JP2558783B2 - Ceiling embedded air conditioner - Google Patents

Ceiling embedded air conditioner

Info

Publication number
JP2558783B2
JP2558783B2 JP63027061A JP2706188A JP2558783B2 JP 2558783 B2 JP2558783 B2 JP 2558783B2 JP 63027061 A JP63027061 A JP 63027061A JP 2706188 A JP2706188 A JP 2706188A JP 2558783 B2 JP2558783 B2 JP 2558783B2
Authority
JP
Japan
Prior art keywords
temperature
air temperature
heat load
blowout
change rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63027061A
Other languages
Japanese (ja)
Other versions
JPH01203837A (en
Inventor
俊典 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP63027061A priority Critical patent/JP2558783B2/en
Publication of JPH01203837A publication Critical patent/JPH01203837A/en
Application granted granted Critical
Publication of JP2558783B2 publication Critical patent/JP2558783B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空気調和機、特にその吹出し空気風向の制御
に関するものである。
Description: FIELD OF THE INVENTION The present invention relates to an air conditioner, and more particularly to control of the direction of air blown from the air conditioner.

従来の技術 従来の技術について第6図から第8図を用いて説明す
る。1は天井埋込型の空気調和機の室内機であり、天壁
2に固定ボルト3により固定され、室内機1の下面は天
井4と略同一面上に開口している。室内機1は外殻5と
下面グリル6とから構成し、その内部には冷却システム
の室内側熱交換器7a,7bが、またその各々と熱交換可能
な様に送風機8を設置している。
2. Description of the Related Art A conventional technique will be described with reference to FIGS. Reference numeral 1 denotes an indoor unit of a ceiling-embedded air conditioner, which is fixed to a ceiling wall 2 by a fixing bolt 3, and a lower surface of the indoor unit 1 is opened substantially flush with a ceiling 4. The indoor unit 1 is composed of an outer shell 5 and a lower surface grill 6, inside which indoor heat exchangers 7a and 7b of a cooling system are installed, and a blower 8 is installed so that heat can be exchanged with each of them. .

そして下面グリル6の中央部に方形状の吸込口10を設
け、吸込口10の周囲には吹出しグリル11a,11bを設けて
いる。送風機8から吹出した空気の略半分は熱交換器7a
を通ったのち、吹出しグリル11aを通過し、斜め下前方
へと吹き出す。また送風機8から吹出した残りの空気は
熱交換器7bを通り、吹出しグリル11bを通過し斜め下前
方へと吹出す様な構造としている。
A rectangular inlet 10 is provided at the center of the lower grill 6, and blow grills 11a and 11b are provided around the inlet 10. Approximately half of the air blown out from the blower 8 is
After passing through, it passes through the outlet grill 11a and blows obliquely downward and forward. The remaining air blown from the blower 8 passes through the heat exchanger 7b, passes through the blow grill 11b, and blows obliquely downward and forward.

また各々の吹出し風向をコントロールするため可動式
のルーバ12a,12bを設置している。そして、使用者が任
意の室温に設定可能な様なリモコンタイプの温度設定手
段100を設けている。吸込口10の内部には、吸込温度セ
ンサ13を固定設置しており、吸込温度を測定するととも
に温度設定手段100による設定温度との温度差を検出
し、冷却システムをON−OFFさせ室内を略一様に保って
いる。
In addition, movable louvers 12a and 12b are installed to control the direction of each blown air. Further, a remote control type temperature setting means 100 is provided so that the user can set an arbitrary room temperature. Inside the suction port 10, a suction temperature sensor 13 is fixedly installed, which measures the suction temperature and detects a temperature difference from the set temperature by the temperature setting means 100, turns the cooling system on and off, and substantially sets the inside of the room. It is kept uniform.

この様に構成する従来の天井埋込型の空気調和機の動
作について説明する。
The operation of the conventional ceiling-embedded air conditioner thus configured will be described.

一般的に本発明の空気調和機は事務所や店舗あるいは
居室の天井部に設置されることが多く、室14の温度調節
を行なう。
Generally, the air conditioner of the present invention is often installed on the ceiling of an office, a store, or a living room, and controls the temperature of the room 14.

室14は、天井4、側壁15,16、及び床17より構成して
いる。又、第8図の二点鎖線に囲まれた空間が居住域で
あり、ASHRAEのSTANDARDでは、高さ1800mm以下でかつ側
壁から600mm以上離れた空間を居住域と定義している。
つまり人間はおおむねこの居住域で活動すると定義して
いる。
The chamber 14 is composed of a ceiling 4, side walls 15 and 16, and a floor 17. The space enclosed by the two-dot chain line in FIG. 8 is the living area, and ASHRAE's STANDARD defines a space that is 1800 mm or less in height and 600 mm or more from the side wall as the living area.
In other words, humans are generally defined as living in this residential area.

このときの吹出空気の流線は、第8図の様に、熱交換
器7a,7bにより暖められた(冷房時は冷やされた)空気
が、吹出しグリル11a,11bから斜め下方に吹出し、居住
域内で大きな弧を描く様に、室14内を暖め(冷やし)た
のち室内機1の中央の吸込口10より吸込まれる。このと
き、各吹出し気流a、及びbは略同一の吹出し風量,吹
出し方向であり、気流a,bの流線はいずれも略同様の弧
を描く。
At this time, as shown in FIG. 8, the stream of the blown air blows the air warmed by the heat exchangers 7a and 7b (cooled at the time of cooling) from the blow grills 11a and 11b downward. After the interior of the room 14 is heated (cooled) so as to draw a large arc in the area, the air is sucked from the central suction port 10 of the indoor unit 1. At this time, the blown airflows a and b have substantially the same blown air volume and blowout direction, and the streamlines of the airflows a and b draw substantially the same arc.

この様にして吸込まれた空気の温度を吸込温度センサ
13により検知することにより、吹出し空気温度を調節
し、室14の居住域内の平均温度をほぼ設定温度に維持す
るものであった。
The temperature of the air sucked in this way is determined by the suction temperature sensor.
The temperature of the blown air was adjusted by detecting the temperature by 13, and the average temperature in the living area of the room 14 was maintained at about the set temperature.

発明が解決しようとする課題 店舗や事務所、あるいは居室の天井は床から2.5〜3mm
の高さであり、この位置に室内機が設置されたとき、室
内機から吹出す温調された空気を、居住域内に送り込み
良好な温度分布を維持するには、吹出し風速を非常に大
きくしなければならない。このため吹出し口の真下付近
にいる人は、その吹出し風が頭部や顔面に当り不快感が
発生したり、体感的に寒く感ずる現象が発生するので、
レベルの高い快適空間を提供できないという問題点があ
った。
Problems to be Solved by the Invention The ceiling of a store, office, or living room is 2.5 to 3 mm from the floor
When the indoor unit is installed at this position, the temperature of the air blown from the indoor unit is sent into the living area to maintain a good temperature distribution. There must be. For this reason, for a person in the vicinity of the outlet, the blowing air may hit the head or face, causing discomfort, or causing a phenomenon that the person feels cold.
There was a problem that a high-level comfortable space could not be provided.

また、特に暖房時は空気の比重量の影響で、高温の空
気が天井付近によどみ、人間の活動範囲である居住域よ
りも上方の天井付近を無駄に暖房してしまうので、非常
に効率の悪い暖房となり、ランニングコストが高くなる
という問題があった。
In addition, especially during heating, due to the effect of the specific weight of air, high-temperature air stagnates near the ceiling, which wastes heat near the ceiling above the living area, which is the range of human activity. There was a problem that the heating was bad and the running cost was high.

本発明は、設定温度と吹出し空気温度とから室内の熱
負荷量を演算し、かつ吹出し空気温度変化率の両者を検
出し、これらのいずれかが、あらかじめ設定された値よ
りも大きいときには室内機の温調された空気の吹出し角
度を、斜め下方吹出しとし、居住域内に直接吹きおろす
制御を行ない、また熱負荷量演算結果及び吹出し空気温
度変化率演算結果のいずれもがあらかじめ設定された値
よりも小さなとき、つまり定常運転に近づけば、天井面
に略水平に吹き出す様制御する様な空気調和機を提供す
ることを目的とする。
The present invention calculates the amount of heat load in the room from the set temperature and the blown air temperature and detects both of the blown air temperature change rates, and when either of these is greater than a preset value, the indoor unit The temperature-controlled air is blown out obliquely downward and the air is blown down directly into the living area, and both the heat load calculation result and the blown air temperature change rate calculation result exceed the preset values. It is an object of the present invention to provide an air conditioner that controls to blow out almost horizontally to the ceiling surface when it is small, that is, when it approaches steady operation.

課題を解決するための手段 上記目的を達成するために本発明の天井埋込型の空気
調和機は、吹出し空気温度検出手段と、室内温度設定手
段と、前記吹出し空気温度検出手段からの吹出し空気温
度出力と前記室内温度設定手段からの設定温度出力とを
もとに室内の熱負荷量を演算する熱負荷量演算手段と、
前記吹出し空気温度検出手段が検出した温度を入力信号
として吹出し空気温度の変化量を測定する吹出し空気温
度変化率測定手段と、前記吹出し空気温度変化率測定手
段及び熱負荷量演算手段の両者を出力信号に基づき吹出
し角度を判定する吹出し角度判定手段と、吹出し角度を
前記吹出し角度判定手段で判定された吹出し角度に切替
える吹出し角度切替手段とを備え、前記吹出し角度判定
手段は、前記吹出し空気温度変化率測定手段からの出力
である吹出し空気温度変化率と前記熱負荷量演算手段か
らの出力である室内の熱負荷量のいずれかもしくは両方
ががあらかじめ設定された値以上であれば、吹出し角度
を斜め下方とし、前記吹出し空気温度変化率と前記室内
の熱負荷量のいずれもが、あらかじめ設定された値より
も小さいときは吹出し角度を天井面に略水平と判定する
ように構成されている。
Means for Solving the Problems In order to achieve the above object, the ceiling-embedded air conditioner of the present invention is a blown air temperature detecting means, an indoor temperature setting means, and blown air from the blown air temperature detecting means. Heat load amount calculating means for calculating the heat load amount in the room based on the temperature output and the set temperature output from the room temperature setting means,
Outputs both the blowing air temperature change rate measuring means for measuring the amount of change in the blowing air temperature using the temperature detected by the blowing air temperature detecting means as an input signal, and the blowing air temperature change rate measuring means and the heat load amount calculating means. A blowout angle determination means for determining a blowout angle based on a signal, and a blowout angle switching means for switching the blowout angle to the blowout angle determined by the blowout angle determination means, the blowout angle determination means, the blowout air temperature change If either or both of the blown air temperature change rate which is the output from the rate measuring means and the indoor heat load which is the output from the heat load calculating means is equal to or greater than a preset value, the blowout angle is set. It is set obliquely downward, and when both the rate of change in the temperature of the blown air and the amount of heat load in the room are smaller than a preset value, the air is blown. It is configured to determine a substantially horizontal angles to the ceiling surface and.

作用 本発明は、上記の様な構成により、吹出し空気温度
と、設定温度を検出演算し室内の熱負荷量を判定すると
ともに、吹出し空気温度変化率測定手段により、所定時
間内での室温の吹出し空気温度変化率を測定し、熱負荷
量及び吹出し空気温度変化率のいずれかが大きい場合に
は吹出し角度切替手段により斜め下方に吹出す様に、ま
た熱負荷量及び吹出し空気温度変化率のいずれもが小さ
い場合には吹出し角度切替手段により、天井面と略水平
に吹き出す様に制御することにより、運転開始初期の様
に熱負荷量と吹出し空気温度変化率が大きく、すばやく
居住領域を冷暖房したいときには斜め前下方に吹き吐
し、短時間による温調を行なう。そして室温が安定して
くれば室内温度と設定温度の差が小さくなるとともに吹
出し空気温度変化率も小さくなり、吹出し角度を天井面
に略水平にするので居住域内の人間に強い風が当り不快
感が発生するのを防ぐ、又、天井面に沿って吹出すの
で、風速は減速しにくく、天井→側壁→床→空気調和機
吸込口という室全体の大きなサーキュレーションを発生
させ、室全体を均一に温調する。また、特に暖房運転の
場合には、居住域の上方の天井付近に溜りやすい高温空
気を略水平吹出し流で居住域内へと運び込む。
Action The present invention has the above-described configuration to detect and calculate the blown air temperature and the set temperature to determine the amount of heat load in the room, and the blown air temperature change rate measuring means to blow out the room temperature within a predetermined time. The air temperature change rate is measured, and if either the heat load amount or the blowout air temperature change rate is large, the blowout angle switching means blows out obliquely downward, and either the heat load amount or the blowout air temperature change rate is measured. When the humor is small, by controlling the blowing angle switching means so that it blows out almost horizontally with the ceiling surface, the heat load amount and blown air temperature change rate are large like at the beginning of operation, and I want to quickly cool and heat the living area. Occasionally, the temperature is adjusted in a short time by ejecting it obliquely forward and downward. When the room temperature becomes stable, the difference between the room temperature and the set temperature becomes smaller and the rate of change in the blown air temperature also becomes smaller, and the blowing angle is made substantially horizontal to the ceiling surface, so strong winds hit people in the living area and cause discomfort. Is generated, and it blows out along the ceiling surface, so it is difficult for the wind speed to slow down, creating a large circulation of the entire room: ceiling → side walls → floor → air conditioner suction port, making the entire room uniform. Control the temperature to. Further, particularly in the heating operation, high-temperature air that tends to accumulate near the ceiling above the living area is carried into the living area by a substantially horizontal blowout flow.

実 施 例 以下本発明の一実施例を第1図から第5図により説明
する。尚、従来と同一のものについては説明を省略し、
異なる点のみについて述べる。
Embodiment An embodiment of the present invention will be described below with reference to FIGS. The description of the same components as the conventional one is omitted,
Only the differences will be described.

第1図は本発明の一実施例を示す構成図であり18は室
内温度設定手段で、19は吹出グリル11b部に設けられた
吹出し空気温度検出手段で、室14に吹出す空気の温度を
検出する。この様にして検出された温度信号を制御装置
20に送る。前記制御装置は熱負荷量演算手段21、吹出し
空気温度変化率測定手段22、吹出し角度判定手段23、吹
出し角度切替手段23とから構成している。前記熱負荷量
演算手段21は吹出し空気温度検出手段19と室内温度設定
手段18からの温度信号に基づき熱負荷量を演算し、前記
吹出し空気温度変化率測定手段22は、吹出し空気温度検
出手段19からの温度信号に基づき、吹出し空気の温度変
化率を測定するものである。そして吹出し角度判定手段
23は前記熱負荷量演算手段21及び前記吹出し空気温度変
化率測定手段22の出力信号に基づき、吹出し角度を天井
4に平行な吹出し角度か、床面17への下方吹出し角度か
を判定するものである。
FIG. 1 is a block diagram showing an embodiment of the present invention, in which 18 is an indoor temperature setting means, 19 is an outlet air temperature detecting means provided in the outlet grill 11b, and the temperature of the air blown into the chamber 14 is shown. To detect. The temperature signal detected in this way is used as a control device.
Send to 20. The control device comprises a heat load amount calculation means 21, a blowout air temperature change rate measuring means 22, a blowout angle determination means 23, and a blowout angle switching means 23. The heat load amount calculation means 21 calculates the heat load amount based on the temperature signals from the blown air temperature detection means 19 and the indoor temperature setting means 18, and the blown air temperature change rate measurement means 22 calculates the blown air temperature detection means 19 The temperature change rate of the blown air is measured based on the temperature signal from. And blowout angle determination means
The reference numeral 23 determines whether the blowing angle is a blowing angle parallel to the ceiling 4 or a downward blowing angle to the floor surface 17 based on the output signals of the heat load calculating means 21 and the blowing air temperature change rate measuring means 22. Is.

そして吹出し角度切替手段24a,24bは前記吹出し角度
判定手段23から送られてきた吹出し角度設定信号に基づ
いてルーパ12a,12bの角度を変更するものである。
The blowing angle switching means 24a, 24b change the angles of the loopers 12a, 12b based on the blowing angle setting signal sent from the blowing angle judging means 23.

前記吹出し角度切替手段24aは第2図の如く先端部に
メネジを切ったモータシャフト25a付のパルスモータ26a
と、一端をルーバ12aの先端部に枢支し、他端はオネジ
を切ったルーバ駆動シャフト27aとより成り、モータシ
ャフト25aのメネジに、ルーバの駆動シャフト27aのオネ
ジを螺嵌する構成である。
The blowout angle switching means 24a is a pulse motor 26a with a motor shaft 25a having a female thread at the tip as shown in FIG.
And one end pivotally supported on the tip of the louver 12a, and the other end is a louver drive shaft 27a with an external thread cut off.The external thread of the drive shaft 27a of the louver is screwed into the internal thread of the motor shaft 25a. .

次に上記の様に構成した空気調和機の動作を第3図の
フローチャートを用いて説明する。
Next, the operation of the air conditioner configured as described above will be described using the flowchart of FIG.

室14を使用する人が、空気調和機1の電源を投入した
のち、ステップ28で所望の室温Tsetに温度設定し、空調
機の運転を開始する。
After the person using the room 14 turns on the power of the air conditioner 1, the temperature is set to a desired room temperature Tset in step 28, and the operation of the air conditioner is started.

またステップ29では吹出しグリル11bの略中央部に設
けた吹出し空気温度検出手段19により初期の吹出し空気
温度T0を検出する。そしてあらかじめ設定された時間θ
を経過すれば、再び吹出し空気温度検出手段19により吹
出し空気温度T1を検出する(ステップ30)。
Further, in step 29, the initial blown air temperature T 0 is detected by the blown air temperature detecting means 19 provided in the substantially central portion of the blowout grill 11b. And the preset time θ
After the time elapses, the blown air temperature T 1 is again detected by the blown air temperature detecting means 19 (step 30).

そしてステップ31では、吹出し空気温度T1と、設定温
度Tsetの両者から次式にて熱負荷量ΔTlを計算する。
Then, at step 31, the heat load amount ΔT l is calculated by the following equation from both the blown air temperature T 1 and the set temperature Tset.

ΔTl=T1−Tset そしてあらかじめ設定された基準熱負荷量Δtl(ここ
では仮にΔtl=20℃とする)と演算した熱負荷量ΔTl
を比較する。ここで熱負荷量ΔTlが基準熱負荷量Δtl
20℃よりも大きいとき、つまり吹出し空気温度T1と設定
温度Tsetとの差が大きい場合つまり室内が設定温度から
かけはなれているときにはNoの側に進み、ルーバ12a,12
bの天井面からの角度を大きくとる様に判定され(ステ
ップ32)斜め下方の吹出し状態となる。一方吹出し空気
温度T1と設定温度Tsetとの差ΔTlが基準熱負荷量ΔTl
20℃よりも小さいときはYESの側のステップ33へと進
む。ステップ33では、初期の吹出し空気温度T0と、一定
時間後の吹出し空気温度T1により吹出し空気温度変化率
ΔTを次式 ΔT=|T0−T1|/θ にて演算する。そしてステップ34では、あらかじめ設定
された基準温度変化率Δt(ここでは仮に0.2℃/分と
する)と前記吹出し空気温度変化率ΔTとを比較する。
ここで吹出し空気温度変化率ΔTが、基準温度変化率Δ
tよりも大きい場合、つまり、立上り運転時の様に室14
の温度変化が激しく、過度運転期の場合には、YESの側
に進み、ルーバ12a,12bの天井面からの角度を大きくと
る様に判定される(ステップ35)。そしてステップ36に
進み、吹出し角度切替手段24a,24bにより各ルーバ12a,1
2bを天井面から角度を大きくとる位置に設定する。この
結果、運転開始初期の様な立上り運転時あるいは、外気
温と室温との差が非常に大きい様な高負荷がかかる運転
時にはルーバ12a,12bの角度をより大きくとるため、第
4図の様に温調された空気を直接居住域内に吹出すこと
が可能であり、居住域をすばやく設定温度に近づけるこ
とができる。そして室14の温度がほぼ設定温度に近づく
と熱負荷量ΔTl及び吹出し空気温度変化率ΔTはだんだ
んと小さくなり、熱負荷量ΔTlは基準熱負荷量Δtlより
も小さく、吹出し空気温度変化率ΔTは基準温度変化率
Δtよりも小さくなる。この結果、ステップ34でYESの
側に進みルーバ12a,12bの角度を小さくとる様に判定さ
れる。そしてステップ38に進み、吹出し角度切替手段24
a,24bにより各ルーバ12a,12bを駆動させ、吹出し方向を
天井面に略水平になる様に設定する。このため吹出した
空気は第5図の様に天井4に沿って流れ、対向する側壁
15,16の上部にぶつかる。そしてぶつかった流れは、下
方の流れに変化し、側壁15,16に沿って下方に流れてい
く。そして床17に到達したのち床面17を広がりながら、
室内機1の吸込口10から吸込まれていき、室14内全体に
大きなサーキュレーションを発生させる。このため居住
域には強風が発生せず、室14の壁に近い外殻からソフト
に温調が可能となる。
ΔT l = T 1 −Tset Then, the reference heat load amount Δt l (here, Δt l = 20 ° C.) set in advance is compared with the calculated heat load amount ΔT l . Here, the heat load ΔT l is the reference heat load Δt l =
When the temperature is higher than 20 ° C, that is, when the difference between the blown air temperature T 1 and the set temperature Tset is large, that is, when the room is far from the set temperature, proceed to the No side, and the louvers 12a, 12
It is determined that the angle of b from the ceiling surface should be large (step 32), and the air is blown obliquely downward. On the other hand, the difference ΔT l between the blown air temperature T 1 and the set temperature T set is the reference heat load ΔT l =
If the temperature is lower than 20 ° C, proceed to step 33 on the YES side. In step 33, the outlet air temperature change rate ΔT is calculated by the following equation ΔT = | T 0 −T 1 | / θ from the initial outlet air temperature T 0 and the outlet air temperature T 1 after a fixed time. Then, in step 34, a preset reference temperature change rate Δt (here, assumed to be 0.2 ° C./min) is compared with the blown air temperature change rate ΔT.
Here, the blown air temperature change rate ΔT is the reference temperature change rate Δ
If it is greater than t, that is, the room 14
If the temperature change is severe and the engine is in the excessive operation period, the process proceeds to YES and it is determined that the angles of the louvers 12a and 12b from the ceiling surface are made large (step 35). Then, the process proceeds to step 36, in which the louvers 12a, 1 are set by the blowing angle switching means 24a, 24b.
Set 2b to a position where it makes a large angle from the ceiling surface. As a result, the angle of the louvers 12a and 12b is set to a larger value during startup such as in the initial stage of operation, or during operation under high load such that the difference between the outside temperature and the room temperature is very large. The temperature-controlled air can be blown directly into the living area, and the living area can be quickly brought close to the set temperature. When the temperature of the chamber 14 approaches the set temperature, the heat load amount ΔT l and the blown air temperature change rate ΔT gradually decrease, the heat load amount ΔT l is smaller than the reference heat load amount Δt l , and the blown air temperature changes. The rate ΔT becomes smaller than the reference temperature change rate Δt. As a result, in step 34, it is judged that the angle of the louvers 12a and 12b is made smaller by advancing to the YES side. Then, the process proceeds to step 38, and the outlet angle switching means 24
The louvers 12a and 12b are driven by a and 24b, and the blowing direction is set to be substantially horizontal to the ceiling surface. Therefore, the air blown out flows along the ceiling 4 as shown in FIG.
Hit the top of 15,16. Then, the collided flow changes to a downward flow and flows downward along the side walls 15 and 16. And after reaching the floor 17, while spreading the floor surface 17,
It is sucked through the suction port 10 of the indoor unit 1 and generates a large circulation in the entire room 14. Therefore, no strong wind is generated in the living area, and the temperature can be softly controlled from the outer shell near the wall of the room 14.

上記実施例によれば、熱負荷量が大きい場合、あるい
は吹出し空気温度変化率が大きい場合、つまり運転開始
初期の様な場合には、吹出方向を前方床面に向けてやり
居住域内に温調された空気をどんどんと送りこんでやり
早く所望の温度に到達する様に制御する。一方、室14の
温度が設定温度に近づき、熱負荷量ΔTl及び吹出し空気
温度変化率ΔTのいずれもが基準値よりも小さくなれ
ば、吹出す方向を、天井に水平な吹出しとし、天井面に
沿った流れを発生させる。吹出し空気は、天井面に沿っ
て流れるので、風速は減少しにくく、天井面を沿いなが
ら、側壁15,16上端に到達したのち側壁15,16に沿って下
方に流れていき床面17をへて、室内機1の吸込口10に吸
込まれていく。この結果室14には壁面に沿った大きなサ
ーキュレーションが発生する。つまり室14がほぼ安定し
た温度に到達すれば、吹出しを居住域外の天井付近と
し、居住域を外殻から温調することになる。このため、
居住域に強い風が到達することがなくなり、風が当るこ
とによる不快感をなくする。又、壁に沿った流れであ
り、気流は減速しにくく、確実にサーキュレーションす
るので室内はより均一な温度分布にすることが可能であ
る。
According to the above-mentioned embodiment, when the heat load is large or the rate of change in the blown air temperature is large, that is, at the beginning of operation, the blowing direction is directed toward the front floor surface and the temperature control is performed in the living area. The generated air is fed in steadily to control the temperature so as to reach the desired temperature quickly. On the other hand, when the temperature of the room 14 approaches the set temperature and both the heat load amount ΔT l and the blowout air temperature change rate ΔT are smaller than the reference value, the blowing direction is a horizontal blowout to the ceiling surface. Generate a flow along. The blown air flows along the ceiling surface, so the wind speed does not easily decrease, and while flowing along the ceiling surface, it reaches the upper ends of the side walls 15, 16 and then flows downward along the side walls 15, 16 toward the floor surface 17. And is sucked into the suction port 10 of the indoor unit 1. As a result, a large circulation is generated in the chamber 14 along the wall surface. That is, when the temperature of the room 14 reaches a substantially stable temperature, the blowout is set near the ceiling outside the living area, and the living area is temperature-controlled from the outer shell. For this reason,
The strong wind does not reach the residential area, eliminating the discomfort caused by the wind. In addition, since the flow is along the wall, the air flow is hard to be decelerated and the circulation is reliably performed, so that a more uniform temperature distribution in the room can be achieved.

特に暖房時には天井4付近に高温空気が滞留しやすい
が頭よりずっと上方を無駄に温めていた。この様な高温
空気を、水平吹出し流により吹きとばし、居住域内へと
運ぶので、効率の良い暖房を可能とする。
Especially during heating, high temperature air tends to stay near the ceiling 4, but the space above the head was wasted. Such high-temperature air is blown out by the horizontal blowing flow and carried into the living area, which enables efficient heating.

また、吹出し空気温度と室内設定温度との差だけでな
く、吹出し空気温度の変化率を測定して部屋の負荷安定
状況を考慮して吹出し方向を決めるため、より適切な吹
出し方向の選定が可能となり、快適性が大きく向上す
る。
Also, not only the difference between the blown air temperature and the indoor set temperature, but also the change rate of the blown air temperature is measured and the blow direction is determined in consideration of the load stability situation in the room, so a more appropriate blow direction can be selected. And comfort is greatly improved.

尚、本実施例では、ルーバ12a,12bの駆動をモータ26
a,26bを用いて行なっているが、形状記憶合金等を用い
て、ルーバ12a,12bを駆端させることも充分に可能であ
る。
In this embodiment, the driving of the louvers 12a and 12b is performed by the motor 26.
Although a and 26b are used, it is also possible to drive the louvers 12a and 12b by using a shape memory alloy or the like.

発明の効果 以上実施例から明らかな様に本発明は、吹出し空気温
度検出手段と設定温度検出手段により室内の熱負荷量を
演算する熱負荷量演算手段と、前記吹出し空気温度検出
手段により、所定の時間間隔で吹出し空気温度を検出
し、吹出し空気温度変化率測定手段により室の温度変化
率を測定する。これら熱負荷量及び温度変化率のいずれ
もがあらかじめ設定された値よりも小さい値のときには
吹出し角度切替手段により、天井面に略水平に吹き出す
様に制御し、又いずれも、あるいはいずれかが大きいと
きは斜め下方吹出しに制御するので、室内温度と設定温
度との差が大きいか、温度変化率が大きい様な運転開始
初期の様な場合には、温調された空気を居住域内にどん
どん送りこんでやり、早く所望の温度に到達させる。そ
して、運転が安定し設定温度に近づき、かつ吹出し空気
温度変化率が小さくなれば、非居住域に水平吹出し流を
発生させ、天井面に沿った室内全体の大きな対流を発生
させる。
EFFECTS OF THE INVENTION As is apparent from the above-described embodiments, the present invention is configured such that the blown air temperature detecting means and the set temperature detecting means calculate the heat load amount in the room, and the blown air temperature detecting means determines a predetermined value. The blowout air temperature is detected at time intervals of, and the blowout air temperature change rate measuring means measures the temperature change rate of the chamber. When both of the heat load amount and the temperature change rate are smaller than the preset values, the blowout angle switching means controls the blowout to be substantially horizontal to the ceiling surface, and either or either of them is large. In this case, the temperature is controlled so that it blows downward obliquely.Therefore, if the difference between the room temperature and the set temperature is large, or if the temperature change rate is large, such as when the operation is in the initial stage of operation, the temperature-controlled air will be sent more and more into the living area. Then, quickly reach the desired temperature. When the operation is stable, the temperature approaches the set temperature, and the rate of change in the blown air temperature becomes small, a horizontal blowout flow is generated in the non-residential area, and a large convection in the entire room along the ceiling surface is generated.

このため居住域内に居る人間には吹出し気流が直接当
らないので気流による不快感は発生しない。また、天井
面に沿って気流が流れるので、風速の低下がおこりにく
く、室全体のサーキュレーションはより確実なものとな
り、室内温度分布も大幅に向上する。
For this reason, since the blowout airflow does not directly hit the person in the living area, the discomfort caused by the airflow does not occur. Further, since the airflow flows along the ceiling surface, the wind speed is unlikely to decrease, the circulation of the entire room becomes more reliable, and the indoor temperature distribution is significantly improved.

また天井面,側壁も同時に温調されるので、これらの
面からの冷輻射,暖輻射による不快感は減少する。
Further, since the temperature of the ceiling surface and the side wall is controlled at the same time, discomfort caused by cold and warm radiation from these surfaces is reduced.

特に暖房時には高温の空気が天井付近にたまりやすい
が、水平吹出しによって、上部の高温空気を居住域内に
運ぶ込むことが可能であり、より効率の高い暖房が可能
である。
In particular, hot air tends to collect near the ceiling during heating, but horizontal blowing allows the hot air in the upper part to be carried into the living area, enabling more efficient heating.

また、吹出し空気温度と室内設定温度との差だけでな
く、吹出し空気温度の変化率を測定して部屋の負荷安定
状況を考慮して吹出し方向を決めるため、より適切な吹
出し方向の選定が可能となり、快適性が大きく向上す
る。
Also, not only the difference between the blown air temperature and the indoor set temperature, but also the change rate of the blown air temperature is measured and the blow direction is determined in consideration of the load stability situation in the room, so a more appropriate blow direction can be selected. And comfort is greatly improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す構成図、第2図は本実
施例の要部拡大図、第3図は吹出し角度判定のためのプ
ログラムの一例を示すフローチャート図、第4図は立上
り運転時の室内気流を示す図、第5図は安定運転時(水
平吹出し時)の室内気流を示す図、第6図は従来の空気
調和機の底面図、第7図は上記空気調和機の中央断面
図、第8図は従来例における室内気流を示す図である。 18……室内温度設定手段、19……吹出し空気温度検出手
段、20……制御装置、21……熱負荷量演算手段、22……
温度変化率測定手段、23……吹出し角度判定手段、24a,
24b……吹出し角度切替手段。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is an enlarged view of a main part of the present embodiment, FIG. 3 is a flow chart showing an example of a program for determining a blowing angle, and FIG. FIG. 5 is a diagram showing an indoor air flow during a stand-up operation, FIG. 5 is a diagram showing an indoor air flow during a stable operation (at the time of horizontal blowing), FIG. 6 is a bottom view of a conventional air conditioner, and FIG. 7 is the above air conditioner. 8 is a central sectional view of FIG. 8 and FIG. 8 is a view showing an indoor air flow in a conventional example. 18 …… Indoor temperature setting means, 19 …… Blowout air temperature detecting means, 20 …… Control device, 21 …… Heat load amount calculating means, 22 ……
Temperature change rate measuring means, 23 ... Blowout angle determining means, 24a,
24b ...... Blowout angle switching means.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】吹出し空気温度検出手段と、室内温度設定
手段と、前記吹出し空気温度検出手段からの吹出し空気
温度出力と前記室内温度設定手段からの設定温度出力と
をもとに室内の熱負荷量を演算する熱負荷量演算手段
と、前記吹出し空気温度検出手段が検出した温度を入力
信号として吹出し空気温度の変化量を測定する吹出し空
気温度変化率測定手段と、前記吹出し空気温度変化率測
定手段及び熱負荷量演算手段の両者を出力信号に基づき
吹出し角度を判定する吹出し角度判定手段と、吹出し角
度を前記吹出し角度判定手段で判定された吹出し角度に
切替える吹出し角度切替手段とを備え、前記吹出し角度
判定手段は、前記吹出し空気温度変化率測定手段からの
出力である吹出し空気温度変化率と前記熱負荷量演算手
段からの出力である室内の熱負荷量のいずれかもしくは
両方ががあらかじめ設定された値以上であれば、吹出し
角度を斜め下方とし、前記吹出し空気温度変化率と前記
室内の熱負荷量のいずれもが、あらかじめ設定された値
よりも小さいときは吹出し角度を天井面に略水平と判定
することを特徴とする天井埋込型の空気調和機。
1. A heat load in a room based on blown air temperature detecting means, indoor temperature setting means, blown air temperature output from the blown air temperature detecting means and set temperature output from the indoor temperature setting means. A heat load amount calculating means for calculating the amount, a blowout air temperature change rate measuring means for measuring the change amount of the blowout air temperature using the temperature detected by the blowout air temperature detecting means as an input signal, and the blowout air temperature change rate measurement Both the means and the heat load amount calculating means are provided with a blowing angle determining means for determining a blowing angle based on an output signal, and a blowing angle switching means for switching the blowing angle to the blowing angle determined by the blowing angle determining means, The blowout angle determination means is an output from the blowout air temperature change rate measuring means and an output from the blowout air temperature change rate and the heat load amount calculating means. If either or both of the heat load amounts in the interior are equal to or greater than a preset value, the outlet angle is set obliquely downward, and both the outlet air temperature change rate and the heat load amount in the room are preset. If it is smaller than the above value, the air conditioner of the ceiling embedded type is characterized in that the outlet angle is determined to be substantially horizontal to the ceiling surface.
JP63027061A 1988-02-08 1988-02-08 Ceiling embedded air conditioner Expired - Lifetime JP2558783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63027061A JP2558783B2 (en) 1988-02-08 1988-02-08 Ceiling embedded air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63027061A JP2558783B2 (en) 1988-02-08 1988-02-08 Ceiling embedded air conditioner

Publications (2)

Publication Number Publication Date
JPH01203837A JPH01203837A (en) 1989-08-16
JP2558783B2 true JP2558783B2 (en) 1996-11-27

Family

ID=12210553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63027061A Expired - Lifetime JP2558783B2 (en) 1988-02-08 1988-02-08 Ceiling embedded air conditioner

Country Status (1)

Country Link
JP (1) JP2558783B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159546A (en) * 1984-01-30 1985-08-21 Hitachi Ltd Heat pump type air conditioner

Also Published As

Publication number Publication date
JPH01203837A (en) 1989-08-16

Similar Documents

Publication Publication Date Title
JPS62175540A (en) Air conditioning device
JP3432022B2 (en) Air conditioner
JP3446478B2 (en) Air conditioner
JP2000283535A (en) Radiation air conditioner
JP2558783B2 (en) Ceiling embedded air conditioner
JP2001208394A (en) Air-conditioning system
JP2594318B2 (en) Ceiling-mounted air conditioner
JPH01302055A (en) Ceiling-embedded type air conditioner
JP2553644B2 (en) Ceiling embedded air conditioner
JP2692257B2 (en) Air conditioner
JPH01169256A (en) Air-conditioner
JPH0526508A (en) Air conditioner
JPH02166338A (en) Air conditioner
JP2690140B2 (en) Air conditioner
JP7494545B2 (en) Air conditioning equipment
JPH0221151A (en) Ceiling-enbeded type air conditioner
JPH10122626A (en) Air conditioner
JPH01203838A (en) Ceiling embedded type air conditioner
JPH02103331A (en) Ceiling embodies type air conditioner
JPH0363431A (en) Air conditioner
JP3610673B2 (en) Air conditioner control device
JPH02223754A (en) Wind direction control device for air conditioner
JP2845514B2 (en) Air conditioner
JPH04217733A (en) Air conditioner
JP2912846B2 (en) Air conditioner