlマトリックスもCrAl7により強化されて硬質と
なっており、そのため耐凝着性、耐摩耗性が充分に向上
する。すなわち、この発明のAl合金部材の製造方法によ
り形成される合金化層においては、著しく硬質ではある
が比較的大径の硬質粒子が分散していると同時に硬質粒
子の周囲を取囲むAlマトリックス中に硬質でかつ微細な
金属間化合物CrAl7が分散しているため、両者が相俟っ
て著しく耐摩耗性、耐凝着性を向上させることができる
のである。
Here, as the hard particles, WC, W 2 C, TiC, NbC, VC, MoC,
One or two or more of carbides such as Cr 3 , C 2 and TaC, nitrides such as TiN and CrN, and borides such as CrB, NiB and TaB can be used.
All of them are extremely hard, and therefore, the dispersion of these hard particles makes it possible to exhibit extremely excellent wear resistance. However, since these hard particles are externally added during the alloy treatment, they have to have a relatively large diameter, and therefore the hard particles surround the hard particles only by being dispersed in the Al matrix. Since the Al matrix is soft, the adhesion resistance is not sufficiently improved, and the abrasion resistance is not necessarily sufficiently improved. However, in the alloyed layer according to the present invention, the intermetallic compound CrAl 7 of Al and Cr is finely crystallized in the Al matrix surrounding the relatively large diameter hard particles, and this CrAl 7 is compared with the Al matrix. Since it is remarkably hard, the Al matrix surrounding the hard particles is also hardened by being strengthened by CrAl 7 , and therefore the adhesion resistance and wear resistance are sufficiently improved. That is, in the alloyed layer formed by the method for producing an Al alloy member of the present invention, in the Al matrix that surrounds the hard particles while at the same time dispersing hard particles having a relatively large diameter while being extremely hard. Since the hard and fine intermetallic compound CrAl 7 is dispersed therein, the two can work together to remarkably improve the wear resistance and the adhesion resistance.

合金化層中に占める硬質粒子の割合は、断面に対する
面積率で5〜30%の範囲内とする必要がある。硬質粒子
の面積率が5%未満では耐摩耗性を充分に向上させるこ
とが困難であり、一方30%を越えれば合金化層が脆くな
ってクラックが生じ易くなり、充分な耐久性が得られな
くなるとともに、加工も困難となる。
The proportion of hard particles in the alloyed layer must be within the range of 5 to 30% in terms of area ratio with respect to the cross section. If the area ratio of the hard particles is less than 5%, it is difficult to sufficiently improve the wear resistance, while if it exceeds 30%, the alloyed layer becomes brittle and cracks easily occur, and sufficient durability can be obtained. As it disappears, processing becomes difficult.

また合金化層のAlマトリックス中に晶出しているCrAl
7の割合は、硬質粒子が占める部分を除いた部分の面積
率で5〜50%の範囲内とする必要がある。5%未満では
充分な耐摩耗性、耐凝着性を得る効果が得られず、一方
50%を越えればCrAl7の晶出量が過剰で合金化層が脆く
なり、加工が困難となる。
Also, CrAl crystallized in the Al matrix of the alloyed layer
The ratio of 7 must be within the range of 5 to 50% in the area ratio of the part excluding the part occupied by the hard particles. If it is less than 5%, the effect of obtaining sufficient wear resistance and adhesion resistance cannot be obtained, while
If it exceeds 50%, the crystallized amount of CrAl 7 becomes excessive and the alloyed layer becomes brittle, which makes working difficult.

上述のようなAl合金部材を製造するにあたっては、Al
合金基材表面の耐摩耗性が要求される部位の表面に、予
め前述のような硬質粒子をCrによって被覆してなる複合
粒子の粉末を配置し、その上からレーザやTIGアーク、
プラズマアーク、電子ビームなどの高密度エネルギーを
印加して、複合粒子中の硬質粒子とCrを基材表面層に合
金化させる。このとき、複合粒子内のWC等の硬質粒子は
一般にその融点が高いため高密度エネルギーを印加して
も溶融しないことが多いが、周囲のCrは溶融し、またAl
合金からなる基材表面層も同時に溶融して、硬質粒子は
溶融Crに包まれた状態で溶融Al合金に混合され、均一に
分解した状態となる。溶融Crは溶融Alと均一に混合さ
れ、凝固時に金属間化合物CrAl7としてAlマトリックス
中に均一かつ微細に晶出する。したがって硬質粒子が均
一に分散しかつその周囲のAlマトリックス中に金属間化
合物CrAl7が微細に晶出した合金化層が形成される。
In manufacturing the Al alloy member as described above, Al
On the surface of the portion where wear resistance of the alloy base material surface is required, the powder of the composite particles formed by previously coating the hard particles with Cr as described above is arranged, and a laser or TIG arc from above.
By applying high-density energy such as plasma arc or electron beam, the hard particles in the composite particles and Cr are alloyed with the base material surface layer. At this time, hard particles such as WC in the composite particles generally do not melt even when high-density energy is applied because of their high melting point, but the surrounding Cr melts and Al
The surface layer of the base material made of the alloy is also melted at the same time, and the hard particles are mixed with the molten Al alloy in the state of being surrounded by the molten Cr and are in a state of being uniformly decomposed. Molten Cr is uniformly mixed with molten Al, and crystallizes uniformly and finely in the Al matrix as an intermetallic compound CrAl 7 during solidification. Therefore, the hard particles are uniformly dispersed and an alloyed layer in which the intermetallic compound CrAl 7 is finely crystallized in the Al matrix around the hard particles is formed.

ここで、WC等の硬質粒子をCrで被覆せずにCr粉末と混
合して配して高密度エネルギーの印加による合金化を行
なった場合、合金化層中における硬質粒子の偏析が著し
くなり、そのため均一な耐摩耗性を得ることが困難とな
る。これに対し前述のように硬質粒子をCrによって被覆
した状態の複合粒子として配して合金化することによっ
て、硬質粒子の偏析を防止し、均一な耐摩耗性を得るこ
とが可能となる。
Here, when hard particles such as WC are mixed with Cr powder without being coated with Cr and arranged to perform alloying by applying high-density energy, segregation of hard particles in the alloyed layer becomes remarkable, Therefore, it becomes difficult to obtain uniform wear resistance. On the other hand, by disposing the hard particles as composite particles coated with Cr and alloying them as described above, segregation of the hard particles can be prevented and uniform wear resistance can be obtained.

なお硬質粒子をCrで被覆する手段としては、メッキ法
や造粒法など、公知の手段を用いることができる。
As a means for coating the hard particles with Cr, a known means such as a plating method or a granulation method can be used.

また合金化材料としては、上述のように硬質粒子をCr
で被覆した複合粒子の粉末を単独で使用しても良いが、
合金化層のCr濃度の調整等のために、上述の複合粒子粉
末とCr粉末との両者を混合して用いても良い。そしてま
た、複合粒子粉末自体としても、異なる種類の硬質粒子
をCrで被覆した2種以上の複合粒子を用いても良く、例
えばWCをCrで複合した複合粒子と、Cr3C2をCrで複合し
た複合粒子とを混合して用いても良い。
As the alloying material, hard particles such as Cr can be used as described above.
The powder of the composite particles coated with may be used alone,
In order to adjust the Cr concentration of the alloyed layer and the like, the above-mentioned composite particle powder and Cr powder may be mixed and used. Further, as the composite particle powder itself, two or more kinds of composite particles in which different kinds of hard particles are coated with Cr may be used. For example, a composite particle in which WC is combined with Cr and Cr 3 C 2 is combined with Cr. You may mix and use the composite particle which compounded.

実 施 例 Al合金基材として、鋳物用Al合金であるJIS AC2B合金
(Cu 3.2wt%、Si 6.12wt%、Mg 0.31wt%、Zn 0.48wt
%、Fe 0.37wt%、Mn 0.33wt%、残部Al)からなる基材
を用意し、各基材の10×40mmの範囲に、第1表に示す合
金化材料粉末をポリビニルアルコールをバインダとして
均一に塗布し、乾燥させた。このときの合金化材料粉末
の塗布量を第1表中に「合金化量」として示す。その
後、合金化材料粉末層上にTIGアークを印加して、合金
化処理を行なった。ここで、TIGアークのアーク出力
は、ピーク200A、ベース150Aとし、アーク電流のパルス
は各0.5sec、アーク移動速度(処理速度)は1.5mm/sec
として合金化材料粉末塗布領域の長さ方向に移動させ
た。またシールドガスはAr 5/minとした。
Example Al alloy base material is JIS AC2B alloy (Cu 3.2wt%, Si 6.12wt%, Mg 0.31wt%, Zn 0.48wt)
%, Fe 0.37 wt%, Mn 0.33 wt%, and the balance Al) are prepared, and the alloying material powder shown in Table 1 is uniformly used in the range of 10 × 40 mm of each base material using polyvinyl alcohol as a binder. And then dried. The coating amount of the alloying material powder at this time is shown as "alloying amount" in Table 1. Then, a TIG arc was applied on the alloying material powder layer to perform alloying treatment. Here, the arc output of the TIG arc is peak 200A, base 150A, each pulse of the arc current is 0.5sec, the arc moving speed (processing speed) is 1.5mm / sec.
Was moved in the length direction of the alloying material powder application area. The shielding gas was Ar 5 / min.

このようにして各Al合金基材に合金化処理を施すこと
により形成された合金化層について、その合金化層の状
態、CrAl7の面積率、硬質粒子の面積率を調べた結果を
第1表中に示す。なお第1表中において、合金化材料と
して用いているCr被覆WC粉末、Cr被覆Cr3C2粉末、Cr被
覆TiN粉末、Cr被覆CrB粉末は、いずれも硬質粒子をCrで
被覆した複合粒子であり、これらの複合粒子におけるCr
被覆層と硬質粒子との重量比は1:1とした。なおまた、
第1表中においてCrAl7の面積率は、硬質粒子の部分を
除いたマトリックスにおけるCrAl7の面積率を示し、硬
質粒子の面積率は全体に占める硬質粒子の面積率を示
す。
Regarding the alloyed layer formed by subjecting each Al alloy base material to the alloying treatment in this way, the results of examining the state of the alloyed layer, the area ratio of CrAl 7 and the area ratio of hard particles are shown below. Shown in the table. In Table 1, Cr-coated WC powder, Cr-coated Cr 3 C 2 powder, Cr-coated TiN powder, and Cr-coated CrB powder used as alloying materials are all composite particles in which hard particles are coated with Cr. Yes, Cr in these composite particles
The weight ratio of the coating layer and the hard particles was 1: 1. Again,
Area ratio of CrAl 7 in Table 1 in indicates the area ratio of CrAl 7 in the matrix except the portion of the hard particles, the area ratio of the hard particles exhibit a surface area ratio of the hard particles to the total.

さらに、第1表中における試料番号No.1の合金化層の
顕微鏡組織を第1図に示す。第1図において、黒色の塊
状の部分は硬質粒子としてのWC粒子であり、その周囲の
灰白色のAlマトリックス中に金属間化合物CrAl7が微細
に晶出している。
Further, FIG. 1 shows the microstructure of the alloyed layer of sample No. 1 in Table 1. In FIG. 1, the black lumps are WC particles as hard particles, and the intermetallic compound CrAl 7 is finely crystallized in the grey-white Al matrix around the WC particles.

第1表において、試料番号No.1,2,4,5,7,8,9,10がこ
の発明の実施例であり、これらの実施例における合金化
層では、第1図に代表されるように、硬質粒子は偏析を
生じることなく均一に分布し、かつ金属間化合物CrAl7
もAlマトリックス中に微細かつ均一に分布し、合金化層
の状態も特に異常が生じることなく良好であった。これ
に対しNo.3は硬質粒子WCの量が多過ぎた比較例であり、
この場合は合金化層にクラックが生じてしまった。また
No.12,No.13はいずれも硬質粒子をCrで被覆せずにCr粉
末と混合して合金化材料とした比較例であり、これらの
比較例では硬質粒子の偏析が著しく、均一な耐摩耗性を
得ることが困難である。
In Table 1, sample numbers No. 1,2,4,5,7,8,9,10 are examples of the present invention, and the alloyed layers in these examples are represented by FIG. As described above, the hard particles are uniformly distributed without causing segregation, and the intermetallic compound CrAl 7
Was finely and uniformly distributed in the Al matrix, and the state of the alloyed layer was good without any particular abnormality. On the other hand, No. 3 is a comparative example in which the amount of hard particles WC is too large,
In this case, the alloyed layer was cracked. Also
No. 12 and No. 13 are comparative examples in which hard particles are mixed with Cr powder without being coated with Cr and used as an alloying material, and in these comparative examples, segregation of hard particles is remarkable, and uniform resistance is obtained. It is difficult to obtain wear resistance.

次いで、上記のNo.1,2,3〜11の試料および母材Al合金
から摩耗試験片を切出して、摩耗試験を行なった。この
摩耗試験は、大越式摩耗試験機を使用して相手材JIS SU
H11、最終荷重6.3kg、すべり速度0.31m/sec、すべり距
離100mにて行なった。その結果を第2図に示す。
Then, wear test pieces were cut out from the samples of Nos. 1, 2, 3 to 11 and the base material Al alloy, and a wear test was performed. This wear test is performed using the Ogoshi-type wear tester JIS SU
H11, final load 6.3 kg, slip speed 0.31 m / sec, slip distance 100 m. The results are shown in FIG.

第2図から、この発明の実施例であるNo.1〜2,4〜5,7
〜10の場合、いずれもCr粉末のみを合金化した従来例
(No.11)よりも耐摩耗性が改善されていることが判
る。なおNo.6は硬質粒子の割合が少なかった比較例であ
るが、この場合は耐摩耗性向上効果が不充分であった。
また本発明実施例のうち、No.1,2,4,5は硬質粒子として
WCを用いたものであるのに対し、No.7はCr3C2を、No.8
はCr3C2+WCを、No.9はTiNを、No.10はCrBを用いたもの
であるが、これらの硬質粒子の種類によって耐摩耗性改
善効果は若干の差はあるが、いずれも大きな効果を示し
ていることが明らかである。
From FIG. 2, No. 1 to 2, 4 to 5, 7 which is an embodiment of the present invention.
In the cases of up to 10, wear resistance is improved compared with the conventional example (No. 11) in which only Cr powder is alloyed. No. 6 is a comparative example in which the proportion of hard particles was small, but in this case, the effect of improving wear resistance was insufficient.
Further, among the examples of the present invention, No. 1,2,4,5 are hard particles.
WC is used, while No. 7 uses Cr 3 C 2 and No. 8
The is Cr 3 C 2 + WC, No.9 is a TiN, No.10 but are those with CrB, but the wear resistance improvement effect depending on the type of these hard particles there are some differences, both It is clear that it shows a great effect.

なお、耐凝着性については特に試験結果を示さなかっ
たが、この発明の実施例ではいずれも相手材との間で凝
着を起しにくいことが確認された。
It should be noted that although no particular test result was shown regarding the adhesion resistance, it was confirmed that in any of the examples of the present invention, adhesion between the mating material and the mating material was unlikely to occur.

発明の効果 前述の実施例からも明らかなように、この発明のAl合
金部材の製造方法によれば、複合粒子の上から高密度エ
ネルギーが印加されて複合粒子中の硬質粒子とCrとが基
材表面層に合金化される。このとき、複合粒子中の硬質
粒子は一般にその融点が高いため、高密度エネルギーを
印加しても溶融しないことが多いが、周囲のCrおよびAl
合金からなる基材表面が同時に溶融されるため、硬質粒
子が溶融Crに包まれた状態で溶融Al合金に混合され、溶
融Crおよび溶融Alの凝固により硬質粒子が均一に分散さ
れた状態となる。また、溶融Crは溶融Alと均一に混合さ
れ、凝固時に金属間化合物CrAl7としてAlマトリックス
中に均一かつ微細に晶出する。したがって、硬質粒子が
均一に分散し、その周囲のAlマトリックス中に金属間化
合物CrAl7が微細に晶出した合金化層が形成されて耐摩
耗性、耐凝着性が向上する。
EFFECTS OF THE INVENTION As is clear from the above-described examples, according to the method for producing an Al alloy member of the present invention, high density energy is applied from above the composite particles to form hard particles and Cr in the composite particles as a base. It is alloyed with the material surface layer. At this time, since the hard particles in the composite particles generally have a high melting point, they often do not melt even when high-density energy is applied.
Since the surface of the base material made of the alloy is melted at the same time, the hard particles are mixed with the molten Al alloy in the state of being wrapped with molten Cr, and the hard particles are uniformly dispersed by the solidification of molten Cr and molten Al. . Further, molten Cr is uniformly mixed with molten Al and crystallizes uniformly and finely in the Al matrix as intermetallic compound CrAl 7 during solidification. Therefore, the hard particles are uniformly dispersed, and an alloyed layer in which the intermetallic compound CrAl 7 is finely crystallized is formed in the Al matrix around the hard particles, and wear resistance and adhesion resistance are improved.

さらに、Al合金の耐摩耗性、耐凝着性を向上させるた
めには、すべてが硬質層となるのではなく、比較的軟質
な層で硬質粒子を保持することが好ましく、また、硬質
粒子の大きさによっても耐摩耗性、耐凝着性が左右され
る。そして、この発明によれば、上記のように硬質粒子
が溶融されないため、予め硬質粒子の大きさを調整して
おくことにより、所定の大きさの硬質粒子を分散させる
ことができ、製造される耐摩耗性Al合金部材の耐摩耗
性、耐凝着性を一層向上させることが可能である。
Furthermore, in order to improve the wear resistance and adhesion resistance of the Al alloy, it is preferable that the hard particles are held in a relatively soft layer instead of being all hard layers, and the hard particles Abrasion resistance and adhesion resistance also depend on the size. Then, according to the present invention, since the hard particles are not melted as described above, by adjusting the size of the hard particles in advance, it is possible to disperse the hard particles having a predetermined size, and the manufacturing is performed. Wear resistance It is possible to further improve the wear resistance and adhesion resistance of the Al alloy member.

このように、この発明により製造された耐摩耗性Al合
金部材を、耐摩耗性、耐凝着性が要求される部位を有す
る部品、例えば自動車用エンジンのピストンやバルブ、
あるいはシリンダヘッドに適用して優れた機能を発揮す
ることができる。
Thus, the wear-resistant Al alloy member produced by the present invention, the wear resistance, parts having a portion requiring adhesion resistance, for example, pistons and valves of automobile engines,
Alternatively, it can be applied to a cylinder head to exert excellent functions.

また、この発明の方法では、硬質粒子が、基材の断面
に対する面積率が5〜30%で均一に分散されるため、耐
摩耗性、耐凝着性が充分に向上し、また、合金化層に適
度な柔軟性が保持されてクラックの発生が防止されて充
分な耐久性を得られ、かつ、加工も容易となる。さら
に、金属間化合物CrAl7が、硬質粒子を除いた部分に対
する面積率が5〜50%で晶出されるため、充分な耐摩耗
性、耐凝着性を得られるとともに、CrAl7の晶出量を適
正に維持でき合金化層の柔軟性が確保されて加工が容易
となる。
Further, in the method of the present invention, the hard particles are uniformly dispersed at an area ratio of 5 to 30% with respect to the cross section of the base material, so that wear resistance and adhesion resistance are sufficiently improved, and alloying Appropriate flexibility is maintained in the layer, cracks are prevented from occurring, sufficient durability is obtained, and processing is easy. Furthermore, since the intermetallic compound CrAl 7 is crystallized at an area ratio of 5 to 50% with respect to the portion excluding the hard particles, sufficient wear resistance and adhesion resistance can be obtained, and the amount of crystallized CrAl 7 can be increased. Can be properly maintained, the flexibility of the alloyed layer can be secured, and processing becomes easy.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例のAl合金部材の製造方法に
より形成された合金化層の金属組織断面写真(倍率:200
倍)、第2図はこの発明の実施例、比較例、従来例のAl
合金部材における合金化層の摩耗試験結果を示すグラフ
である。
FIG. 1 is a cross-sectional photograph of the metallographic structure of an alloyed layer formed by the method for manufacturing an Al alloy member of one embodiment of the present invention (magnification: 200
2), FIG. 2 shows Al of Examples of the present invention, Comparative Examples, and Conventional Examples.
It is a graph which shows the abrasion test result of the alloying layer in an alloy member.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Al合金からなる基材における耐摩耗性が要
求される部位の表面に、WC,W2C,TiC,NbC,VC,MoC,Cr3,
C2,TaCを含む炭化物、あるいはTiN,CrNを含む窒化物、
あるいはCrB,NiB,TaBを含む硼化物のうちの1種、また
はこれらのうちの2種以上からなる硬質粒子をCrで被覆
してなる複合粒子の粉末を配置し、その上から高密度エ
ネルギーを印加して前記複合粒子中のCrと前記基材表面
とを急速溶融し、前記硬質粒子を溶融Crに包まれた状態
で溶融Al合金に混合させ、その後、前記溶融Crおよび溶
融Alを急速凝固させることにより、前記硬質粒子を前記
基材の断面に対する面積率が5〜30%で均一に分散さ
せ、かつその周囲に金属間化合物CrAl7を、前記硬質粒
子を除いた部分に対する面積率が5〜50%で晶出させた
合金化層を形成することを特徴とする耐摩耗性Al合金部
材の製造方法。
1. A base material made of an Al alloy is coated with WC, W 2 C, TiC, NbC, VC, MoC, Cr 3 ,
Carbide containing C 2 , TaC, or nitride containing TiN, CrN,
Alternatively, one kind of boride containing CrB, NiB, TaB, or a composite particle powder composed of hard particles composed of two or more kinds of these coated with Cr is arranged, and high density energy is applied from above. Rapidly melts Cr in the composite particles and the surface of the base material by applying, mixes the hard particles with the molten Al alloy in the state of being wrapped with molten Cr, and then rapidly solidifies the molten Cr and molten Al. By doing so, the area ratio of the hard particles to the cross section of the substrate is uniformly dispersed at 5 to 30%, and the intermetallic compound CrAl 7 around the hard particles has an area ratio of 5 with respect to the portion excluding the hard particles. A method for producing a wear-resistant Al alloy member, which comprises forming an alloyed layer crystallized at -50%.
JP63251616A 1988-10-05 1988-10-05 Method for manufacturing wear resistant Al alloy member Expired - Lifetime JP2560804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63251616A JP2560804B2 (en) 1988-10-05 1988-10-05 Method for manufacturing wear resistant Al alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63251616A JP2560804B2 (en) 1988-10-05 1988-10-05 Method for manufacturing wear resistant Al alloy member

Publications (2)

Publication Number Publication Date
JPH02101177A JPH02101177A (en) 1990-04-12
JP2560804B2 true JP2560804B2 (en) 1996-12-04

Family

ID=17225474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63251616A Expired - Lifetime JP2560804B2 (en) 1988-10-05 1988-10-05 Method for manufacturing wear resistant Al alloy member

Country Status (1)

Country Link
JP (1) JP2560804B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2769337B2 (en) * 1988-11-30 1998-06-25 昭和アルミニウム株式会社 Manufacturing method of aluminum alloy material with excellent wear resistance
JP2769339B2 (en) * 1988-11-30 1998-06-25 昭和アルミニウム株式会社 Manufacturing method of aluminum alloy material with excellent wear resistance
JP2769338B2 (en) * 1988-11-30 1998-06-25 昭和アルミニウム株式会社 Manufacturing method of aluminum alloy material with excellent wear resistance
JPH04120280A (en) * 1990-09-07 1992-04-21 Komatsu Ltd Production of surface-hardened aluminum material
CN101804524B (en) * 2010-03-11 2012-05-23 华北电力大学 Powder-cored welding wire for abrasion resistance of grinding roller and grinding disc and preparation and cladding method thereof
CN110029344B (en) * 2019-04-24 2022-05-10 成都航空职业技术学院 Method for strengthening 7075 aluminum alloy surface by laser melt injection

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110851A (en) * 1983-09-27 1985-06-17 Agency Of Ind Science & Technol Laser hardening method

Also Published As

Publication number Publication date
JPH02101177A (en) 1990-04-12

Similar Documents

Publication Publication Date Title
US10662518B2 (en) Abrasion-resistant weld overlay
US5188799A (en) Wear-resistant copper-base alloy
EP0246828B1 (en) Wear-resistant titanium or titanium alloy members
EP1322794B1 (en) Thermally applied coating for piston rings, consisting of mechanically alloyed powders
US5352538A (en) Surface hardened aluminum part and method of producing same
US4818307A (en) Dispersion strengthened copper-base alloy
EP0320195B1 (en) Wear resisting copper base alloys
EP0571210B1 (en) Alloy having excellent corrosion resistance and abrasion resistance,method for producing the same and material for use in production of the same
CA1249038A (en) Surface treatment process for workpiece
CN100460539C (en) Build-up wear-resistant copper-based alloy
DE3922378A1 (en) METHOD FOR PRODUCING WEAR-RESISTANT SURFACES ON COMPONENTS FROM AN ALUMINUM-SILICUM ALLOY
JP7018603B2 (en) Manufacturing method of clad layer
DE60214976T2 (en) WEAR-RESISTANT COPPER BASE ALLOY
JP2560804B2 (en) Method for manufacturing wear resistant Al alloy member
DE3036206A1 (en) WEAR-RESISTANT COATING, OXIDATION AND CORROSION PROTECTIVE COATING, CORROSION- AND WEAR-RESISTANT COATING ALLOY, ITEM PROVIDED WITH SUCH A COATING AND METHOD FOR PRODUCING SUCH A COATING
DE3808285A1 (en) Process for producing hard and wear-resistant surface layers
DE10124250C2 (en) Method of forming a high strength and wear resistant composite layer
US7401586B2 (en) Valve seat rings made of basic Co or Co/Mo alloys, and production thereof
JPH0748665A (en) Sliding material with flame sprayed film
DE102020132346A1 (en) Cylinder liner coating for an internal combustion engine and spray wire for producing such a cylinder liner coating
DE102011120989B3 (en) Spraying material, useful for preparing a coating on a working surface e.g. a friction surface of a cast-iron base body, comprises a ceramic powder, and a metallic powder mixture comprising a first powder and a second powder
JP3141524B2 (en) Surface coating material, surface coating treatment method, and valve for internal combustion engine
JP3460968B2 (en) Spray method
JPH0480990B2 (en)
JPH06122076A (en) Cladding by welding method of oxide dispersion strengthened alloy