JP2560293B2 - Spectrophotometer - Google Patents

Spectrophotometer

Info

Publication number
JP2560293B2
JP2560293B2 JP61234065A JP23406586A JP2560293B2 JP 2560293 B2 JP2560293 B2 JP 2560293B2 JP 61234065 A JP61234065 A JP 61234065A JP 23406586 A JP23406586 A JP 23406586A JP 2560293 B2 JP2560293 B2 JP 2560293B2
Authority
JP
Japan
Prior art keywords
sensitivity
output
photomultiplier tube
sample
monitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61234065A
Other languages
Japanese (ja)
Other versions
JPS6388413A (en
Inventor
義夫 綱沢
邦彦 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61234065A priority Critical patent/JP2560293B2/en
Publication of JPS6388413A publication Critical patent/JPS6388413A/en
Application granted granted Critical
Publication of JP2560293B2 publication Critical patent/JP2560293B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】 イ.産業上の利用分野 本発明は薄層クロマト(TLC)スキャナのような、必
要な測光感度が大幅に異る複数種の分光測定を行う場合
に適した分光光度計に関する。
DETAILED DESCRIPTION OF THE INVENTION BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectrophotometer suitable for performing a plurality of types of spectroscopic measurements, such as a thin layer chromatograph (TLC) scanner, which greatly differ in required photometric sensitivity.

ロ.従来の技術 従来のTLCスキャナは第3図に示すような構成になっ
ている。この図で1は光源、2は分光器、3は試料のTL
Cプレートで、P1は試料成分の吸光度を測定するための
光電子増倍管、P2は試料からの反射または蛍光を測定す
るための光電子増倍管、P3はTLCプレートへの入射光を
モニタするための光電子増倍管で、分光器2とTLCプレ
ート3との間に挿入された半透明鏡4によってTLCプレ
ートへの入射光の一部が分割されて入射せしめられるよ
うになっている。半透明鏡4と光電子増倍管P3との間に
は減光器8が挿入してある。このモニタ用光電子増倍管
P3の出力は誤差アンプ5によって基準値と比較され、誤
差アンプ5の出力が負高圧発生回路6に印加され、負高
圧発生回路6の出力電圧が各光電子増倍管P1,P2,P3のダ
イノードに印加されて、モニタ用光電子増倍管P3の出力
が常に基準値になっているように各光電子増倍管P1,P2,
P3の感度が自動制御されている。
B. 2. Description of the Related Art A conventional TLC scanner has a structure as shown in FIG. In this figure, 1 is a light source, 2 is a spectroscope, and 3 is a sample TL.
C plate, P1 is a photomultiplier for measuring the absorbance of sample components, P2 is a photomultiplier for measuring the reflection or fluorescence from the sample, and P3 is for monitoring the incident light to the TLC plate. In this photomultiplier tube, a semitransparent mirror 4 inserted between the spectroscope 2 and the TLC plate 3 splits a part of the incident light to the TLC plate and makes it incident. A dimmer 8 is inserted between the semitransparent mirror 4 and the photomultiplier tube P3. This monitor photomultiplier tube
The output of P3 is compared with the reference value by the error amplifier 5, the output of the error amplifier 5 is applied to the negative high voltage generation circuit 6, and the output voltage of the negative high voltage generation circuit 6 is a dynode of each photomultiplier tube P1, P2, P3. Applied to each photomultiplier tube P1, P2, so that the output of the monitor photomultiplier tube P3 is always at the reference value.
The sensitivity of P3 is automatically controlled.

所でTLCスキャナ用分光光度計では吸光度測定に比し
蛍光速度では光電子増倍管に高感度が要求される。従っ
て吸光度測定の場合には光電子増倍管の感度を下げ、蛍
光測定の場合には感度を最大限に上げるため、吸光度測
定から蛍光測定に切換えるときは光電子増倍管に印加す
る電圧を切換える必要がある。従来この感度の切換えは
誤差アンプ5のゲインを切換えることで行っている。こ
のとき吸光度測定においてモニタ用光電子増倍管に流れ
る電流が適当な値になるようにモニタ用光電子増倍管P3
と半透明鏡4との間の減光器8の減光率を設定してある
と、吸光度測定から蛍光測定に切換えたときP3の感度が
上がるのでP3に過大電流(例えば50μA)が流れて動作
が不安定になってしまう。従ってモニタ用に光電子増倍
管を用いる場合、感度で100倍以上の差を電気的手段だ
けで補償して測光回路を安定に動作させることは無理で
ある。このため従来は蛍光測定時の光電子増倍管の感度
を低めに設定していた。
In a TLC scanner spectrophotometer, the photomultiplier tube is required to have high sensitivity at the fluorescence rate as compared with the absorbance measurement. Therefore, in the case of absorbance measurement, the sensitivity of the photomultiplier tube is lowered, and in the case of fluorescence measurement, the sensitivity is maximized.Therefore, it is necessary to switch the voltage applied to the photomultiplier tube when switching from absorbance measurement to fluorescence measurement. There is. Conventionally, this sensitivity switching is performed by switching the gain of the error amplifier 5. At this time, in the absorbance measurement, the monitor photomultiplier tube P3 should be adjusted so that the current flowing through the monitor photomultiplier tube becomes an appropriate value.
If the extinction rate of the dimmer 8 between the semi-transparent mirror 4 and the semi-transparent mirror 4 is set, the sensitivity of P3 increases when switching from absorbance measurement to fluorescence measurement, so an excessive current (eg 50 μA) flows in P3. The operation becomes unstable. Therefore, when a photomultiplier tube is used for a monitor, it is impossible to stably operate the photometric circuit by compensating the difference of 100 times or more in sensitivity by only electric means. For this reason, conventionally, the sensitivity of the photomultiplier tube at the time of fluorescence measurement has been set to be low.

ハ.発明が解決しようとする問題点 TLCスキャナに用いられる分光光度計のように要求さ
れる測高感度の大きく異る複数種の測定を行う光電子増
倍管使用の測光装置で試料入射光をモニタする測光素子
に光電子増倍管を用いたものでは、高感度測定に切換え
た場合、モニタ測光系の動作が不安定になるため、高感
度測の光電子増倍管の感度を十分高く設定することがで
きないと云う問題を解決しようとするものである。
C. Problems to be Solved by the Invention Monitoring the incident light of a sample with a photometer using a photomultiplier tube that performs a plurality of types of measurements with greatly different required photosensitivity, such as a spectrophotometer used in a TLC scanner. With a photomultiplier tube as the photometric element, the operation of the monitor photometry system becomes unstable when switching to high-sensitivity measurement, so it is possible to set the sensitivity of the photomultiplier tube for high-sensitivity measurement sufficiently high. It tries to solve the problem of being unable to do it.

ニ.問題点解決のための手段 モニタ用光検出器としてシリコンホトセルのような内
部に感度調節機能を持たない素子を用い、その出力を入
力変換回路を介して負高電圧に変換して試料光測光用の
光電子増倍管に印加することにより試料入射光の変動の
影響を補償する構成とし、上記入力変換回路に同一入力
に対する出力レベルを高低選択できる手段を設け、これ
によって試料光の測高感度を切換えるようにした。
D. Measures for solving problems Using an element that does not have a sensitivity adjustment function such as a silicon photocell as a photodetector for monitoring, the output is converted to a negative high voltage through an input conversion circuit and sample light photometry is performed. Is applied to a photomultiplier for use in the application to compensate for the effect of fluctuations in the incident light of the sample, and the input conversion circuit is provided with means for selecting the output level for the same input. To switch.

ホ.作 用 今試料入射光強度が経時的にf(t)なる変化したと
する。このときモニタ用シリコンホトセルの出力電流i
は i=kf(t) なる変化をする。このとき試料光測光用の光電子増倍管
の出力を(試料がないとして)一定にするためにはその
感度を1/f(t)に比例して変化させればよい。光電子
増倍管の感度Gは印加電圧Vの関数でこれをG=g
(V)とする。こゝでVは前述した入力変換回路の出力
で、入力iに対して V=h(i) とすると光強度がf(t)の変化をするとき光電子増倍
管の出力が一定であるためにはiの基準値ioに対する基
準感度をG1として感度GがG1/f(t)=G1/iの変化をし
なければならないから、 ioG1/i=g{h(i)} 上式からh(i)を求めると h(i)=g-1(ioG1/i) 即ち入力変換回路の入出力特性を表わす関数は光電子
増倍管の印加電圧感度特性の逆関数の形である。こゝで
基準感度をG2に切換えるには h(i)=g-1(ioG2/i) とすればよい。つまり入力変換回路の中に1/iに掛かる
係数を切換える手段を設けておくことで測定感度の切換
えを行うことができる。この場合光電子増倍管の感度制
御は従来例のようなフィードバック方式をとっていない
から、測定感度を切換えてもモニタ用シリコンホトセル
の出力は変わらず、試料光測光系を高感度に切換えたか
らと云ってシリコンホトセルの出力が増大し、飽和して
しまって感度制御動作ができなくなると云うようなこと
は起らない。
E. Suppose now that the incident light intensity of the sample has changed with time by f (t). At this time, the output current i of the silicon photocell for monitoring is
Changes i = kf (t). At this time, in order to make the output of the photomultiplier tube for photometry of the sample constant (assuming no sample), its sensitivity may be changed in proportion to 1 / f (t). The sensitivity G of the photomultiplier tube is a function of the applied voltage V. G = g
(V). Here, V is the output of the above-mentioned input conversion circuit, and when V = h (i) for the input i, the output of the photomultiplier tube is constant when the light intensity changes f (t). , The sensitivity G must have a change of G1 / f (t) = G1 / i with the reference sensitivity of i to the reference value io as G1, so ioG1 / i = g {h (i)} Obtaining (i), h (i) = g -1 (ioG1 / i) That is, the function representing the input / output characteristic of the input conversion circuit is in the form of the inverse function of the applied voltage sensitivity characteristic of the photomultiplier tube. To switch the reference sensitivity to G2, h (i) = g -1 (ioG2 / i). That is, the measurement sensitivity can be switched by providing a means for switching the coefficient multiplied by 1 / i in the input conversion circuit. In this case, because the sensitivity control of the photomultiplier tube does not use the feedback method as in the conventional example, the output of the silicon photocell for monitoring does not change even if the measurement sensitivity is switched, and the sample light photometry system is switched to high sensitivity. However, the output of the silicon photocell is increased and saturated, and the sensitivity control operation cannot be performed.

ヘ.実施例 第1図に本発明の一実施例を示す。1は光源、2は分
光器、3は試料のTLCプレート、P1は試料からの反射光
或は蛍光を測定するための光電子増倍管、P2は試料透過
光を測定するための光電子増倍管、4は分光器2の出射
光を分割する半透明鏡、7はモニタ用シリコンホトセル
で、半透明鏡4で分割された試料入射光の一部が減光器
8を通して入射せしめられる。9はシリコンホトセル7
の出力を負高電圧に変換して光電子増倍管P1,或はP2の
ダイノードに印加する入力変換回路である。入力変換回
路9はシリコンホトセル7の出力電流iを対数変換して
(−klogi)なる電圧信号に変換する対数変換器Lと、
対数変換器Lの出力に一定数αを掛け算する定倍数器M
と、その出力に定数を加算する加算器Adと、加算器Adの
出力vを比例的に負の高電圧Vに変換する負高圧発生回
路6とよりなっている。
F. Embodiment FIG. 1 shows an embodiment of the present invention. 1 is a light source, 2 is a spectroscope, 3 is a sample TLC plate, P1 is a photomultiplier tube for measuring reflected light or fluorescence from the sample, and P2 is a photomultiplier tube for measuring sample transmitted light. Reference numeral 4 denotes a semitransparent mirror that splits the light emitted from the spectroscope 2, and 7 denotes a silicon photocell for monitoring. Part of the sample incident light split by the semitransparent mirror 4 is made incident through the dimmer 8. 9 is a silicon photocell 7
Is an input conversion circuit for converting the output of the above into a negative high voltage and applying it to the dynode of the photomultiplier tube P1, or P2. The input conversion circuit 9 is a logarithmic converter L for logarithmically converting the output current i of the silicon photocell 7 into a voltage signal of (-klogi),
A constant multiplier M for multiplying the output of the logarithmic converter L by a constant number α
And an adder Ad that adds a constant to its output, and a negative high voltage generation circuit 6 that proportionally converts the output v of the adder Ad into a negative high voltage V.

第2図は光電子増倍管のダイノード印加電圧Vと利得
(感度)Gとの関係を示すグラフで横軸にV、縦軸にio
gGをとって画いたものである。このカーブはゆるやかに
曲っているが部分的即ち比較的せまい感度範囲では直線
とみることができ、その直線は G=KeαV で表わすことができる。作用の項で述べた所によって、
V=h(i)、iの基準値ioに対して感度をG1とする
と、 上式を書変えると、 と書ける。こゝでαは第2図のカーブの傾斜を表すもの
で、選択する感度範囲で変わる。またE1はモニタ出力i
が基準値ioであるときの感度G1およびαを含んでおり、
このG1が測定の種類によって選択される感度であるか
ら、光電子増倍管の設定感度を変えるにはE1を変えれば
よい。
FIG. 2 is a graph showing the relationship between the dynode applied voltage V and the gain (sensitivity) G of the photomultiplier tube. The horizontal axis is V and the vertical axis is io.
It is a drawing of gG. This curve is gently curved, but can be regarded as a straight line in the partial or relatively narrow sensitivity range, and the straight line can be expressed by G = Ke αV . As mentioned in the action section,
V = h (i), where G1 is the sensitivity to the reference value io of i, Rewriting the above formula, Can be written. Here, α represents the slope of the curve shown in FIG. 2, and varies depending on the sensitivity range selected. E1 is the monitor output i
Includes sensitivity G1 and α when is a reference value io,
Since G1 is the sensitivity selected according to the type of measurement, E1 can be changed to change the set sensitivity of the photomultiplier tube.

第1図に戻って対数変換器Lの出力は入力iに対して
−kiogiであり、kは対数変換器Lの特性で決まった値
である。定倍数器Mではこの−klogiに感度βを掛算し
てkβが1/αになるようにする。αの値は選択する感度
域により異るから、βの値を決める抵抗はr,r′の二つ
があって何れかが切換スイッチSw1によって選択され
る。定倍数器Mの出力は加算器Adで定数Ea又はEfが加算
され、Adの出力vは一般形が v=E−kβlog i でEの所が測定の種類によりEaかEfが選択される。切換
えスイッチSw1,Sw2,Sw3は連動して吸光度測定時と蛍光
測定時とで切換えられ、図は蛍光測定側に切換えた状態
を示している。定倍数器Mのフィードバック抵抗r,r′
は夫々調節可能であり、光電子増倍管の所要感度に対し
てβの値を実験的に決めるようにしてある。
Returning to FIG. 1, the output of the logarithmic converter L is -kiogi with respect to the input i, and k is a value determined by the characteristics of the logarithmic converter L. In the constant multiplier M, the sensitivity β is multiplied by −klogi so that kβ becomes 1 / α. Since the value of α differs depending on the sensitivity range to be selected, there are two resistors, r and r ', which determine the value of β, and one of them is selected by the changeover switch Sw1. The output of the constant multiplier M is added with a constant Ea or Ef by an adder Ad, and the output v of Ad is of the general form v = E−kβlog i, where Ea or Ef is selected depending on the type of measurement. The change-over switches Sw1, Sw2, Sw3 are interlocked and switched between the time of absorbance measurement and the time of fluorescence measurement, and the figure shows the state of switching to the fluorescence measurement side. Feedback resistor r, r ′ of the multiplier
Are adjustable respectively, and the value of β is experimentally determined with respect to the required sensitivity of the photomultiplier tube.

ト.効 果 本発明分光光度計は試料入射光をモニタする光検出器
を光電子増倍管でなくシリコンホトセルのような内部に
感度調節機能を有しない素子とし、その出力を変換回路
を介して試料光を測定する光電子増倍管に印加すること
により試料入射光の変動等を補償するようにし、測定の
種類により試料光の検出感度を切換えるのに上記変換回
路の入力出力特性を切換えるものであるから、感度を切
換えてもモニタ測光出力そのものは変わらず、試料光測
光系を高感度に切換えてもモニタ測光系が飽和してしま
うとか動作不安定になると云うようなことがなく、大幅
な感度切換えが可能となり、モニタに高価な光電子増倍
管を用いないので、装置が安価になる。
G. In the spectrophotometer of the present invention, the photodetector for monitoring the incident light of the sample is an element having no sensitivity adjusting function such as a silicon photocell instead of the photomultiplier tube, and its output is transmitted through the conversion circuit to the sample. By applying light to the photomultiplier tube to measure the light, the fluctuation of the incident light of the sample is compensated, and the input / output characteristics of the conversion circuit are switched to switch the detection sensitivity of the sample light depending on the type of measurement. Therefore, even if the sensitivity is switched, the monitor photometric output itself does not change, and even if the sample photometric system is switched to high sensitivity, there is no such thing as saturation or operational instability of the monitor photometric system. Since the switching can be performed and an expensive photomultiplier tube is not used for the monitor, the device becomes inexpensive.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の回路図、第2図は光電子増
倍管のダイノード印加電圧と利得(感度)との関係のグ
ラフ、第3図は従来例の回路図である。 1……光源、2……分光器、3……TLCプレート、4…
…半透明鏡、6……負高圧発生回路、7……モニタ用シ
リコンホトセル、8……減光器、9……入力変換回路、
L……対数変換器、M……定倍数器、Ad……加算器。
FIG. 1 is a circuit diagram of an embodiment of the present invention, FIG. 2 is a graph of a relation between a dynode applied voltage of a photomultiplier tube and a gain (sensitivity), and FIG. 3 is a circuit diagram of a conventional example. 1 ... Light source, 2 ... Spectrometer, 3 ... TLC plate, 4 ...
… Semi-transparent mirror, 6 …… Negative high voltage generation circuit, 7 …… Monitor silicon photocell, 8 …… Dimmer, 9 …… Input conversion circuit,
L ... Logarithmic converter, M ... Constant multiplier, Ad ... Adder.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】試料光を測定する光電子増倍管と、シリコ
ンホトセルのような内部に感度調節機能を有しないモニ
タ用光検出器と、試料入射光の一部を上記モニタ用光検
出器に入射させる光束分割手段と、上記モニタ用検出器
の出力を負高圧に変換して上記光電子増倍管のダイノー
ドに印加することにより試料入射光の変動等を補償する
入力変換手段とよりなり、上記入力変換手段を上記モニ
タ用検出器の出力を対数変換し、その結果出力を感度切
換えに連動して倍率が切換えられる定倍数回路に入れ、
その結果出力に感度切換えに連動して切換えられる定数
を加算する構成とし、その出力を負高圧発生回路に入力
して上記光電子増倍管の感度を切換えるようにした分光
光度計。
1. A photomultiplier tube for measuring sample light, a monitor photodetector having no internal sensitivity adjustment function such as a silicon photocell, and a part of sample incident light for the monitor photodetector. A beam splitting means to be incident on, and an input conversion means for compensating for fluctuations in sample incident light by converting the output of the monitor detector into negative high voltage and applying it to the dynode of the photomultiplier, The input conversion means performs logarithmic conversion on the output of the monitor detector, and puts the output into a constant multiple circuit in which the magnification is switched in association with sensitivity switching,
As a result, a spectrophotometer having a configuration in which a constant that can be switched in association with sensitivity switching is added, and the output is input to a negative high voltage generation circuit to switch the sensitivity of the photomultiplier tube.
JP61234065A 1986-09-30 1986-09-30 Spectrophotometer Expired - Lifetime JP2560293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61234065A JP2560293B2 (en) 1986-09-30 1986-09-30 Spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61234065A JP2560293B2 (en) 1986-09-30 1986-09-30 Spectrophotometer

Publications (2)

Publication Number Publication Date
JPS6388413A JPS6388413A (en) 1988-04-19
JP2560293B2 true JP2560293B2 (en) 1996-12-04

Family

ID=16965037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61234065A Expired - Lifetime JP2560293B2 (en) 1986-09-30 1986-09-30 Spectrophotometer

Country Status (1)

Country Link
JP (1) JP2560293B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602615A (en) * 1983-06-16 1985-01-08 Nisshin Steel Co Ltd Blowing nozzle for refining gas
JPS61155731A (en) * 1984-12-27 1986-07-15 Shimadzu Corp Photometric signal processing circuit for chromatoscanner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168151U (en) * 1983-04-27 1984-11-10 株式会社日立製作所 Signal processing circuit for fluorescence photometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602615A (en) * 1983-06-16 1985-01-08 Nisshin Steel Co Ltd Blowing nozzle for refining gas
JPS61155731A (en) * 1984-12-27 1986-07-15 Shimadzu Corp Photometric signal processing circuit for chromatoscanner

Also Published As

Publication number Publication date
JPS6388413A (en) 1988-04-19

Similar Documents

Publication Publication Date Title
Yang et al. A rapid and sensitive recording spectrophotometer for the visible and ultraviolet region. I. Description and performance
US4092069A (en) Spectrophotometer
US4180327A (en) Spectrophotometers with digital processing
US4537510A (en) Output control device for light detectors for photometers
NL7907746A (en) COLOR ANALYZER.
EP0097708A1 (en) Photomultiplier detector protection device and method.
JP2560293B2 (en) Spectrophotometer
US3506358A (en) Rapid scanning spectrophotometer of double beam mode
US2808755A (en) Constant sensitivity radiant energy measuring apparatus
US4902884A (en) Circuit arrangement for carrying out light intensity measurements
US3176576A (en) Tracking accuracy control for analyzers
JP2003232681A (en) Spectrophotometer
US4305664A (en) Spectrophotometer
US5726438A (en) Luminous flux measuring device with a gain-controlling slave circuit enabling the device to rapidly adapt to changes in flux
US7050164B2 (en) Spectrophotometer
US3580684A (en) Optical density-calibrated photometer
US4669877A (en) Digital gain controlled current to voltage amplifier
US3433952A (en) Spectrophotofluorometer having correction means providing substantially equal energy effects in response at different excitation wavelengths
JPS63127127A (en) Light power measuring device
JPS6388412A (en) Photometer
JPH06323907A (en) Temperature-drift correction device used in optical analyzer
JPS6315535B2 (en)
JPH1038683A (en) Light quantity detector
JPH0943056A (en) Instrument for measuring intensity of light
JPS61155735A (en) Light source lighting apparatus for single beam spectroscope