JPH02166338A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH02166338A
JPH02166338A JP63319120A JP31912088A JPH02166338A JP H02166338 A JPH02166338 A JP H02166338A JP 63319120 A JP63319120 A JP 63319120A JP 31912088 A JP31912088 A JP 31912088A JP H02166338 A JPH02166338 A JP H02166338A
Authority
JP
Japan
Prior art keywords
temperature
air
heat load
blowing
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63319120A
Other languages
Japanese (ja)
Inventor
Toshinori Noda
俊典 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP63319120A priority Critical patent/JPH02166338A/en
Publication of JPH02166338A publication Critical patent/JPH02166338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air-Flow Control Members (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To provide an automatic control of a blowing angle and a blowing volume by a method wherein an interior thermal load is calculated in reference to a set temperature and a suction air temperature and a temperature unbalanced state within a dwelling area is detected in a precision manner in reference to a radiation temperature at a floor within a dwelling area and a surrounding temperature near a radiation heat sensing means. CONSTITUTION:This system is comprised of a thermal load calculation means 26 for use in calculating a thermal load value in an interior in reference to a sucked air temperature sensing means and a set temperature sensing means 18, a convex lens 26 and a temperature sensing element 23 arranged near a focal point of the convex lens. A floor surface temperature and a desk top surface temperature or the like and a surrounding temperature near the radiation temperature sensing means are detected in a high precision manner by the radiation temperature sensing means 20 for use in detecting the radiation temperature near the floor surface and then an unbalanced temperature is detected in reference from these both values. When the thermal load and the unbalanced temperature are lower than the set values, an air blowing volume is reduced in a substantial parallel direction to the ceiling surface by the blowing angle changing-over means 29a and 29b and in turn when both of them or either one of them is large, the air is blown slantly and downwardly and then an amount of blown air is increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空気調和機、特にその吹出し空気風向の制御に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an air conditioner, and in particular to control of the direction of air discharged therefrom.

従来の技術 従来の技術について第7図から第9図を用いて説明する
。1は天井埋込型の空気調和機の室内機であり、天壁2
に固定ボルト3により固定され、室内機1の下面は天井
4と路間−面上に開口している。室内機1は外殻5と下
面グリル6とから構成し、その内部には冷却システムの
室内側熱交換器7a、γbが、またその各々と熱交換可
能な様に送風機8を設置している。
Prior Art The conventional technology will be explained with reference to FIGS. 7 to 9. 1 is an indoor unit of a ceiling-embedded air conditioner;
The lower surface of the indoor unit 1 is opened onto the ceiling 4 and the road surface. The indoor unit 1 is composed of an outer shell 5 and a lower grille 6, and inside thereof are installed indoor heat exchangers 7a and γb of the cooling system, and a blower 8 is installed so as to be able to exchange heat with each of them. .

そして下面グリル6の中央部に方形状の吸込口1oを設
け、吸込口1oの周囲には吹出しグリル11、a、11
bを設けている。送風機8から吹出した空気の略半分は
熱交換器7aを通ったのち、吹出しグリル11aを通過
し、斜め下前方へと吹き出す。また送風機8から吹出し
た残シの空気は熱交換器7bを通シ、吹出しグリル11
bを通過し斜め下前方へと吹出す様な構造としている。
A rectangular suction port 1o is provided in the center of the lower grille 6, and outlet grilles 11, a, 11 are provided around the suction port 1o.
b. Approximately half of the air blown from the blower 8 passes through the heat exchanger 7a, passes through the blowout grille 11a, and blows out diagonally downward and forward. In addition, the remaining air blown from the blower 8 is passed through the heat exchanger 7b, and is passed through the air outlet grill 11.
The structure is such that the air passes through b and blows out diagonally downward and forward.

また各々の吹出し風向をコントロールするため可動式の
ルーバ12a、12bを設置している。
Furthermore, movable louvers 12a and 12b are installed to control the direction of each blowout air.

そして、使用者が任意の室温に設定可能な様なリモコン
タイプの温度設定手段1ooを設けている。
A remote control type temperature setting means 1oo is provided which allows the user to set the room temperature to any desired temperature.

吸込口10の内部には、吸込温度検出手段13を固定設
置しておシ、吸込温度を測定するとともに温度設定手段
100による設定温度との温度差を検出し、冷却システ
ムを0N−OFFさせ室内を略−様に保っている。
A suction temperature detection means 13 is fixedly installed inside the suction port 10, and it measures the suction temperature and detects the temperature difference from the temperature set by the temperature setting means 100, and turns the cooling system OFF. is maintained roughly.

この様に構成する従来の天井埋込型の空気調和機の動作
について説明する。
The operation of the conventional ceiling-embedded air conditioner configured in this manner will be explained.

く、室14の温度調節を行なう。Then, the temperature of the chamber 14 is adjusted.

室14は、天井4.側壁15,16、及び床17よ多構
成している。又、第8図の二点鎖線に囲まれた空間が居
住域であシ、ASHRAEの5TANDARDでは、高
さ1800−以下でかつ側壁から600゜以上離れた空
間を居住域と定義している。つまυ人間はおおむねこの
居住域で活動すると定義している。
The room 14 has a ceiling 4. It is composed of side walls 15, 16 and a floor 17. Also, the space surrounded by the two-dot chain line in FIG. 8 is the living area, and in ASHRAE's 5TANDARD, the living area is defined as a space with a height of 1800 degrees or less and a distance of 600 degrees or more from the side wall. It is defined that humans generally operate in this habitat.

このときの吹出空気の流線は、第8図の様に、熱交換器
ya、7bにより暖められた(冷房時は冷やされた)空
気が、吹出しグリル11a、11bから斜め下方に吹出
し、居住域内で大きな弧を描く様に、室14内を暖め(
冷やし)たのち室内機1の中央の吸込口10よシ吸込ま
れる。このとき、各吹出し気流a、及びbは路間−の吹
出し風量。
At this time, the streamlines of the blown air are such that the air warmed by the heat exchangers ya and 7b (cooled during cooling) is blown diagonally downward from the outlet grilles 11a and 11b, and Warm the inside of room 14 in a large arc within the area (
(cooled) and then sucked into the central suction port 10 of the indoor unit 1. At this time, each of the blown air flows a and b is the blown air volume between the roads.

吹出し方向であシ、気流a、bの流線はいずれも略同様
の弧を描く。
In the blowing direction, the streamlines of airflows a and b all draw approximately the same arc.

この様にして吸込まれた空気の温度を吸込温度検出手段
13により検知することにょシ、吹出し空気温度を調節
し、室14の居住域内の平均温度をほぼ設定温度に維持
するものであった。
By detecting the temperature of the air sucked in in this manner by the suction temperature detection means 13, the temperature of the blown air is adjusted to maintain the average temperature in the living area of the room 14 at approximately the set temperature.

発明が解決しようとする課題 店舗や事務所、あるいは居室の天井は床から2.5〜3
胴の高さであり、この位置に室内機が設置されたとき、
室内機から吹出す温調された空気を、居住域内に送り込
み良好な温度分布を維持するには、吹出し風速を非常に
大きくしなければならなり0このため吹出し口の真下付
近にいる人は、その吹出し風が頭部や顔面に当シネ快感
が発生したシ、体感的に寒く感する現象が発生するので
、レベルの高い快適空間を提供できないという問題点が
あった。
Problems that the invention aims to solve The ceiling of a store, office, or living room is 2.5 to 3 cm above the floor.
This is the height of the body, and when the indoor unit is installed at this position,
In order to send the temperature-controlled air blown out from the indoor unit into the living area and maintain a good temperature distribution, the blowing air speed must be extremely high. Therefore, people who are directly under the air outlet must The blown wind causes a sensation of pleasure on the head and face, causing a sensation of coldness, which poses a problem in that a high level of comfortable space cannot be provided.

また、特に暖房時は空気の比重量の影響で、高温の空気
が天井付近によどみ、人間の活動範囲である居住域よシ
も上方の天井付近を無駄に暖房してしまうので、非常に
効率の悪い暖房となり、ランニングコストが高くなると
いう問題があった。
In addition, especially during heating, high temperature air stagnates near the ceiling due to the specific weight of air, and the area above the ceiling, which is the area of human activity, is heated unnecessarily, making it extremely inefficient. This resulted in poor heating performance and high running costs.

本発明は、設定温度と吸込み空気温度とから室内熱負荷
量を演算し、かつ居住域内の床等の輻射温度と輻射温度
検出手段近傍の周囲温度から精度よく居住域内の温度ア
ンバランスを検出し、これらの出力結果に基づき、吹出
角度切替手段、及び吹出風量切替手段により吹出角度及
び吹出風量を自動的に制御する空気調和機を提供するこ
とを目的とする。
The present invention calculates the indoor heat load amount from the set temperature and the intake air temperature, and accurately detects the temperature imbalance in the living area from the radiant temperature of the floor etc. in the living area and the ambient temperature near the radiant temperature detection means. It is an object of the present invention to provide an air conditioner that automatically controls the blowout angle and the blowout air volume using a blowout angle switching means and a blowout air volume switching means based on these output results.

課題を解決するための手段 上記目的を達成するだめに、本発明の空気調和機は、凸
レンズと、凸レンズの焦点近傍に設けた温度検出素子か
ら成る輻射温度検出手段からの床等の輻射温度検出力と
輻射温度検出手段近傍に設けた周囲温度検出手段からの
周囲温度出力の両者からの温度アンバランスを演算し、
又吸込空気温度と設定温度出力から室内の熱負荷量を演
算する室内熱負荷量演算手段を有する。前記温度アンバ
ランスと室内の熱負荷量のいずれもがあらかじめ設定さ
れた値よシも小さい場合のみ、空調機の吹出し空気の吹
出し角度を天井面に略水平とし、それ以外の場合は、居
住域の温度を設定値に近づけるため、上下方向の温度分
布を少なくするため吹出し角度を居住域内に向け、かつ
吹出し風量を増加させる吹出し角度切替手段及び吹出風
量切替手段を有している。
Means for Solving the Problems In order to achieve the above object, the air conditioner of the present invention detects the radiant temperature of the floor, etc. from the radiant temperature detecting means, which is composed of a convex lens and a temperature detecting element provided near the focal point of the convex lens. Calculate the temperature imbalance from both the power and the ambient temperature output from the ambient temperature detection means installed near the radiant temperature detection means,
It also has an indoor heat load calculating means for calculating the indoor heat load from the intake air temperature and the set temperature output. Only when the above-mentioned temperature imbalance and indoor heat load are both smaller than the preset values, the air conditioner's air outlet angle should be set approximately parallel to the ceiling surface. In order to bring the temperature closer to the set value, the air blowing angle is directed into the living area in order to reduce the temperature distribution in the vertical direction, and the air blowing angle switching means and blowing air volume switching means are provided to increase the blowing air volume.

作  用 本発明は、上記の様な構成により、吸込み空気温度と、
設定温度を検出演算し室内の熱負荷量を判定するととも
に、温度アンバランス検出手段により、居住域の温度と
床面等の温度のアンバランス量を精度良く検出し、熱負
荷量及び温度アンバランスのいずれかが大きい場合には
吹出し角度切番手段により斜め下方に吹出し、かつ吹出
し風量を増加する様に、また熱負荷量及び温度アンバラ
ンスのいずれもが小さい場合には吹出し角度切替手段に
より、天井面と略水平に吹き出す様に制御することによ
り、運転開始初期の様に熱負荷量と居住域空気温度と床
面等の温度差が大きく、すばやく居住領域を冷暖房した
いときには斜め前下方に大風量を吹き出し、短時間に温
調を行なう。そして室温が安定してくれば室内温度と設
定温度の差が小さくなるとともに温度アンバランスも小
さくなシ、吹出し角度を天井面に略水平にするのづ住域
内の人間に強い風が当り不快感が発生するのを防ぐ。又
、このとき吹出風は天井面に沿って吹出すので、風速は
減速しにくく、天井→側壁→床→空気調和機吸効口とい
う室全体の大きなサーキュレーシヨンを発生させ、室全
体を均一に温調する。また、特に暖房運転の場合には、
居住域の上方の天井付近に溜りやすい高温空気を略水平
吹出し流で居住域内へと運び込むことが可能となる。
Effect The present invention has the above-described configuration, so that the temperature of the intake air and
In addition to detecting and calculating the set temperature and determining the amount of heat load in the room, the temperature imbalance detection means accurately detects the amount of imbalance between the temperature of the living area and the temperature of the floor surface, etc., and detects the amount of heat load and temperature imbalance. If either of them is large, the blowing angle switching means blows out diagonally downward and increasing the blowing air volume, and if both the heat load amount and temperature imbalance are small, the blowing angle switching means By controlling the air to blow out almost horizontally with the ceiling surface, when there is a large difference in heat load and temperature between the living area air temperature and the floor surface, etc. at the beginning of operation, when you want to quickly cool or heat the living area, the air blows out diagonally forward and downward. Blows out a large amount of air and adjusts the temperature in a short time. When the room temperature becomes stable, the difference between the indoor temperature and the set temperature becomes smaller, and the temperature imbalance also becomes smaller.If the air outlet angle is set almost parallel to the ceiling, strong winds will hit people in the living area, making them uncomfortable. prevent this from occurring. In addition, since the blowing air blows out along the ceiling surface, the wind speed is difficult to decelerate, and a large circulation is generated throughout the room from the ceiling to the side wall to the floor to the air conditioner suction opening, making the entire room uniform. Adjust the temperature. In addition, especially in heating operation,
It becomes possible to carry high-temperature air that tends to accumulate near the ceiling above the living area into the living area by a substantially horizontal blowout flow.

また、側壁や天井面に対流に障害となる遮へい物(たと
えば書庫、けい光灯等)がある場合、床付近までサーキ
ュレーションされず、床部の温度と設定温度との温度差
が大きくなる様なときでも輻射温度検出手段により、居
住域空気温度と床部温度のアンバランスが大きいことを
精度良く検出するため、大風量で斜め下方吹出しとなシ
、居住域の温度を設定温度近辺に維持できる。
In addition, if there are obstacles on the side walls or ceiling that impede convection (for example, bookshelves, fluorescent lights, etc.), circulation will not reach the floor area and the temperature difference between the floor temperature and the set temperature will increase. In order to accurately detect large imbalances between the air temperature in the living area and the floor temperature using the radiant temperature detection means, even when the temperature is low, the temperature in the living area is maintained near the set temperature by blowing diagonally downward at a large air volume. can.

実施例 以下本発明の一実施例を第1図から第6図により説明す
る。尚、従来と同一のものについては説明を省略し、異
なる点のみについて述べる。
EXAMPLE An example of the present invention will be described below with reference to FIGS. 1 to 6. Note that explanations of the same components as those of the prior art will be omitted, and only the different points will be described.

第1図は本発明の一実施例を示す構成図であシ18は室
内温度設定手段で、19は吸込グリル10内部に設けら
れた吸込み空気温度検出手段で、室14上部の吸込み空
気の温度を検出する。
FIG. 1 is a configuration diagram showing an embodiment of the present invention. Reference numeral 18 indicates indoor temperature setting means, and reference numeral 19 indicates intake air temperature detection means provided inside the suction grill 10, which indicates the temperature of the intake air in the upper part of the chamber 14. Detect.

また2oは輻射温度検出手段であり、下方に開口した円
筒状の外殻21の下面に凸レンズ22ががん合されてお
り、前記凸レンズ22の焦点付近に温度検出素子23を
設けた構成である。また、前記輻射温度検出手段20内
部には、周囲温度検出手段24を設置しておシ、前記凸
レンズの焦点付近には設置してはならない。
Further, 2o is a radiant temperature detection means, which has a configuration in which a convex lens 22 is tightly fitted to the lower surface of a cylindrical outer shell 21 that opens downward, and a temperature detection element 23 is provided near the focal point of the convex lens 22. . Further, the ambient temperature detecting means 24 should be installed inside the radiant temperature detecting means 20, but should not be installed near the focal point of the convex lens.

この結果、凸レンズ22により集熱され、床等の輻射の
影響を増幅検出可能である輻射温度検出手段2oにより
床温や、居住域内に配置した机等の表面温度の影響を受
けた温度を精度よく検出するとともに、周囲温度検出手
段24により輻射温度検出手段20周辺の温度を検出す
る。
As a result, the heat is collected by the convex lens 22, and the radiation temperature detection means 2o, which can amplify and detect the effects of radiation from the floor, etc., accurately detects the temperature affected by the floor temperature and the surface temperature of desks, etc. placed in the living area. At the same time, the ambient temperature detection means 24 detects the temperature around the radiant temperature detection means 20.

この様にして検出された温度信号を制御装置26に送る
。前記制御装置は熱負荷量演算手段26゜温度アンパラ
ンヌ検出手段27.吹出し角度判定手段28.吹出し角
度切替手段2ga、2gbとから構成している。前記熱
負荷量演算手段26は吸込み空気温度検出手段19と室
内温度設定手段18からの温度信号に基づき熱負荷量を
演算し、前記温度アンバランス検出手段27は、輻射温
度検出手段2oからの温度信号と周囲温度検出手段24
からの温度信号に基づき、床部と居住域の温度のアンバ
ランスを検出するものである。そして吹出し角度判定手
段28及び吹出風量判定手段30は前記熱負荷量演算手
段26及び前記温度アンバランス検出手段27の出力信
号に基づき、吹出し角度及び吹出し風量を判定するもの
である。
The temperature signal detected in this manner is sent to the control device 26. The control device includes a heat load calculation means 26.a temperature amparanne detection means 27. Blowout angle determining means 28. It is composed of blowing angle switching means 2ga and 2gb. The heat load calculation means 26 calculates the heat load based on the temperature signals from the suction air temperature detection means 19 and the indoor temperature setting means 18, and the temperature imbalance detection means 27 calculates the heat load based on the temperature signals from the radiant temperature detection means 2o. Signal and ambient temperature detection means 24
The system detects the temperature imbalance between the floor and the living area based on the temperature signal from the floor. The blowing angle determining means 28 and the blowing air volume determining means 30 determine the blowing angle and the blowing air volume based on the output signals of the heat load calculation means 26 and the temperature imbalance detecting means 27.

そして吹出し角度切替手段29&、29bは前記吹出し
角度判定手段28から送られてきた吹出し角度設定信号
に基づいてルーパ12a、12bの角度を変更するもの
である。
The blowout angle switching means 29&, 29b change the angles of the loopers 12a, 12b based on the blowout angle setting signal sent from the blowout angle determining means 28.

また吹出風量切替手段31は前記吹出風量判定手段3o
から送られてきた吹出風量設定信号に基づいて吹出風量
を変更するものである。
Further, the blowing air volume switching means 31 is the blowing air volume determining means 3o.
The airflow volume is changed based on the airflow setting signal sent from the controller.

前記吹出し角度切替手段29&は第3図の如く先端部に
メネジを切ったモータシャフト32a付のパルスモータ
33aと、一端をルーパ12aの先端部に枢支し、他端
はオネジを切ったルーパ駆動シャフト32aとより成シ
、モータシャフト32aのメネジに、〃−パの駆動シャ
ツ)32aのオネジを螺合する構成である。
The blowout angle switching means 29& includes a pulse motor 33a with a motor shaft 32a having a female thread at the tip as shown in FIG. It is constructed with a shaft 32a, and the male thread of the drive shirt 32a is screwed into the female thread of the motor shaft 32a.

次に上記の様に構成した空気調和機の動作を第4図のフ
ローチャートを用いて説明する。
Next, the operation of the air conditioner configured as described above will be explained using the flowchart shown in FIG.

室14を使用する人が、空気調和機1の電源を投入した
のち、ステップ36で所望の室温Taetに温度設定し
、空調機の運転を開始する。
After the person using the room 14 turns on the power of the air conditioner 1, the temperature is set to a desired room temperature Taet in step 36, and the operation of the air conditioner is started.

またステップ3eでは吸込みグリル1oの略中央部内側
に設けた吸込み空気温度検出手段13により吸込み空気
温度T0を検出する。そしてステップ37では輻射温度
検出手段20により、室内機本体1下方の床や机等の輻
射温度Trを検出する。又、同時に輻射温度検出手段2
oの周辺の温度Taを周囲温度検出手段24により検出
する。
Further, in step 3e, the suction air temperature T0 is detected by the suction air temperature detection means 13 provided inside the substantially central portion of the suction grille 1o. Then, in step 37, the radiant temperature detection means 20 detects the radiant temperature Tr of the floor, desk, etc. below the indoor unit main body 1. At the same time, the radiation temperature detection means 2
The ambient temperature Ta around o is detected by the ambient temperature detection means 24.

ステップ38では、まず、前記吸込空気温度T0と設定
温度Tsetの両者から次式にて熱負荷量ΔTtを計算
する。
In step 38, first, the heat load amount ΔTt is calculated from both the intake air temperature T0 and the set temperature Tset using the following equation.

ΔTl = l To−Tsat l そしてあらかじめ設定された基準熱負荷量ΔTt(ここ
では仮にΔtt=6°Cとする)と演算した熱負荷量Δ
Ttとを比較する(ステップ39)。ここで熱負荷量Δ
Ttが基準熱負荷量Δtt=s℃よりも大きいとき、つ
まシ吸込空気温度T0と設定温度Tsetとの差の絶対
値が5°C以上ある場合、つまシ室内が設定温度からか
けはなれているときにはNoの側に進み、ルーバ12a
、12bの天井面からの角度を゛大きくとシ、かっ吹出
風量を大きくする様に判定され(ステップ40)大風量
で斜め下方の吹出し状態となる。一方吸込み空気温度T
0と設定温度Tset との差ΔTtが基準熱負荷量Δ
Tt=6°Cよシも小さいときはYESの側のステップ
41へと進む。ステップ41では、ステップ37で検出
した輻射温度Trと周囲温度Taにょシ温度アンバラン
ス ΔTaを次式 3式% にて演算する。そしてステップ42では、あらかじめ設
定された基準温度アンバランスΔta(ここでは仮にΔ
ta=8°Cとする)と前記温度アンバランス ΔTa
とを比較する。ここで温度アンバランス Δτ&が、基
準温度アンバランスΔtaよシモ大きい場合、つまシ、
立上シ運転時の様に床面の温度が居住域の温度に比べ大
きく異なる場合には、Noの側に進み、ルーバ12a、
12bの天井面からの角度を大きくとシ斜め下方吹出し
となる様に又、吹出風量を大きくする様に判定される(
ステップ40)。この結果、運転開始初期の様な立上シ
運転時あるいは、障害物等にょシ床面の温度と居住域の
温度との差が非常に大きい様な高負荷がかかる運転時に
はルーバ12a、12bの角度をよシ大きくとシ、かつ
吹出風量を大きくするだめ、第6図の様に温調された空
気を直接居住域内に吹き出すことが可能であり、居住域
をすばやく設定温度に近づけることができる。そして室
14の温度がほぼ設定温度に近づくと熱負荷量ΔTt及
び温度アンバランス ΔTaはだんだんと小さくなシ、
熱負荷量ΔTtは基準熱負荷量Δ11よシも小さく床面
も温調された結果温度アンバランス7fI′aは基準温
度アンバランスΔtaよりも小さくなる。この結果、ス
テップ42でYESの側に進みルーバ12&、12bの
角度を小さくとる様に判定される(ステップ43)。そ
してステップ42に進み、吹出し角度切替手段29a、
29bにより各ルーパ12a、12bを駆動させ、吹出
し方向を天井面に略水平になる様にまた吹出し風量が小
さくなる様に設定する。。このため吹出した空気は第6
図の様に天井4に沿って流れ、対向する側壁15.16
の上部にぶつかる。そしてぶつかった流れは、下方の流
れに変化し、側壁15.16に沿って下方に流れていく
。そして床17に到達したのち床面17を広がりながら
、室内機1の吸込口1oから吸込まれて騒き、室14内
全体に大きなサーキュレーシヨンを発生させる。このた
め居住域には強風が発生せず、室14の壁に近い外殻か
らソフトに温調が可能となる。
ΔTl = l To−Tsat l Then, the heat load amount Δ calculated with the preset reference heat load amount ΔTt (here, Δtt=6°C)
and Tt (step 39). Here, the heat load Δ
When Tt is larger than the standard heat load amount Δtt=s°C, if the absolute value of the difference between the block suction air temperature T0 and the set temperature Tset is 5°C or more, the inside of the block room is far from the set temperature. Sometimes, go to the No side and move the louver 12a.
, 12b from the ceiling surface, it is determined that the amount of air blown out will be increased (step 40), and the air will be blown diagonally downward with a large amount of air. On the other hand, the suction air temperature T
The difference ΔTt between 0 and the set temperature Tset is the reference heat load amount Δ
If Tt is smaller than 6°C, the process proceeds to step 41 on the YES side. In step 41, the temperature imbalance ΔTa between the radiation temperature Tr detected in step 37 and the ambient temperature Ta is calculated using the following equation 3. Then, in step 42, a preset reference temperature imbalance Δta (here, Δ
ta=8°C) and the temperature imbalance ΔTa
Compare with. Here, if the temperature imbalance Δτ& is larger than the reference temperature imbalance Δta, then
If the temperature of the floor surface is significantly different from the temperature of the living area, such as during start-up operation, proceed to the No side and close the louvers 12a,
It is determined that if the angle from the ceiling of 12b is increased, the air will be blown diagonally downward and the air volume will be increased (
Step 40). As a result, the louvers 12a and 12b are closed during start-up operation, such as at the beginning of operation, or during operation under high load, such as when there is a large difference between the temperature of the floor surface and the temperature of the living area due to obstructions, etc. By increasing the angle and blowing air volume, it is possible to blow out temperature-controlled air directly into the living area, as shown in Figure 6, and the living area can quickly reach the set temperature. . When the temperature of the chamber 14 approaches the set temperature, the heat load ΔTt and the temperature imbalance ΔTa gradually become smaller.
The heat load amount ΔTt is smaller than the reference heat load amount Δ11, and as a result of temperature control of the floor surface, the temperature imbalance 7fI'a becomes smaller than the reference temperature imbalance Δta. As a result, the answer in step 42 is YES, and it is determined that the angles of the louvers 12&, 12b should be made smaller (step 43). Then, proceeding to step 42, the blowing angle switching means 29a,
29b drives each looper 12a, 12b, and sets the blowing direction so that it is approximately parallel to the ceiling surface and the blowing air volume is set to be small. . Therefore, the blown air is the 6th
Flows along the ceiling 4 as shown in the figure, facing side walls 15.16
hit the top of the. The colliding flow then changes into a downward flow and flows downward along the side walls 15, 16. After reaching the floor 17, the air spreads across the floor 17 and is sucked in from the suction port 1o of the indoor unit 1, making noise and generating large circulation throughout the room 14. Therefore, strong winds do not occur in the living area, and the temperature can be controlled softly from the outer shell near the wall of the room 14.

上記実施例によれば、熱負荷量が大きい場合、あるいは
温度アンバランスが大きい場合、っまシ運転開始初期の
様な場合には、吹出方向を前方床面に向けるとともに吹
出風量を大きくするコントロールを行ない居住域内に温
調された空気をどんどんと送シこんでやシ早く所望の温
度に到達する様に制御する。一方、室14の温度が設定
温度に近づき、熱負荷量ΔTt及び温度アンバランスΔ
Taのいずれもが基準値よシも小さく々れば、吹出す方
向を、天井に水平な吹出しとしまた吹出風量も少なくし
、天井面に沿った流れを発生させる。吹出し空気は、天
井面に沿って流れるので、風速は減少しにくく、天井面
を沿いながら、側壁15.16上端に到達したのち側壁
15.16に沿って下方に流れていき床面17をへて、
室内機1の吸込口1oに吸込まれていく。この結果室1
4には壁面に沿った大きなサーキュレーションが発生す
る。つまり室14がほぼ安定した温度に到達すれば、吹
出しを居住域外の天井付近とし、居住域を外殻から温調
することになる。このため、居住域に強い風が到達する
ことがなくなシ、風が当ることによる不快感をなくする
。又、壁に沿った流れであシ、気流は減速しにくく、確
実にサーキュレーションするので室内はより均一な温度
分布にすることが可能である。
According to the above embodiment, when the heat load is large, when the temperature imbalance is large, or when the operation is in the early stages, the control directs the blowing direction toward the front floor and increases the blowing air volume. By doing so, temperature-controlled air is rapidly delivered into the living area and controlled so that the desired temperature is quickly reached. On the other hand, the temperature of the chamber 14 approaches the set temperature, and the heat load amount ΔTt and the temperature imbalance Δ
If either Ta is smaller than the reference value, the direction of the air is set to be horizontal to the ceiling, and the amount of air is also reduced to generate a flow along the ceiling surface. Since the blown air flows along the ceiling surface, the wind speed is difficult to decrease, and after reaching the upper end of the side wall 15.16 while following the ceiling surface, it flows downward along the side wall 15.16 to the floor surface 17. hand,
It is sucked into the suction port 1o of the indoor unit 1. This result room 1
4, a large circulation occurs along the wall surface. In other words, when the temperature of the room 14 reaches a substantially stable temperature, the air outlet is placed near the ceiling outside the living area, and the temperature of the living area is controlled from the outer shell. This prevents strong winds from reaching the living area and eliminates the discomfort caused by the wind. In addition, since the airflow flows along the wall, it is difficult to decelerate and the airflow is reliably circulated, making it possible to achieve a more uniform temperature distribution in the room.

特に暖房時には天井4付近に高温空気が滞留しやすいが
頭よシずつと上方を無駄に温めていた。
Especially during heating, high-temperature air tends to stay near the ceiling 4, and it wastefully heats the upper part of the room.

この様な高温空気を、水平吹出し流により吹きとばし、
居住域内へと運ぶので、効率の良い暖房を可能とする。
This kind of high-temperature air is blown away by a horizontal blowout flow,
Since it is carried into the living area, efficient heating is possible.

また万一側壁16付近に書庫等の障害物を設置した際に
は前記サーキュレーションが発生しにくくなシ、床17
付近の温度は設定温度Ttetと大きくかけはなれた温
度となる。つまシ床17面の温度を輻射温度検出手段に
より検出し温度アンバランスが大きくなったことを判定
しくステップ41)斜め下方吹出しに切替えるため、居
住域を所望の温度に維持できる。
In addition, if an obstacle such as a library is installed near the side wall 16, the above-mentioned circulation will be difficult to occur.
The temperature in the vicinity is significantly different from the set temperature Ttet. The temperature of the bed floor 17 is detected by the radiant temperature detection means, and when it is determined that the temperature imbalance has become large, step 41) switches to diagonally downward blowing, so that the living area can be maintained at a desired temperature.

尚、本実施例では、ル−バ12a、12bの駆動をモー
タ33a、33bを用いて行なっているが、形状記憶合
金等を用いて、ル−バ12a、12bを駆動させること
も充分に可能である。
In this embodiment, the motors 33a and 33b are used to drive the louvers 12a and 12b, but it is also possible to drive the louvers 12a and 12b using a shape memory alloy or the like. It is.

発明の効果 以上実施例から明らかな様に本発明は、吸込み空気温度
検出手段と設定温度検出手段により室内の熱負荷量を演
算する熱負荷量演算手段と、凸レンズと凸レンズの焦点
近傍に設けた温度検出素子より成り床面付近の輻射温度
を検出する輻射温度検出手段により、床面や机等の表面
温度とともに輻射温度検出手段近傍の周囲温度を高精度
に検出し、この両者から温度アンバランスを検出する。
Effects of the Invention As is clear from the embodiments, the present invention provides a heat load calculating means for calculating the indoor heat load using a suction air temperature detecting means and a set temperature detecting means, and a convex lens provided near the focal point of the convex lens. The radiant temperature detection means, which consists of a temperature detection element and detects the radiant temperature near the floor surface, detects the surface temperature of the floor, desk, etc. as well as the ambient temperature near the radiant temperature detection means with high precision, and detects temperature imbalance from both. Detect.

そしてこれら熱負荷量及び温度アンバランスのいずれも
があらかじめ設定された値よりも小さい値のときには吹
出し角度切替手段により、天井面に略水平に吹き出す様
に制御しかつ吹出し風量を小さくコントロールする。又
いずれも、あるいはいずれかが大きいときは斜め下方吹
出し、かつ吹出し風量を大きくする様コントロールする
ので、室内温度と設定温度との差が大きいか、床面と室
内のアンバランスが大きい様な運転開始初期の様な場合
には、温調された空気を居住域内にどんどん送シこんで
やシ、早く所望の温度に到達させることになる。そして
、運転が安定し設定温度に近づき、かつ温度アンバラン
スが小さくなれば、非居住域に水平吹出し流を発生させ
、天井面に沿った室内全体の大きな対流を発生させる。
When both the heat load amount and the temperature imbalance are smaller than preset values, the air blowing angle switching means controls the blowing air so that it blows out substantially horizontally to the ceiling surface, and controls the blowing air volume to a small value. In addition, if either or both of them are large, the air is blown diagonally downward and the air volume is controlled to be large. In the early stages, temperature-controlled air must be fed into the living area to quickly reach the desired temperature. Then, when the operation becomes stable and the temperature approaches the set temperature, and the temperature imbalance becomes small, a horizontal blowout flow is generated in the non-inhabited area, and a large convection flow is generated throughout the room along the ceiling surface.

このため居住域内に居る人間には吹出し気流が直接光ら
ないので気流による不快感は発生しない。
For this reason, the blown airflow does not directly illuminate people in the living area, so they do not feel uncomfortable due to the airflow.

また、天井面に沿って気流が流れるので、風速の低下が
おこシにくく、室全体のサーキュレーションはよシ確実
なものとなり、室内温度分布も大幅に向上する。
In addition, since the airflow flows along the ceiling surface, the wind speed is less likely to drop, ensuring more reliable circulation throughout the room, and greatly improving the indoor temperature distribution.

また天井面、側壁も同時に温調されるので、これらの面
からの冷輻射、暖輻射による不快感は減少する。
Furthermore, since the temperature of the ceiling surface and side walls is controlled at the same time, discomfort caused by cold radiation and warm radiation from these surfaces is reduced.

特に暖房時には高温の空気が天井付近にたまシやすいが
、水平吹出しによって、上部の高温空気を居住域内に運
び込むことが可能でアシ、より効率の高い暖房が可能で
ある。
Especially during heating, high-temperature air tends to accumulate near the ceiling, but horizontal blowing allows the high-temperature air from above to be carried into the living area, allowing for more efficient heating.

また万一側壁付近、天井付近に書庫やけい光灯などの障
害物がある場合サーキュレーションがおこシにくく、居
住域の下部の床付近まで温調しにくくなシ床面の温度が
設定値よシもかけはなれた温度となるが、この場合には
、温度アンバランスが大きくなるので、水平吹出し状態
を下吹出し状態に変更し、居住域を所望の温度になる機
制御する。
In addition, if there are obstacles such as a library or fluorescent light near the side walls or near the ceiling, circulation will be difficult to occur and it will be difficult to control the temperature down to the floor near the bottom of the living area. However, in this case, the temperature imbalance becomes large, so the horizontal blowing state is changed to the downward blowing state, and the control is performed to bring the living area to the desired temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図及び第
3図は本実施例の要部拡大図、第4図は吹出し角度判定
のためのプログラムの一例を示すフローチャート図、第
5図は立上シ運転時の室内気流を示す図、第6図は安定
運転時(水平吹出し時)の室内気流を示す図、第7図は
従来の空気調和機の底面図、第8図は上記空気調和機の
中央断面図、第9図は従来例における室内気流を示す図
である。 18・・・・・・室内温度設定手段、19・・・・・・
吹出し空気温度検出手段、20・・・・・・輻射温度検
出手段、23・・・・・・温度検出素子、24・・・・
・・周囲温度検出手段、25・・・・・・制御装置、2
6・・・・・・熱負荷量演算手段、27・・・・・・温
度アンバランス検出手段、28・・・・・・吹出し角度
判定手段、29a、29b・・・・・・吹出し角度切替
手段、3o・・・・−・吹出風量判定手段、31・・・
・・・吹出風量切替手段。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名図 第 図 捲 図 第 図
FIG. 1 is a block diagram showing an embodiment of the present invention, FIGS. 2 and 3 are enlarged views of main parts of the embodiment, and FIG. 4 is a flowchart showing an example of a program for determining the blowout angle. Figure 5 is a diagram showing the indoor airflow during startup operation, Figure 6 is a diagram showing the indoor airflow during stable operation (horizontal blowout), Figure 7 is a bottom view of a conventional air conditioner, and Figure 8 is a diagram showing the indoor airflow during startup operation. The figure is a central sectional view of the air conditioner, and FIG. 9 is a diagram showing indoor airflow in a conventional example. 18... Indoor temperature setting means, 19...
Blowing air temperature detection means, 20... Radiation temperature detection means, 23... Temperature detection element, 24...
...Ambient temperature detection means, 25...Control device, 2
6...Heat load calculation means, 27...Temperature unbalance detection means, 28...Blowout angle determination means, 29a, 29b...Blowout angle switching Means, 3o...- Blowing air volume determining means, 31...
...Blowout air volume switching means. Name of agent: Patent attorney Shigetaka Awano and 1 other person

Claims (1)

【特許請求の範囲】[Claims] 凸レンズと、凸レンズの焦点近傍に設けた温度検出素子
と、この温度検出素子の信号により居住域内の床等の輻
射温度を検出する輻射温度検出手段からの輻射温度出力
と輻射温度検出手段近傍に設けた周囲温度検出手段から
の周囲温度出力により室内と床面等の温度のアンバラン
スを検出する温度アンバランス検出手段と、設定温度検
出手段と吸込空気温度検出手段からの両出力をもとに室
内の熱負荷量を演算する室内熱負荷量演算手段と、温度
アンバランス検出手段及び室内熱負荷量演算手段の両出
力信号に基づき吹出し角度を任意にかえる吹出し角度切
替手段及び吹出風量切替手段を備えたことを特徴とする
空気調和機。
A convex lens, a temperature detection element provided near the focal point of the convex lens, and a radiant temperature output from a radiant temperature detection means for detecting the radiant temperature of a floor, etc. in a living area based on a signal from the temperature detection element, and a temperature detection element provided near the radiant temperature detection means. Temperature unbalance detection means detects the temperature imbalance between the indoor temperature and the floor surface etc. based on the ambient temperature output from the ambient temperature detection means, and the indoor an indoor heat load amount calculation means for calculating the heat load amount of the indoor heat load amount calculation means; a blowout angle switching means and a blowout air volume switching means for arbitrarily changing the blowout angle based on the output signals of both the temperature imbalance detection means and the indoor heat load amount calculation means; An air conditioner characterized by:
JP63319120A 1988-12-16 1988-12-16 Air conditioner Pending JPH02166338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63319120A JPH02166338A (en) 1988-12-16 1988-12-16 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63319120A JPH02166338A (en) 1988-12-16 1988-12-16 Air conditioner

Publications (1)

Publication Number Publication Date
JPH02166338A true JPH02166338A (en) 1990-06-27

Family

ID=18106687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63319120A Pending JPH02166338A (en) 1988-12-16 1988-12-16 Air conditioner

Country Status (1)

Country Link
JP (1) JPH02166338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223754A (en) * 1989-02-23 1990-09-06 Daikin Ind Ltd Wind direction control device for air conditioner
JP2009002648A (en) * 2003-02-26 2009-01-08 Sharp Corp Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223754A (en) * 1989-02-23 1990-09-06 Daikin Ind Ltd Wind direction control device for air conditioner
JP2009002648A (en) * 2003-02-26 2009-01-08 Sharp Corp Air conditioner
JP4627332B2 (en) * 2003-02-26 2011-02-09 シャープ株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
WO2019047859A1 (en) Wall-mounted air conditioning indoor unit and control method therefor
JPH07103551A (en) Controller for air-conditioner
WO2018037503A1 (en) Air conditioning device
JPS62175540A (en) Air conditioning device
JP3432022B2 (en) Air conditioner
JP2931484B2 (en) Air conditioner
JPH0650595A (en) Air conditioner
JPH05223299A (en) Ventilating device automatically adjusted and controlled by movement of human body
JPH02166338A (en) Air conditioner
JP2594318B2 (en) Ceiling-mounted air conditioner
JPH05296548A (en) Air conditioner
JP2553644B2 (en) Ceiling embedded air conditioner
JPH01302055A (en) Ceiling-embedded type air conditioner
JPH0526508A (en) Air conditioner
JP2690140B2 (en) Air conditioner
JPH02103331A (en) Ceiling embodies type air conditioner
JP2679202B2 (en) Air conditioning system
JP2558783B2 (en) Ceiling embedded air conditioner
JPH0781725B2 (en) Ventilation air conditioner
JPH01169256A (en) Air-conditioner
JPH0363431A (en) Air conditioner
JPH0221151A (en) Ceiling-enbeded type air conditioner
JPH08178344A (en) Air conditioner
JP2001201149A (en) Air conditioner
JP2608967B2 (en) Air conditioner