KR0144718B1 - Method for manufacturing y-super conductor - Google Patents

Method for manufacturing y-super conductor

Info

Publication number
KR0144718B1
KR0144718B1 KR1019900009477A KR900009477A KR0144718B1 KR 0144718 B1 KR0144718 B1 KR 0144718B1 KR 1019900009477 A KR1019900009477 A KR 1019900009477A KR 900009477 A KR900009477 A KR 900009477A KR 0144718 B1 KR0144718 B1 KR 0144718B1
Authority
KR
South Korea
Prior art keywords
atmosphere
oxygen
yba
helium
synthesis
Prior art date
Application number
KR1019900009477A
Other languages
Korean (ko)
Other versions
KR920000621A (en
Inventor
박상철
Original Assignee
이형도
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이형도, 삼성전기주식회사 filed Critical 이형도
Priority to KR1019900009477A priority Critical patent/KR0144718B1/en
Publication of KR920000621A publication Critical patent/KR920000621A/en
Application granted granted Critical
Publication of KR0144718B1 publication Critical patent/KR0144718B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals

Abstract

내용 없음No content

Description

Y-계 고온 초전도체의 제조방법Method of manufacturing Y-based high temperature superconductor

제1도는 Y-Ba-Cu-O계 고온 초전도체의 결정구조를 나타낸 것으로서 a는 사방정계구조, b는 정방정계 구조이고,1 shows the crystal structure of the Y-Ba-Cu-O-based high-temperature superconductor, where a is a tetragonal structure, b is a tetragonal structure,

제2도는 YBa2Cu3Ox계 고온 초전도체의 합성시 각각 헬륨, 산소, 공기분위기하, 850℃에서 합성시간에 따른 YBa2Cu3Ox상의 상대밀도(Relative Intensity)를 나타낸 그래프이다.The second turning is a graph showing the relative density of YBa 2 Cu 3 O x (Relative Intensity) on the time of the synthesis in YBa 2 Cu 3 O x high-temperature superconductor based synthesis each helium, oxygen, air atmosphere, 850 ℃.

본 발명은 YBa2Cu3Ox계 고온 초전도체의 합성방법에 관한 것으로, 좀 더 구체적으로는 열처리를 불활성 기체인 질소 또는 헬륨분위기에서 행함을 특징으로 하는 것이다.The present invention relates to a method for synthesizing a YBa 2 Cu 3 O x system high temperature superconductor, and more particularly, characterized in that the heat treatment is carried out in an inert gas nitrogen or helium atmosphere.

일반적으로, YBa2Cu3Ox계 고온 초전도체는 산소의 양에 따라 두가지 결정구조 즉, 산소의 양이 x6.5일때는 사방정계(orthorhombic) 구조를 가지며, x≤6.5일 때는 정방정계(tetragonal) 구조를 갖는다. Y-Ba-Cu-O계 고온 초전도체는 양이온들의 조성비가 Y : Ba : Cu = 1 : 2 : 3인 단상화합물로서, 조성식은 YBa2Cu3Ox이며, 이 고온 초전도체의 벌크(bulk) 제조시 산소의 양이 온도와 산소분압에 따라 x=6.0에서 x=7.0까지 변한다.In general, YBa 2 Cu 3 O x -based high-temperature superconductor has two crystal structures according to the amount of oxygen, that is, orthorhombic structure when the amount of oxygen is x6.5, and tetragonal when x≤6.5. ) Has a structure. Y-Ba-Cu-O-based high-temperature superconductor is a single-phase compound having a composition ratio of cations of Y: Ba: Cu = 1: 2: 3, and the composition formula is YBa 2 Cu 3 O x , which makes bulk of the high temperature superconductor. The amount of oxygen in time varies from x = 6.0 to x = 7.0 depending on temperature and oxygen partial pressure.

따라서, YBa2Cu3Ox계 고온 초전도 123상은 사방정계 구조를 가지므로 공기 또는 산소분위기에서 열처리하여 123쌍을 얻는 방법을 현재까지 사용하고 있다. 즉, 종래에는 합성은 900℃에서 20시간, 소결은 950℃에서 20시간동안 공기 또는 산소분위기에서 열처리를 행하였다.Therefore, since the YBa 2 Cu 3 O x system high temperature superconducting 123 phase has a tetragonal structure, a method of obtaining 123 pairs by heat treatment in an air or oxygen atmosphere has been used. That is, conventionally, the synthesis was heat-treated in an air or oxygen atmosphere for 20 hours at 900 ℃ and sintering for 20 hours at 950 ℃.

그러나, 본 발명자는 열처리시 기존의 방법인 공기 또는 산소분위기에서 보다는 불활성 기체인 질소 또는 헬륨분위기에서 열처리를 행하면 YBa2Cu3Ox계 123상의 생성속도 및 입자성장이 촉진되며, 합성 및 소결온도를 낮출 수 있고, 치밀화를 이루는 것을 발견하여 본 발명을 완성하였다.However, the inventors of the present invention promote the formation rate and grain growth of the YBa 2 Cu 3 O x system 123 phase by performing heat treatment in nitrogen or helium atmosphere, which is an inert gas, than in the air or oxygen atmosphere, which is a conventional method. It can be lowered, found to achieve densification to complete the present invention.

즉, YBa2Cu3Ox계 123상은 850℃에서는 분위기에 상관없이 정방정계의 구조를 가지게 되는데 산소분압이 낮아지에 따라 123상의 평형산소량이 감소하여 정방정계 구조의 산소 빈자리(Vacancy)의 수가 증가하고 단위 체적도 증가하게 된다. 제1도에 도시된 바와같이 123상의 정방정계 구조에서 기저면의 4변은 산소원자가 들어갈 수 있는 자리가 되므로 종래의 방법에서 열처리시 사용되는 공기 또는 산소분위기를 헬륨 또는 질소분위기로 바꾸어 주면 정방정계 구조의 기저면에 산소 빈자리(Vacancy)의 농도가 증가되고 이 산소 빈자리(Vacancy)를 통한 물질의 확산이 훨씬 용이하다.That is, the 123 phase of YBa 2 Cu 3 O x system has a tetragonal structure regardless of the atmosphere at 850 ℃. As the oxygen partial pressure decreases, the equilibrium oxygen content of the 123 phase decreases, increasing the number of oxygen vacancies of the tetragonal structure. The unit volume also increases. As shown in FIG. 1, in the tetragonal structure of 123 phase, the four sides of the base surface become a place where oxygen atoms can enter, so if the air or oxygen atmosphere used for heat treatment in the conventional method is changed to helium or nitrogen atmosphere, the tetragonal structure The concentration of oxygen vacancies at the base of is increased and the diffusion of material through the oxygen vacancies is much easier.

또한, 123상의 산소량이 x=7.0에서 x=6.0으로 변하면 Cu이온의 산화수(oxidation number)는 +2.33가에서 +1.06가로 되고, 이로 인하여 Cu이온의 유효반경(Effective radious)이 증가된다.In addition, when the amount of oxygen in the phase 123 is changed from x = 7.0 to x = 6.0, the oxidation number of Cu ions is +2.33 to +1.06, thereby increasing the effective radious of Cu ions.

즉, 123강의 산소량이 적을수록 정방정계 구조의 체적이 증가되므로 물질의 확산이 용이하게 된다. 따라서 본 발명은 공기 또는 산소분위기 대신에 불활성분위기인 헬륨 또는 질소분위기를 사용하므로써 Y-계 초전도체의 합성 및 소결을 용이하게 행할 수 있는 것이며, 합성 및 소결온도를 낮출 수 있다.In other words, as the amount of oxygen in the steel 123 decreases, the volume of the tetragonal structure increases, which facilitates the diffusion of the material. Therefore, the present invention can easily perform synthesis and sintering of the Y-based superconductor by using helium or nitrogen atmosphere, which is an inert atmosphere instead of air or oxygen atmosphere, and can lower the synthesis and sintering temperature.

본 발명의 고온 초전도체는 YBa2Cu3Ox를 기본조성으로 하여 세라믹스 공정의 고상법을 사용하여 시편을 제조하였다. 즉, Y2O3(99.9%), BaCO3(99%), CuO(99.9% )를 몰비로 칭량한 후 플레니터리 밀(Planetary mill)에서 테프론 자르(Taflon Jar)를 사용하여 4시간동안 혼합하였다.In the high temperature superconductor of the present invention, YBa 2 Cu 3 O x was used as a basic composition to prepare a specimen using a solid phase method of a ceramic process. That is, Y 2 O 3 (99.9%), BaCO 3 (99%), CuO (99.9%) were weighed in a molar ratio and then used for 4 hours using a Taflon Jar in a planetary mill. Mixed.

이때 용매로서는 아세톤을, 매체(media)로는 YTZ볼(ball)을 사용하였다. 건조한 분말을 질소 또는 헬륨분위기에서 830∼850℃에서 5∼10시간동안 합성한 후 450℃에서 30분간 열처리한 다음, 제조된 건조 하소분말을 건식프레스(press)를 사용하여 직경 12㎜, 두께 2㎜가 되도록 성형하여 840∼860℃에서 5∼10시간동안 질소 또는 헬륨분위기에서 소결한 후 600℃ 산소분위기에서 4시간동안 열처리하였다.At this time, acetone was used as a solvent, and YTZ ball was used as a medium. The dried powder was synthesized in nitrogen or helium atmosphere at 830-850 ° C. for 5-10 hours, and then heat-treated at 450 ° C. for 30 minutes, and then the dried calcined powder was dried in a press 12 mm in diameter and thickness 2 It was molded to mm and sintered at 840 to 860 ° C. for 5 to 10 hours in nitrogen or helium atmosphere, and then heat-treated at 600 ° C. oxygen atmosphere for 4 hours.

YBa2Cu3Ox고온 초전도체를 제조함에 있어서 종래의 열처리 방법과 본 발명의 열처리 방법에 따른 효과는 다음과 같은 실험으로부터 알 수 있다.The effects of the conventional heat treatment method and the heat treatment method of the present invention in the production of YBa 2 Cu 3 O x high temperature superconductor can be seen from the following experiment.

[실험예 1]Experimental Example 1

Y2O3, BaCO3, CuO를 몰비로 칭량한 후 혼합하고 건조한 분말을 각각 헬륨, 산소, 공기분위기하, 850℃에서 합성함에 있어서 합성시간의 변화에 따른 YBa2Cu3Ox상의 상대밀도를 측정하였다.Relative density of YBa 2 Cu 3 O x phase according to the change of synthesis time when Y 2 O 3 , BaCO 3 and CuO were weighed in molar ratio, mixed and dried, and the dried powder was synthesized at 850 ° C. under helium, oxygen and air atmosphere, respectively. Was measured.

상대밀도(relative intensity)는 각 물질의 회절선중에서 강도가 제일 큰 회절선의 높이를 측정한 후 다음식을 이용하여 구하였다.Relative intensity was determined using the following equation after measuring the height of the diffraction line with the largest intensity among the diffraction lines of each material.

상대밀도 = I123/(I123+ IY+ IB+ IC)Relative Density = I 123 / (I 123 + I Y + I B + I C )

I123: 2θ= 32.88°에서의 XRD회절선I 123 : XRD line at 2θ = 32.88 °

IY: 2θ = 29.35°에서의 XRD회절선I Y : XRD line at 2θ = 29.35 °

IB: 2θ = 24.0°에서의 XRD회절선I B : XRD line at 2θ = 24.0 °

IC: 2θ = 39.0°에서의 XRD회절선I C : XRD diffraction line at 2θ = 39.0 °

실험결과, 제2도에 도시된 바와 같이 헬륨분위기에서는 공기 또는 산소분위기에서보다 상대밀도가 높음을 알 수 있으며, 이는 동일한 합성온도에서는 123상이 기존의 분위기에서 보다 더빨리 합성되는 것을 나타내는 것이고, 뿐만 아니라 합성온도를 낮출 수 있음을 나타내는 것이다.As a result, as shown in FIG. 2, it can be seen that the relative density is higher in the helium atmosphere than in the air or oxygen atmosphere, indicating that the 123 phase is synthesized faster than in the existing atmosphere at the same synthesis temperature Rather, the synthesis temperature can be lowered.

[실험예 2]Experimental Example 2

Y2O3, BaCO3, CuO를 몰비로 칭량한 후 표 1에 기재된 각각의 분위기하에서, 830∼850℃에서 하소하고, 840∼860℃에서 소결한 후 600℃에서 열처리를 행하여 시편 1∼4를 얻었다.After weighing Y 2 O 3 , BaCO 3 , CuO in a molar ratio, in each of the atmospheres shown in Table 1, calcining at 830-850 ° C., sintering at 840-860 ° C. and heat treatment at 600 ° C. were carried out. Got.

각각의 시편을 일반적인 방법으로 리비테이션(levitation) 실험을 행하고 그 결과와 각각의 시편의 Tc를 측정하여 표 1에 기재하였다.Each specimen was subjected to a levitation experiment in a general manner and the results and the Tc of each specimen were measured and listed in Table 1.

Figure kpo00002
Figure kpo00002

표 1의 기재로 부터 알 수 있는 바와 같이, 하소 및 소결시 분위기를 헬륨분위기로 하였을 경우에는 리비테이션 결과가 아주 양호하고 Tc가 높은 시편을 제조할 수 있음을 알 수 있다. 따라서, 본 발명의 방법으로 제조한 고온 초전도체는 효과가 종래의 방법으로 제조한 고온 초전도체보다 뛰어남을 알 수 있었다.As can be seen from the description of Table 1, when the atmosphere of calcination and sintering in the helium atmosphere it can be seen that the result of the reversal is very good and a high Tc specimen can be prepared. Therefore, it was found that the high temperature superconductor produced by the method of the present invention is superior to the high temperature superconductor produced by the conventional method.

상술한 바와 같이 Y-계의 고온 초전도체의 제조시 공기 또는 산소분위기를 불활성 분위기인 질소 또는 헬륨분위기로 바꾸어줌으로서, 합성 및 소결온도를 종래의 900℃, 950℃에서 830∼850℃, 840∼860℃로 낮출 수 있으며, 동일한 합성 및 소결도에서는 123상은 종래의 분위기에서 보다 더빨리 합성할 수 있고, 소결시편의 치밀화 및 입자성장이 촉진된다.As described above, by changing the air or oxygen atmosphere to an inert atmosphere nitrogen or helium at the time of manufacturing the high temperature superconductor of the Y-based, the synthesis and sintering temperatures are 830-850 ° C and 840- It can be lowered to 860 ℃, in the same synthesis and sintering degree 123 phase can be synthesized faster than in the conventional atmosphere, and the densification and grain growth of the sintered specimen is promoted.

Claims (2)

YBa2Cu3Ox고온 초전도체를 제조함에 있어서, 하소 및 소결 공정을 헬륨 또는 질소분위기의 불활성분위기에서 행함을 특징으로 하는 방법.YBa 2 Cu 3 O x A method for producing a high temperature superconductor, wherein the calcination and sintering process is performed in an inert atmosphere of a helium or nitrogen atmosphere. 제1항에 있어서, 합성 및 소결은 830∼850℃, 840∼860℃에서 각각 5∼10시간 행함을 특징으로 하는 방법.The method according to claim 1, wherein the synthesis and sintering are performed for 5 to 10 hours at 830 to 850 캜 and 840 to 860 캜, respectively.
KR1019900009477A 1990-06-26 1990-06-26 Method for manufacturing y-super conductor KR0144718B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900009477A KR0144718B1 (en) 1990-06-26 1990-06-26 Method for manufacturing y-super conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019900009477A KR0144718B1 (en) 1990-06-26 1990-06-26 Method for manufacturing y-super conductor

Publications (2)

Publication Number Publication Date
KR920000621A KR920000621A (en) 1992-01-29
KR0144718B1 true KR0144718B1 (en) 1998-07-15

Family

ID=19300507

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019900009477A KR0144718B1 (en) 1990-06-26 1990-06-26 Method for manufacturing y-super conductor

Country Status (1)

Country Link
KR (1) KR0144718B1 (en)

Also Published As

Publication number Publication date
KR920000621A (en) 1992-01-29

Similar Documents

Publication Publication Date Title
CA1109247A (en) Method of producing a dielectric with perowskite structure
Kinoshita et al. Crystal structure and superconducting properties of La1. 85Ca1. 15Cu2O6+ δ: Comparison with nonsuperconducting La1. 85Ca1. 15Cu2O6− δ and La1. 15Sr1. 15Cu2O6+ δ
KR0144718B1 (en) Method for manufacturing y-super conductor
USRE35376E (en) Metal oxide 247 superconducting materials
Dou et al. Effect of Milling Medium on the Properties of Superconducting YBa2Cu3O7–x
US5155092A (en) Ceramic superconducting composition and process and apparatus for preparing thereof
JPH0251468A (en) Production of yttrium-barium-copper oxide powder and superconducting yttrium-barium-copper oxide sintered body
US5106829A (en) Method of making substantially single phase superconducting oxide ceramics having a Tc above 85 degrees
Horowitz et al. The effect of synthesis methods on the processing and properties of YBa2Cu3O6+ x
Çam et al. Effects of Sb substitution on structural and superconducting properties of Bi in Bi 1.75− x Pb 0.25 Sb x Sr 2 Ca 2 Cu 3 O y superconductor
US5079217A (en) Process for preparing homogenous superconductors by heating in a nitrogen dioxide containing atmosphere
Chen et al. Fabrication of perovskite Pb (Fe 2/3 W 1/3) x (Fe 1/2 Nb 1/2) 0.9− x Ti 0.1 O 3 by double calcination process
Rajagopal et al. Neutron structural studies of superconducting Bi2Sr2CuO∼ 6 and Bi2-xPbxSr1. 8La0. 2CuO6+ δ (x= 0.0 and 0.2)
Mogilevsky et al. Ternary and quaternary thallium-containing high-Tc superconductors synthesized at low temperature and elevated pressure
KR940007596B1 (en) Manufacturing method of superconducting ceramic
Chang et al. The effect of CO2 in the processing atmosphere of YBa2Cu3Ox
Venturini et al. Annealing and strain effects on Tl-Ba-Ca-Cu-O crystals and ceramics
Ravindranathan et al. Synthesis of high-temperature Bi Sr Ca Cu oxide superconductors by a sol-gel process
KR0119192B1 (en) New high-tc superconductors and process for preparing them
Fathi et al. Partial substitution effect of (Bi and Pb) in Hg1-x (Bi and Pb) x Ba2 Ca2 Cu3 O8+ δ high temperature Superconductors
Bhargava et al. Shape-formed ceramic superconductors by slip-casting
EP0413581B1 (en) Superconducting material
Kinoshita et al. Crystal structure and superconductivity in La1. 85Sr0. 16Ca0. 99Cu2O5. 93+ δ
Çam et al. Effects of Sb substitution on structural and superconducting properties of Bi in Bi^ sub 1.75-x^ Pb^ sub 0.25^ Sb^ sub x^ Sr^ sub 2^ Ca^ sub 2^ Cu^ sub 3^ O^ sub y^ superconductor
Salvador et al. Layered Cuprates

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070319

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee