JP2558383B2 - Halogenated fluorine treatment method for oxide high temperature superconductor - Google Patents

Halogenated fluorine treatment method for oxide high temperature superconductor

Info

Publication number
JP2558383B2
JP2558383B2 JP2241506A JP24150690A JP2558383B2 JP 2558383 B2 JP2558383 B2 JP 2558383B2 JP 2241506 A JP2241506 A JP 2241506A JP 24150690 A JP24150690 A JP 24150690A JP 2558383 B2 JP2558383 B2 JP 2558383B2
Authority
JP
Japan
Prior art keywords
temperature
superconducting
fluorine
treatment
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2241506A
Other languages
Japanese (ja)
Other versions
JPH04124003A (en
Inventor
正之 高島
康 喜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2241506A priority Critical patent/JP2558383B2/en
Publication of JPH04124003A publication Critical patent/JPH04124003A/en
Application granted granted Critical
Publication of JP2558383B2 publication Critical patent/JP2558383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、酸素欠陥を有する酸化物超伝導体の超伝導
転移開始温度を上昇させるためにハロゲン化フッ素によ
る処理方法に関するものである。
TECHNICAL FIELD The present invention relates to a treatment method with a fluorine halide for increasing the superconducting transition start temperature of an oxide superconductor having oxygen defects.

[従来の技術および解決しようとする課題] ベドノルツとミューラーがLa−Ba−Cu−O系で超伝導
転移の開始が30Kの酸化物を創り出してから、一躍Cuを
含む酸化物超伝導体が注目され始め、多数の研究者がこ
の分野に集中することとなった。
[Conventional technology and problems to be solved] Since Bednorz and Mueller created an oxide with a superconducting transition initiation of 30K in the La-Ba-Cu-O system, the oxide superconductor containing Cu suddenly attracted attention. It was started, and many researchers decided to concentrate on this field.

そして、1987年の2〜3月には世界各地で超伝導転移
温度Tc(以下、Tcと略す。)が90Kの物質が世界各地で
独立に創製され、液体窒素温度以上の高温超伝導体の存
在が確立した。またこの高温超伝導体の結晶構造も単結
晶の合成によりすぐに解析され、その化学式がYBa2Cu3O
x(x=7−δ)[以下、YBCOと略す]の酸素欠損三重
ペロブスカイト構造であることがわかった。
In February and March 1987, a substance with a superconducting transition temperature Tc (hereinafter abbreviated as Tc) of 90K was independently created around the world, and a high-temperature superconductor with a liquid nitrogen temperature or higher was produced. Existence is established. The crystal structure of this high-temperature superconductor was also immediately analyzed by synthesizing a single crystal, and its chemical formula was YBa 2 Cu 3 O.
It was found to be an oxygen-deficient triple perovskite structure of x (x = 7−δ) [hereinafter abbreviated as YBCO].

さらに、x値についても研究が重ねられ、通常xは6.
0〜7.0まで変化し、これに応じてTcをはじめ種々の性質
が変化することがわかった。
Furthermore, research has been repeated on the x value, and usually x is 6.
It was found that the values varied from 0 to 7.0, and various properties including Tc changed correspondingly.

一般的に、x値が減少するに従いTcが低下するが、x
とTcの具体的数値関係は各研究者によって異なり、必ず
しも一定の数値にはなっていないのが現状である。しし
少なくとも6.5付近のものは最早液体窒素温度ではその
超伝導特性を示さないことが知られている。
Generally, Tc decreases as the x value decreases, but x
The specific numerical relationship between Tc and Tc varies depending on each researcher, and is not always a fixed value. However, it is known that those at least around 6.5 no longer exhibit their superconducting properties at liquid nitrogen temperatures.

x値は焼結体の温度や周囲の酸素分圧によって変化
し、x値の高いものを得るためには、焼成後に長時間を
かけて酸素を吸収させながら冷却する、所謂アニールの
必要があり、上記のような酸素含有量のコントロールに
対する難しさが酸化物超伝導体を製造する上で一つの問
題となっている。
The x value changes depending on the temperature of the sintered body and the partial pressure of oxygen in the surroundings, and in order to obtain a high x value, it is necessary to perform so-called annealing, in which it takes a long time after firing to cool while absorbing oxygen. The difficulty in controlling the oxygen content as described above is one of the problems in producing an oxide superconductor.

[課題を解決するための具体的手段] そこで本発明者らは、x値の低い前記酸化物超伝導体
につき、何らかの処理によりそのTcを上昇せしめる手段
がないかどうかを検討した結果、普通x値が低いためTc
がかなり低下したものでも、ハロゲン化フッ素を用いて
焼結体を処理することによりTcが上昇することを見い出
し、本発明に到達したものである。
[Specific Means for Solving the Problem] Therefore, the inventors of the present invention investigated the oxide superconductor having a low x value by any means to increase the Tc, and found that x Tc due to low value
The present invention has been found by finding that Tc is increased by treating a sintered body with a fluorine halide, even if the value is considerably decreased.

すなわち本発明は、酸素欠陥を有する酸化物超伝導体
を、200〜400℃の温度でハロゲン化フッ素により処理す
るようにしたことを特徴とする酸化物超伝導体のハロゲ
ン化フッ素処理方法を提供するものである。本発明が対
象とする酸化物超伝導体は、YBa2Cu3Ox(ただしxは、
6.53≦x≦6.88である)の構造で表される擬ペロブスカ
イト型構造を持った酸素欠陥を有す銅系酸化物超伝導体
である。
That is, the present invention provides a method for treating an oxide superconductor with a halogen fluoride, which is characterized in that an oxide superconductor having an oxygen defect is treated with a fluorine halide at a temperature of 200 to 400 ° C. To do. The oxide superconductor targeted by the present invention is YBa 2 Cu 3 O x (where x is
A copper-based oxide superconductor having oxygen defects having a pseudo-perovskite structure represented by the structure of (6.53 ≦ x ≦ 6.88).

上記超伝導体の製造法は、一般のセラミックスを製造
するのと同様の方法、すなわち各成分の元素の酸化物を
所定のモル比に十分混合した後空気中で焼成する、所謂
固相焼結の方法により製造することができるほか、蓚酸
塩を原料とする方法やアルコキシドを原料とする方法等
種々の原料を焼成する方法により製造することができる
が、これらの焼結体は前記したように構造中に酸素欠陥
を生成しやすく、酸化性雰囲気で焼成した後アニールの
必要がある。
The method for producing the superconductor is the same method as that for producing general ceramics, that is, so-called solid phase sintering, in which oxides of the elements of the respective components are sufficiently mixed in a predetermined molar ratio and then fired in air. In addition to the method described above, it can be produced by firing various raw materials such as a method using oxalate as a raw material and a method using alkoxide as a raw material. Oxygen defects are easily generated in the structure, and it is necessary to anneal after firing in an oxidizing atmosphere.

アニールを十分行なわない焼結体は、上記処理をした
ものに比較して酸素含有量が低く、そのためにTcも低下
してしまう。
The sintered body that is not sufficiently annealed has a lower oxygen content than the sintered body that has been subjected to the above-mentioned treatment, and therefore Tc also decreases.

例えば、YBCO系の酸化物高温超伝導体の場合、酸化イ
ットリウム、炭酸バリウムおよび酸化第2銅の所定のモ
ル比で混合した後、900℃付近で数時間反応させ、その
後室温まで約10時間以上かけてアニールすることにより
得られたものはx=6.9付近で、超伝導開始温度が約94K
という非常に高いものであるが、アニールを充分行なわ
ない場合は超伝導開始温度が低下する。
For example, in the case of a YBCO-based high-temperature oxide superconductor, yttrium oxide, barium carbonate and cupric oxide are mixed at a predetermined molar ratio and then reacted at about 900 ° C for several hours, and then allowed to reach room temperature for about 10 hours or more. The one obtained by annealing for about x = 6.9 has a superconducting start temperature of about 94K.
However, if the annealing is not performed sufficiently, the superconducting start temperature will be lowered.

本発明は、このように超伝導開始温度が低下した上記
YBCO系の酸化物超伝導体に対し、ハロゲン化フッ素処理
を行うことにより超伝導開始温度を上昇せしめること、
すなわちTcの高い状態の酸化物に変換させることができ
る。
According to the present invention, the superconducting starting temperature is lowered as described above.
Increasing the superconducting start temperature by subjecting a YBCO-based oxide superconductor to a fluorine halide treatment,
That is, it can be converted into an oxide in a high Tc state.

本発明の処理に使用するハロゲン化フッ素は、ClF,Cl
F3,ClF5,BrF,BrF3,BrF5等であり、中でもClF3が好まし
い。
Fluorine halide used in the treatment of the present invention is ClF, Cl
F 3 , ClF 5 , BrF, BrF 3 , BrF 5 and the like, among which ClF 3 is preferable.

ハロゲン化フッ素処理を行なう場合は、普通原料の焼
結体が存在する系を真空に排気するかまたは窒素、アル
ゴン等の不活性ガスで充分に置換した後、ハロゲン化フ
ッ素ガスまたは不活性ガスにより希釈されたハロゲン化
フッ素ガスを系内に導入して、200℃〜400℃の温度でそ
のまま保ち、長くとも3時間処理をおこなえばよい。
When performing the halogenated fluorine treatment, the system in which the sintered body of the normal raw material is present is evacuated to a vacuum or sufficiently replaced with an inert gas such as nitrogen or argon, and then the halogenated fluorine gas or the inert gas is used. The diluted halogenated fluorine gas may be introduced into the system, kept at a temperature of 200 ° C. to 400 ° C. as it is, and treated for at most 3 hours.

上述した方法により、超伝導転移開始温度が上昇する
理由としては、ペロブスカイト構造の単位格子中の第2
層の銅原子の周囲にある酸素欠陥サイトにFあるいはCl
−Fが導入され、このため高い超伝導開始温度を有する
超伝導相の体積分率が増加しているためと推定される。
The reason why the superconducting transition start temperature is increased by the above-mentioned method is that the second one in the unit cell of the perovskite structure is used.
F or Cl at the oxygen vacancy sites around the copper atoms in the layer
It is presumed that -F was introduced, and as a result, the volume fraction of the superconducting phase having a high superconducting onset temperature was increased.

一旦導入されたFあるいはCl−Fを含有する結晶は安
定に存在し、450℃程度の温度でも分解せずにその構造
を保つ。
The crystal containing F or Cl-F once introduced exists stably and maintains its structure without decomposition even at a temperature of about 450 ° C.

一方、フッ素ガスや塩素ガス単独で処理を行なった場
合は、結晶体の構造が異なるものとなる。すなわち、フ
ッ素ガス処理では2θ=25゜付近に異相と考えられるブ
ロードなピークが出現し、一方塩素ガス処理ではYBCO構
造は無定形化されてしまうため、ハロゲン化フッ素で処
理した場合と異なる。
On the other hand, when the treatment is performed with fluorine gas or chlorine gas alone, the crystal structure is different. That is, in the fluorine gas treatment, a broad peak, which is considered to be a heterogeneous phase, appears around 2θ = 25 °, while in the chlorine gas treatment, the YBCO structure is amorphized, which is different from the case of the treatment with fluorine halide.

以上のべてきたように、酸素含有量の低いアニール不
充分の焼結体であっても、ハロゲン化フッ素ガスで処理
することにより、その超伝導開始温度が上昇し、充分に
アニールを行なったものと同様の効果を得ることができ
るものである。
As described above, even if the sintered body has a low oxygen content and is insufficiently annealed, the superconducting start temperature of the sintered body is increased by the treatment with the fluorine fluoride gas, and the annealing is sufficiently performed. The same effect can be obtained.

[実施例] 以下、実施例により本発明を具体的に説明するが、本
発明は下記実施例により限定されるものではない。
[Examples] Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to the following Examples.

実施例1 超伝導開始温度が90K級の酸化物高温超伝導体の製造
を行なった。原料粉末の酸化イットリウム、炭酸バリウ
ム、酸化第2銅を0.5:2:3のモル比になるように秤量
し、これを充分ボールミルにより混合、乾燥した後、高
純度アルミナボートに押し固め、920℃、空気中で6時
間、固相反応させた。その後、炉中で室温まで10時間か
けて冷却した。この方法により94K級の超伝導開始温度
を有する斜方晶単相のYBCO(x=6.88)を得た。
Example 1 An oxide high temperature superconductor having a superconducting starting temperature of 90K was manufactured. Raw material powders of yttrium oxide, barium carbonate, and cupric oxide were weighed so that the molar ratio was 0.5: 2: 3, sufficiently mixed with a ball mill, dried, and then compacted in a high-purity alumina boat to 920 ° C. The solid phase reaction was carried out in air for 6 hours. Then, it cooled to room temperature in the furnace over 10 hours. By this method, orthorhombic single-phase YBCO (x = 6.88) having a superconducting onset temperature of 94K was obtained.

生成物の結晶構造は、粉末X線回折法により確認し
た。また超伝導特性は直流4端子法により測定した。
The crystal structure of the product was confirmed by powder X-ray diffractometry. The superconducting property was measured by the DC 4-terminal method.

実施例2 実施例1により製造されたYBCOを原料とし、これを45
0〜500℃でアルゴン気流中、処理時間を変えてアニール
することによりより、そのx値が6.70,6.61,6.53のもの
を得た。
Example 2 YBCO produced in Example 1 was used as a raw material and
By annealing at 0 to 500 ° C. in an argon stream for different treatment times, x values of 6.70, 6.61 and 6.53 were obtained.

次に、実施例1で得られたx値が6.88のものも含め、
前記試料をClF3で処理した。まず、ニッケル反応管の中
にさらにNi製の皿を設置し、前記化合物を秤量した後に
薄く広げる。さらに、反応管内を室温で1×10−2mmHg
以下になるまで真空排気し、100mmHgのClF3ガスを導入
する。
Next, including those having an x value of 6.88 obtained in Example 1,
The sample was treated with ClF 3 . First, a Ni dish is further placed in the nickel reaction tube, and the compound is weighed and spread thinly. Furthermore, the inside of the reaction tube is 1 × 10-2 mmHg at room temperature.
Evacuate to the following temperature and introduce 100 mmHg of ClF 3 gas.

下記する各表で示す各設定温度まで約3℃/minで昇温
し、2時間保持した後、室温まで急冷した。
The temperature was raised to about 3 ° C./min to each set temperature shown in each table below, held for 2 hours, and then rapidly cooled to room temperature.

ここで、フッ素イオン濃度は生成化合物を1規定塩酸
水溶液に溶解した後フッ素イオン電極を用いて分析し
た。
Here, the fluorine ion concentration was analyzed using a fluorine ion electrode after dissolving the produced compound in a 1N aqueous hydrochloric acid solution.

また、上記測定と共にX線回折およびESCAの結果も含
めフッ素および塩素がYBCOの結晶内に導入されているこ
とを確認した。次に、銅の平均価数はよう素滴定法によ
り測定し、これによりx値を求めた。さらに、マイスナ
ー効果の大きさから試料中に含まれる超伝導相の相対量
を求めた。測定装置としては、本発明者らの開発したマ
イスナー効果評価装置(以後、MEEDと略す。)を用い
た。
Moreover, it was confirmed that fluorine and chlorine were introduced into the YBCO crystal, including the results of X-ray diffraction and ESCA, as well as the above measurement. Next, the average valence of copper was measured by the iodine titration method, and the x value was obtained from this. Furthermore, the relative amount of the superconducting phase contained in the sample was obtained from the magnitude of the Meissner effect. As the measuring device, a Meissner effect evaluation device developed by the present inventors (hereinafter abbreviated as MEED) was used.

この装置については、[M.Takashima,et al.,J.J.A.
P.,28,2631(1988)]に詳述しているが、簡単に説明を
おこなう。まず装置全体は真空排気できるガラス製の円
筒内に設置されており、円筒下部には水平より20゜傾い
た角度の平面を有する銅製のサンプルホールダーが設置
されている。このサンプルホールダーは下部が棒状とな
っており、これを液体窒素等に接触させることにより、
サンプルの温度をコントロールする。
For this device, see [M.Takashima, et al., JJA
P., 28, 2631 (1988)], but a brief explanation is given. First, the entire device is installed in a glass cylinder that can be evacuated, and a copper sample holder having a flat surface at an angle of 20 ° from the horizontal is installed in the lower part of the cylinder. This sample holder has a rod-shaped lower part, and by contacting it with liquid nitrogen,
Control the temperature of the sample.

上記サンプルホールダーの上には、これと平行に丁度
2mmの幅になるようにステンレス製のパイプにより吊さ
れたSm−Co製の円板状のマグネットがあり、マグネット
は自由に動けるように支えられているため、試料が反磁
性の性質を有する場合、このマグネットと反発し横に変
位させるので、この変位を電気的な測定装置で正確に測
定することにより反磁性の効果が測定できる。
Just above the sample holder, parallel to it
There is a disc-shaped magnet made of Sm-Co suspended by a stainless steel pipe to a width of 2 mm, and the magnet is supported so that it can move freely. Since the magnet is repulsed and laterally displaced, the diamagnetic effect can be measured by accurately measuring this displacement with an electrical measuring device.

従って、ここではマグネットによる反発を1g当たりの
横への変位の値(mm/g)として、第1表に示す。
Therefore, here, the repulsion by the magnet is shown in Table 1 as the value of lateral displacement per 1 g (mm / g).

第1図は、各設定温度とその時の試料の重量増加を表
したものであるが、この図からわかるように300℃付近
が最も重量増加が大きく、300℃を越えると重量が減少
する。
FIG. 1 shows each set temperature and the weight increase of the sample at that time. As can be seen from this figure, the maximum weight increase is near 300 ° C., and the weight decreases above 300 ° C.

次に、x=6.61のものにつき未処理、200℃処理、300
℃でのX線回折結果の図を第1図に示すと、反応温度の
上昇に伴い、2θ=47゜および58゜付近の酸素欠陥によ
る歪が要因となって表れる3本のピーク(正方晶)が斜
方晶に単相化して2本になるが、その他には変化が認め
られず、また異相に起因するピークの現れていないこ
と、さらに第1図で示されるようにx値が小さいほど重
量増加が大きいことから、ClF3はYBCOの構造を維持しな
がら、第2相の銅に作用していると考えられる。
Next, for x = 6.61, untreated, 200 ° C treated, 300
Figure 1 shows the result of X-ray diffraction at ℃. As the reaction temperature rises, three peaks (tetragonal crystal) appear due to the strain due to oxygen defects near 2θ = 47 ° and 58 °. ) Is orthorhombic single phase and becomes two, but other changes are not observed, and no peak due to different phase appears, and further, the x value is small as shown in FIG. Since the weight increase is so large, it is considered that ClF 3 acts on the second phase copper while maintaining the structure of YBCO.

また、上記処理で各温度につき銅の平均価数、超伝導
開始温度およびMEED測定値が変化するが、これをx=6.
88と6.61につきそれぞれ銅の平均価数については第1
表、第2表に、超伝導開始温度については第3表と第4
表に、MEED測定結果については第5表、第6表に下記す
る比較例と共に示す。
Also, the average valence of copper, the superconducting onset temperature, and the MEED measurement value change at each temperature in the above treatment, which is x = 6.
First about the average valence of copper per 88 and 6.61 respectively
Tables and 2 show the superconducting onset temperatures in Tables 3 and 4.
The results of the MEED measurement are shown in Tables 5 and 6 together with the comparative examples described below.

この結果からわかるように、300℃で処理したx=6.6
1のものはMEEDによる測定値が高く、銅の平均価数も高
くなり、さらに超伝導開始温度も上昇してx=6.88のも
のと変わらない値となっており、その結果が著しいこと
がわかる。
As can be seen from these results, x = 6.6 treated at 300 ° C.
The value of 1 is higher than the value measured by MEED, the average valence of copper is also high, and the superconducting start temperature is also high, which is the same value as x = 6.88, and the result is remarkable. .

比較例1,2 実施例2と同様の方法で塩素、およびフッ素を用いて
処理した結果を、フッ素については比較例1、塩素につ
いては比較例2として、第1表〜第6表に示す。
Comparative Examples 1 and 2 The results of treating with chlorine and fluorine in the same manner as in Example 2 are shown in Tables 1 to 6 as Comparative Example 1 for fluorine and Comparative Example 2 for chlorine.

これにより、フッ素、塩素についても多少の効果があ
るものの、MEEDの結果からわかるように超伝導相の割合
は少なく、X線回折を測定すると異相を生成しており単
相とし得られるのは、ClF3処理のみであることから、そ
の結果はかなり劣る。
As a result, although there is some effect on fluorine and chlorine, the proportion of the superconducting phase is small as can be seen from the results of MEED, and when X-ray diffraction is measured, a heterogeneous phase is generated and it can be obtained as a single phase. The results are quite poor as only ClF 3 treatment is used.

[発明の効果] 本発明のハロゲン化フッ素による酸化物超伝導体の処
理方法は、長時間のアニール処理を行わない酸素含有量
の少ないYBa2Cu3Ox(ただしxは、6.53≦x≦6.88であ
る)なる酸化物超伝導体の超伝導開始温度を上昇せしめ
ることができるため、製造時の効率の悪い操作を必要と
せずにTcの高い酸化物高温超伝導体を製造でき、また得
られた本発明のハロゲン化フッ素処理酸化物高温超伝導
体も安定であるため、特にYBCO薄膜の処理にも応用で
き、極めて有用である。
[Advantages of the Invention] The method for treating an oxide superconductor with a fluorine halide of the present invention is a method in which YBa 2 Cu 3 O x (where x is 6.53 ≤ x ≤ x) that does not undergo annealing for a long time and has a low oxygen content. 6.88) can raise the superconducting onset temperature of the oxide superconductor, which makes it possible to produce an oxide high-temperature superconductor with a high Tc without the need for inefficient operation during production. Since the obtained halogenated fluorine-treated oxide high temperature superconductor of the present invention is also stable, it can be applied particularly to the treatment of YBCO thin films and is extremely useful.

【図面の簡単な説明】[Brief description of drawings]

第1図は、各反応(処理)温度によるYBCOの重量変化を
示す図であり、第2図は、各反応(処理)温度により生
成した化合物のX線回折図である。
FIG. 1 is a diagram showing a weight change of YBCO depending on each reaction (treatment) temperature, and FIG. 2 is an X-ray diffraction diagram of a compound produced by each reaction (treatment) temperature.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸素欠陥を有するYBa2Cu3Ox(ただしx
は、6.53≦x≦6.88である)なる酸化物超伝導体を、20
0〜400℃の温度でハロゲン化フッ素により処理するよう
にしたことを特徴とする酸化物超伝導体のハロゲン化フ
ッ素処理方法。
1. YBa 2 Cu 3 O x having oxygen defects (provided that x
Is 6.53 ≤ x ≤ 6.88).
A method for treating a halogenated fluoride of an oxide superconductor, which is characterized in that the halogenated fluoride is treated at a temperature of 0 to 400 ° C.
JP2241506A 1990-09-12 1990-09-12 Halogenated fluorine treatment method for oxide high temperature superconductor Expired - Fee Related JP2558383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2241506A JP2558383B2 (en) 1990-09-12 1990-09-12 Halogenated fluorine treatment method for oxide high temperature superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2241506A JP2558383B2 (en) 1990-09-12 1990-09-12 Halogenated fluorine treatment method for oxide high temperature superconductor

Publications (2)

Publication Number Publication Date
JPH04124003A JPH04124003A (en) 1992-04-24
JP2558383B2 true JP2558383B2 (en) 1996-11-27

Family

ID=17075344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2241506A Expired - Fee Related JP2558383B2 (en) 1990-09-12 1990-09-12 Halogenated fluorine treatment method for oxide high temperature superconductor

Country Status (1)

Country Link
JP (1) JP2558383B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69312199T2 (en) * 1992-09-29 1997-10-30 Canon Kk Process for producing metal oxide and metal oxide thus obtained
US8703651B2 (en) 2012-07-06 2014-04-22 Dale Richard Harshman Layered ionic superconductor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2629450B1 (en) * 1988-04-01 1992-04-30 Rhone Poulenc Chimie STABILIZED SUPERCONDUCTING MATERIALS AND PROCESS FOR OBTAINING SAME

Also Published As

Publication number Publication date
JPH04124003A (en) 1992-04-24

Similar Documents

Publication Publication Date Title
Wong‐Ng et al. Crystal chemistry and phase equilibrium studies of the BaO (BaCO3)–½R2O3–CuOx systems in air: VI, R= Neodymium
Sanjinéls et al. Preparation of Monodispersed Y‐Ba‐Cu‐O Superconductor Particles via Sol—Gel Methods
JP2558383B2 (en) Halogenated fluorine treatment method for oxide high temperature superconductor
EP0398503B1 (en) Rare-earth barium copper oxide superconducting materials
Dou et al. Effect of Milling Medium on the Properties of Superconducting YBa2Cu3O7–x
US5140000A (en) Metal oxide 247 superconducting materials
Kim et al. Proton conduction in La0. 6Ba0. 4ScO2. 8 cubic perovskite
JPH0251468A (en) Production of yttrium-barium-copper oxide powder and superconducting yttrium-barium-copper oxide sintered body
JP2840349B2 (en) High Tc superconductor and method of manufacturing the same
Lehmus et al. Variation of oxygen stoichiometry in BaRE (Cu0. 5Fe0. 5) 2O5+ δ double perovskites upon heat treatments under ambient and high pressure
JP2732809B2 (en) Superconducting material composition
Podlesnyak et al. From SrCuO2 to Sr8Cu8O20− y: Why Are Superconducting Properties of Infinite-Layer Compounds so Poor?
Kinoshita et al. Crystal structure and superconductivity in La1. 85Sr0. 16Ca0. 99Cu2O5. 93+ δ
Tighezza et al. Evidence of superconductivity at 30 K in Pr2CuO4− xFx
ZHENG et al. DG HINKS, JD JORGENSEN, DR RICHARDS, B. DABROWSKI
JPS63176353A (en) Superconductive raw material
KR0144718B1 (en) Method for manufacturing y-super conductor
JPH07110766B2 (en) Method for manufacturing oxide superconductor
JPH04292418A (en) Oxide superconductor and its production
Dragieva et al. Hydrogen in high-temperature superconducting ceramics
Rehspringer et al. Preparation of Ba0. 6K0. 4BiO3 pure superconducting powder
JPS63252952A (en) Superconducting ceramic
Born and et al. The chemical nature of yttrium barium cuprate and the effect on ceramic formation
JPH02229715A (en) Oxide high-temperature superconductor and its production
ROUTE PREPARATION OF DENSE Pb, Sb-SUBSTITUTED HTSC Bi-2223

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees