JP2556571B2 - Method for manufacturing corrosion-resistant soft magnetic steel sheet - Google Patents
Method for manufacturing corrosion-resistant soft magnetic steel sheetInfo
- Publication number
- JP2556571B2 JP2556571B2 JP64000136A JP13689A JP2556571B2 JP 2556571 B2 JP2556571 B2 JP 2556571B2 JP 64000136 A JP64000136 A JP 64000136A JP 13689 A JP13689 A JP 13689A JP 2556571 B2 JP2556571 B2 JP 2556571B2
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- temperature
- final
- stage
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) この発明は、耐食性の著しく優れた軟磁性鋼板、とく
にOA機器用モータコアをはじめとして、車載用モータコ
アや水中モーターコアなどとりわけ発錆が嫌われる用途
に用いて好適な軟磁性鋼板の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention is particularly concerned with soft magnetic steel sheets having remarkably excellent corrosion resistance, such as motor cores for OA equipment, in-vehicle motor cores, underwater motor cores, etc. The present invention relates to a method for manufacturing a soft magnetic steel sheet suitable for use.
(従来の技術) 耐食性軟磁性材料としては、従来からフェライト系ス
テンレス鋼板が知られているが、かかる材料の軟磁気特
性はけい素鋼等に比べると著しく劣っている。そこで、
磁気特性を改善する目的で特公昭39−816号公報では、F
e−Cr系合金に所定量のC,Si,Mn,Ni,Al等の添加が試みら
れているが、磁気特性としては最大透磁率μmaxが高々2
850で、しかも保磁力は最良でも0.9エルステッド(Oe)
にすぎなかった。(Prior Art) As a corrosion-resistant soft magnetic material, ferritic stainless steel sheets have been conventionally known, but the soft magnetic properties of such materials are significantly inferior to those of silicon steel. Therefore,
For the purpose of improving magnetic properties, Japanese Patent Publication No. 39-816 discloses that F
It has been attempted to add a predetermined amount of C, Si, Mn, Ni, Al, etc. to the e-Cr alloy, but the maximum magnetic permeability μmax is at most 2 as the magnetic characteristics.
850 and coercive force of 0.9 at best (Oe)
It was nothing more than
また同様の目的で、特公昭39−20644号公報において
は、Fe−Cr系合金にSiやTiを添加し、該合金中の酸素を
除去することによって磁気特性の改善を図っているが、
高透磁率、低保磁力を安定に得ることは困難で、すなわ
ち多くの元素添加を行う方法ではむしろ混入した不純物
が核となって介在物または析出物が発生するため、軟磁
気特性の劣化をまねく。Further, for the same purpose, in JP-B-39-20644, in order to improve the magnetic characteristics by adding Si or Ti to the Fe-Cr alloy and removing oxygen in the alloy,
It is difficult to stably obtain high permeability and low coercive force. In other words, in the method in which many elements are added, the mixed impurities rather serve as nuclei to generate inclusions or precipitates. Inspire.
一方、特公昭50−37135号や同54−14569号各公報等に
おいては高温、長時間の焼鈍によって鋼中のC,N含有量
を制御し、後者の例ではさらに方向性の付与によって磁
気特性の改善を図っているが、工程が極めて複雑で、特
に最終焼鈍が長時間を要するため、不経済である。On the other hand, in Japanese Patent Publication No. 50-37135 and Japanese Patent Publication No. 54-14569, etc., the C and N contents in steel are controlled by annealing at high temperature for a long time, and in the latter example, magnetic properties are provided by further imparting directionality. However, it is uneconomical because the process is extremely complicated and especially the final annealing requires a long time.
(発明が解決しようとする課題) この発明は、上記した従来技術のように多くの元素添
加を行うことなしに、冷間圧延および焼鈍工程を最適化
することにより、工業的生産において安定に、最大透磁
率10000以上、保磁力0.3エルステッド以下という優れた
軟磁気特性を有し、しかも耐食性にも優れた耐食性軟磁
性鋼板を製造する方法について提案することを目的とす
る。(Problems to be Solved by the Invention) The present invention is stable in industrial production by optimizing the cold rolling and annealing steps without adding many elements as in the above-mentioned conventional technique. It is an object of the present invention to propose a method for producing a corrosion-resistant soft magnetic steel sheet having excellent soft magnetic properties such as a maximum magnetic permeability of 10,000 or more and a coercive force of 0.3 oersted or less, and also excellent in corrosion resistance.
(課題を解決するための手段) 発明者らは、Fe−Cr系合金鋼において軟磁気特性の向
上に効果のあるSiおよびAlを添加するとともに含有S,Mn
量を制御し、さらに熱間圧延後の冷間圧延および焼鈍工
程を適正化することによって、軟磁気特性の向上をはか
れることを見出してこの発明を完成させた。(Means for Solving the Problems) The inventors have added Si and Al, which are effective in improving the soft magnetic properties in Fe-Cr alloy steel, and added S, Mn.
The present invention has been completed by finding that the soft magnetic characteristics can be improved by controlling the amount and further optimizing the cold rolling and the annealing process after the hot rolling.
すなわちこの発明は、 C:0.01wt%以下、 Cr:11.0〜18.0wt% Si+Al:5.0wt%以下、 を含み、さらにMnとSを S:0.005wt%以下でかつ、 Mn/S≧100 を満足する範囲において含有する鋼素材に、熱間圧延を
施して熱延板とした後、1回あるいは中間焼鈍を含む2
回以上の冷間圧延を最終圧下率40〜85%にて施し、しか
る後最終焼鈍を600〜800℃の温度範囲と850〜1200℃の
温度範囲の2段階で施すことを特徴とする耐食性軟磁性
鋼板の製造方法である。That is, the present invention includes C: 0.01 wt% or less, Cr: 11.0 to 18.0 wt% Si + Al: 5.0 wt% or less, and further, Mn and S are S: 0.005 wt% or less and satisfy Mn / S ≧ 100. The steel material contained in the range of
Corrosion resistance softening characterized by performing cold rolling more than once at a final reduction of 40 to 85% and then performing final annealing in two stages of a temperature range of 600 to 800 ° C and a temperature range of 850 to 1200 ° C. It is a method of manufacturing a magnetic steel sheet.
以下この発明を具体的に説明する。 The present invention will be specifically described below.
まずこの発明の基礎となった実験結果について説明す
る。First, the experimental results which are the basis of the present invention will be described.
即ち、最終焼鈍後の結晶粒径はS含有量およびMn/S含
有量比に強く依存し、S量の減少とともに結晶粒径は増
大し、同じS量ではMn/S比の増加とともに結晶粒径は増
大して軟磁性は良好となる。That is, the crystal grain size after the final annealing strongly depends on the S content and the Mn / S content ratio, the crystal grain size increases as the S content decreases, and the crystal grain size increases with the Mn / S ratio for the same S content. The diameter increases and the soft magnetism becomes good.
Cr:15.0wt%(以下単に%と示す)、Si:2.0%、Al:1.
5%、S:0.001〜0.010%、Mn:0.4〜0.5%およびC:0.005
%を含み残部が実質的にFeの組成になる合金鋼スラブに
熱間圧延を施した後、最終圧下率が60%となる2回の冷
間圧延を施し、ついでH2中において600℃から100℃/min
で1000℃まで昇温後1000℃2分間の最終焼鈍を施して得
た、厚さ0.35mmの薄鋼板の平均結晶粒径とS含有量との
関係について調べた結果を、第1図に示す。同図から、
S含有量が0.005%以下になると結晶粒径が急激に増大
することが明らかである。Cr: 15.0wt% (hereinafter simply referred to as%), Si: 2.0%, Al: 1.
5%, S: 0.001-0.010%, Mn: 0.4-0.5% and C: 0.005
% Alloyed slabs with the balance being essentially Fe, hot-rolled, cold-rolled twice to give a final reduction of 60%, then in H 2 from 600 ° C 100 ° C / min
Fig. 1 shows the results of examining the relationship between the average crystal grain size and the S content of a thin steel sheet having a thickness of 0.35 mm obtained by performing a final annealing at 1000 ° C for 2 minutes after heating up to 1000 ° C at . From the figure,
It is clear that when the S content is 0.005% or less, the crystal grain size rapidly increases.
また、Cr:13.5%、Si:0.9%、Al:1.8%、S:0.002〜0.
005%、Mn:0.1〜0.8%およびC:0.003〜0.006%を含み残
部が実質的にFeの合金鋼スラブに熱間圧延を施した後、
最終圧下率が60%となる2回の冷間圧延を施し、ついで
H2中において660℃で2分間、その後直ちに500℃/minで
1000℃まで昇温後1000℃で2分間保持する最終焼鈍を施
して得た、厚さ0.5mmの薄鋼板の最大透磁率とMn/S比と
の関係について調べた結果を第2図に示す。同図から、
この成分系においてはMn/Sを100以上にすると10000以上
と最大透磁率が得られることが明らかである。Also, Cr: 13.5%, Si: 0.9%, Al: 1.8%, S: 0.002-0.
After hot rolling an alloy steel slab containing 005%, Mn: 0.1 to 0.8% and C: 0.003 to 0.006% and the balance being substantially Fe,
Two cold rolling steps were performed to achieve a final reduction of 60%, and then
2 hours at 660 ° C in H 2 and then immediately at 500 ° C / min
Figure 2 shows the results of an examination of the relationship between the maximum magnetic permeability and the Mn / S ratio of a thin steel sheet with a thickness of 0.5 mm, which was obtained by performing a final anneal of raising the temperature to 1000 ° C and holding it at 1000 ° C for 2 minutes. . From the figure,
In this component system, it is clear that when Mn / S is 100 or more, the maximum magnetic permeability of 10,000 or more is obtained.
さらに、上記に従って成分を調整したFe−Cr系合金の
熱延板に対して施す冷間圧延、焼鈍工程の適正化につい
て種々の検討を行った。Further, various studies were conducted on the optimization of the cold rolling and annealing steps performed on the hot-rolled sheet of Fe-Cr alloy whose components were adjusted as described above.
Cr:15.0%、Al:1.0%、Si:1.2%、S:0.004%、Mn:0.6
%およびC:0.005%を含み残部が実質的にFeよりなる合
金鋼スラブに熱間圧延を施した後、冷間圧延、ついで最
終焼鈍を施して得た厚さ0.35mmの薄鋼板のX線(200)
反射極点図を第3図に示す。ここで冷間圧延の最終圧下
率は30〜90%とし、また最終焼鈍はH2雰囲気中で750℃
2分間ついて1050℃3分間を連続して行った。同図から
明らかなように、上記鋼種においては最終圧下率を60%
程度にした場合に、{110}面が圧延面において<001>
方向が圧延方向にそれぞれ平行となる、いわゆるゴス方
位が最も強く現れ、圧延方向に磁化する場合に優れた軟
磁性を発揮する一方向性の集合組織が得られる。Cr: 15.0%, Al: 1.0%, Si: 1.2%, S: 0.004%, Mn: 0.6
% And C: 0.005%, the balance being substantially Fe, the alloy steel slab was hot-rolled, then cold-rolled and then finally annealed to obtain an X-ray of a thin steel sheet with a thickness of 0.35 mm. (200)
A reflection pole figure is shown in FIG. Here, the final reduction rate of cold rolling is 30 to 90%, and the final annealing is 750 ° C in H 2 atmosphere.
After 2 minutes, 1050 ° C. was continuously performed for 3 minutes. As is clear from the figure, the final reduction rate of 60% was obtained for the above steel types.
When the degree is adjusted, the {110} plane is the rolling plane <001>
The so-called Goss orientation in which the directions are parallel to the rolling direction appears most strongly, and a unidirectional texture that exhibits excellent soft magnetism when magnetized in the rolling direction is obtained.
また最終焼鈍は粒成長を図ることに加え、さらに上述
の好適組成からなる冷延板に対して、第1段の温度域を
600〜800℃に第2段の温度域を850〜1200℃とする2段
階にて施すことが集合組織制御の上で有効であることが
判明した。即ち、第1段の最終焼鈍において上記ゴス方
位を有する結晶粒を選択的に再結晶させ、次いで第2段
の高温最終焼鈍を施すことによりこの結晶粒を成長さ
せ、高度の一方向性集合組織を得ることが可能となるの
である。In addition to the grain growth, the final annealing is performed in the temperature range of the first stage for the cold-rolled sheet having the above-mentioned preferable composition.
It has been found that it is effective for texture control to apply the second temperature range from 850 to 1200 ° C at 600 to 800 ° C. That is, in the first stage final annealing, the crystal grains having the above Goss orientation are selectively recrystallized, and then the second stage high temperature final annealing is performed to grow the crystal grains, thereby obtaining a highly unidirectional texture. It is possible to obtain
Cr:15.0%、Si:1.5%、Al:0.8%、Mn:0.45%、C:0.00
6%およびS:0.003%、または0.022%を含有し残部が実
質的にFeよりなる合金鋼スラブに熱間圧延を施した後、
冷間圧延ついで最終焼鈍を施して得た厚さ0.35mmの薄鋼
板のゴス方位に対応するX線(200)反射ピーク強度
を、第2段の最終焼鈍における焼鈍温度の関数として、
第4図に示す。ここで冷間圧延の最終圧下率は60%と
し、焼鈍時間は第1段4分間、第2段2分間とし、第1
段最終焼鈍終了後直ちに500℃/minの昇温速度で第2段
最終焼鈍温度まで上昇させた。なお第2段焼鈍はAr雰囲
気で行った。Cr: 15.0%, Si: 1.5%, Al: 0.8%, Mn: 0.45%, C: 0.00
After hot rolling an alloy steel slab containing 6% and S: 0.003%, or 0.022% and the balance being essentially Fe,
The X-ray (200) reflection peak intensity corresponding to the Goss orientation of a 0.35 mm-thick steel sheet obtained by performing cold rolling and then final annealing was calculated as a function of the annealing temperature in the second stage final annealing.
It is shown in FIG. Here, the final reduction rate of cold rolling is 60%, the annealing time is 4 minutes for the first stage and 2 minutes for the second stage, and
Immediately after completion of the final annealing of the second stage, the temperature was raised to the final annealing temperature of the second stage at a heating rate of 500 ° C./min. The second stage annealing was performed in an Ar atmosphere.
図中(A)はS:0.003%、第1段焼鈍温度720℃とした
もの、(B)はS:0.003%、第1段焼鈍温度を第2段焼
鈍温度と同一とし、その温度がAにおける第2段焼鈍温
度と同一であるときはAにおける第1段焼鈍後昇温し第
2段焼鈍が完了するまでの時間と同一の時間保持したも
の、(C)はS:0.022%、第1段焼鈍温度720℃としたも
のをそれぞれ示す。同図より明らかなように、Sを低減
した成分系においては、第1段焼鈍温度を720℃に保っ
た場合にゴス方位の集積度が上昇し、より高度の一方向
性集合組織が得られることがわかる。In the figure, (A) is S: 0.003%, the first stage annealing temperature is 720 ° C, (B) is S: 0.003%, the first stage annealing temperature is the same as the second stage annealing temperature, and the temperature is A When the temperature is the same as the second-stage annealing temperature in A., the temperature was raised after the first-stage annealing in A and held for the same time as the time until the second-stage annealing was completed, (C) was S: 0.022%, The one-stage annealing temperature of 720 ° C is shown respectively. As is clear from the figure, in the component system in which S is reduced, the integration degree of the Goss orientation is increased and the higher unidirectional texture is obtained when the first stage annealing temperature is maintained at 720 ° C. I understand.
このように成分と冷間圧延および焼鈍工程とを適切に
制御することにより優れた軟磁性を得ることができる。By appropriately controlling the components and the cold rolling and annealing steps in this manner, excellent soft magnetism can be obtained.
(作 用) 以下、この発明において成分組成を前記の範囲に限定
した理由について説明する。(Operation) The reason why the component composition is limited to the above range in the present invention will be described below.
C:0.01%以下 Cは磁気特性、耐食性を劣化させる元素であり、0.01
%を越える両特性の劣化が著しく、また脱炭に高温、長
時間の焼鈍が必要となるため、0.01%以下とした。C: 0.01% or less C is an element that deteriorates magnetic properties and corrosion resistance.
%, Both properties are significantly deteriorated, and decarburization requires annealing at high temperature for a long time, so 0.01% or less.
Cr:11.0〜18.0% CrはFeに添加して耐食性を付与する元素であるが、11
%未満の含有量では酸化性腐食に対する耐性が低くなる
一方、18%を超えると酸性雰囲気における耐食性が劣化
する。またCrはフェライト生成元素であって軟磁性改善
に効果があるが、18%を超える含有量では飽和磁束密度
の低下が著しい。そこでCr含有量は11〜18%とした。Cr: 11.0 to 18.0% Cr is an element that imparts corrosion resistance when added to Fe.
If the content is less than%, the resistance to oxidative corrosion becomes low, while if it exceeds 18%, the corrosion resistance in an acidic atmosphere deteriorates. Cr is a ferrite-forming element and is effective in improving soft magnetism, but when the content exceeds 18%, the saturation magnetic flux density is significantly reduced. Therefore, the Cr content is set to 11 to 18%.
Si+Al:5.0%以下 Si,Alはフェライト生成元素であり、軟磁性を向上さ
せるのみならず電気抵抗を増大させる効果がある。Crを
11%以上含有する場合においてもさらにSi,Alを添加す
ることによりγ相析出を抑制して軟磁性を向上させ得る
が、過少では電気抵抗および透磁率の向上効果に乏し
く、又過大では飽和磁束密度を低下させるだけでなく脆
くなる。Si + Al: 5.0% or less Si and Al are ferrite-forming elements, and have the effect of not only improving soft magnetism but also increasing electric resistance. Cr
Even if the content is 11% or more, addition of Si and Al can suppress γ-phase precipitation and improve soft magnetism, but if it is too small, the effect of improving electric resistance and magnetic permeability is poor, and if it is too large, saturation flux Not only does it reduce the density, but it also becomes brittle.
すなわち両者の合計が5%以上では上記添加効果が低
いのみならず熱間加工性を著しく損なうので5%以下と
した。また下限は磁性改善の点から1%以上、より望ま
しくは1.5%以上添加することが有利である。なおSiお
よびAlはいずれも0.5〜3.5%の範囲で添加することが好
ましい。That is, if the total amount of both is 5% or more, not only the addition effect is low but also the hot workability is remarkably impaired, so it is set to 5% or less. The lower limit is 1% or more, more preferably 1.5% or more, from the viewpoint of improving magnetism. Both Si and Al are preferably added in the range of 0.5 to 3.5%.
S:0.005%以下 SはFeS、CrSあるいはMnSの微細な析出物として鋼中
に分布すると粒成長を阻害して軟磁性を劣化させ、また
FeS、CrSが鋼中に存在すると熱間および冷間での加工性
を損ない、表面疵等の発生原因となる。すなわちS含有
量が0.005%を越えるとFeS、CrS、MnSの単独あるいは複
合した微細化合物が鋼中に分散して析出し、第1図に示
したように粒成長を阻害して軟磁性を劣化させるため、
S含有量は0.005%以下とした。S: 0.005% or less When S is distributed in the steel as fine precipitates of FeS, CrS or MnS, it inhibits grain growth and deteriorates soft magnetism.
The presence of FeS and CrS in steel impairs the hot and cold workability and causes surface defects and the like. That is, when the S content exceeds 0.005%, FeS, CrS, and MnS single or complex fine compounds are dispersed and precipitated in the steel, which inhibits grain growth and deteriorates soft magnetism as shown in FIG. To let
The S content was 0.005% or less.
Mn/S≧100 Mnは鋼中のFeS、CrSの析出を抑制してMnSを析出させ
る元素で、Mn/S比が100に満たないとFeS、CrSが析出し
て熱間および冷間での加工性を損なう。一方Mn/S比が10
0以上であると、Sの殆どはMnSとして析出するため加工
性が良好になるとともに、析出物が粗大化するために結
晶粒成長が阻害されることなく、第2図に示したよう
に、良好な軟磁性を得ることができる。この理由により
Mn/S含有量比が100以上のMnを添加することとした。な
おMn含有量が増加すると飽和磁束密度が低下するため
に、望ましくは1.0%以下の添加とする。Mn / S ≧ 100 Mn is an element that suppresses the precipitation of FeS and CrS in steel and precipitates MnS.If the Mn / S ratio is less than 100, FeS and CrS precipitate and the hot and cold Workability is impaired. On the other hand, the Mn / S ratio is 10
When it is 0 or more, most of S is precipitated as MnS, so that the workability is improved, and the grain size is not hindered due to the coarsening of the precipitate, as shown in FIG. Good soft magnetism can be obtained. For this reason
It was decided to add Mn having an Mn / S content ratio of 100 or more. Since the saturation magnetic flux density decreases as the Mn content increases, it is desirable to add 1.0% or less.
次に製造方法を規定した理由を述べる。 Next, the reasons for defining the manufacturing method will be described.
冷間圧延における最終圧下率:40〜85% 第3図に示したように、ゴス方位の集積度は圧下率60
%付近をピークとして40〜85%の範囲で高くなるため、
圧下率をこの範囲とすれば方向性が改善されて優れた軟
磁性を得ることができる。従って工程条件に応じて40〜
85%の範囲内で圧下率を選択するものとした。Final rolling reduction in cold rolling: 40-85% As shown in Fig. 3, the degree of integration of Goss orientation is 60
Since the peak is around 40% and it becomes high in the range of 40 to 85%,
When the rolling reduction is within this range, the directionality is improved and excellent soft magnetism can be obtained. Therefore, depending on the process conditions 40 ~
The reduction rate was selected within the range of 85%.
最終焼鈍:第1段600〜800℃、第2段850〜1200℃ 最終焼鈍条件については、第1段600〜800℃、第2段
850〜1200℃の範囲とする。焼鈍雰囲気については特に
問わないが、酸化スケールの除去を容易にあるいは不必
要とするためには非酸化性雰囲気を用いることが望まし
い。Final annealing: 1st stage 600-800 ° C, 2nd stage 850-1200 ° C Regarding the final annealing conditions, 1st stage 600-800 ° C, 2nd stage
The temperature shall be in the range of 850-1200 ℃. The annealing atmosphere is not particularly limited, but it is desirable to use a non-oxidizing atmosphere in order to remove oxide scale easily or not.
さて第1段焼鈍は前述のように圧延組織から優先的に
ゴス方位の再結晶させることを目的としており、600℃
未満では再結晶自体に極めて長時間を要して不利であ
り、一方800℃を越えると再結晶がゴス方位に対して選
択的でなくなって有効に方向性を付与することが困難で
あるので、600〜800℃の範囲に限定した。次に第2段焼
鈍について、この発明にかかる成分系においては焼鈍温
度を高くして短時間で良好な軟磁性を得ることができる
が、1200℃を越えた場合には焼鈍温度上昇による軟磁性
改善効果は小さく、したがって経済的に不利となる。一
方850℃に満たないと粒成長が遅く、長時間の焼鈍を行
っても良好な軟磁性を得ることは望めないため、第2段
焼鈍温度は850〜1200℃の範囲とした。As mentioned above, the 1st-stage annealing aims to preferentially recrystallize the Goss orientation from the rolling structure, and
If it is less than 1, it takes a very long time to recrystallize itself, which is disadvantageous. On the other hand, if it exceeds 800 ° C., recrystallization is not selective with respect to the Goss orientation and it is difficult to effectively give directionality. Limited to the range of 600-800 ℃. Next, regarding the second stage annealing, in the component system according to the present invention, it is possible to raise the annealing temperature to obtain good soft magnetism in a short time, but when it exceeds 1200 ° C, the soft magnetism due to the increase of the annealing temperature is obtained. The improvement effect is small and therefore economically disadvantageous. On the other hand, if the temperature is less than 850 ° C., grain growth is slow and it is not possible to obtain good soft magnetism even after annealing for a long time. Therefore, the second stage annealing temperature was set in the range of 850 to 1200 ° C.
焼鈍時間については特に規定しないが中間焼鈍および
最終焼鈍(第1段、第2段)とも焼鈍時間は30秒〜10分
間の比較的短時間で良好な結果が得られる。最終2段焼
鈍のヒートパターンは第1段での温度に保持後室温以
上の任意温度まで冷却し、ついで再昇温して第2段での
温度に保持、第1段での温度に保持後、昇温して第2
での温度に保持等の通常のパターンの他、600〜800℃
間を一定時間以上かけて昇温して引き続いて第2段での
温度に保持等の方法をとることも可能である。なおこの
際上記の,,における保持時間、における600
〜800℃での昇温時間は上述の30秒〜10分間が好適であ
るが、必ずしもこれに限られるものではない。Although the annealing time is not particularly specified, good results can be obtained in both the intermediate annealing and the final annealing (first step, second step) with a relatively short annealing time of 30 seconds to 10 minutes. The heat pattern of the final two-stage annealing was maintained at the temperature of the first stage, cooled to an arbitrary temperature of room temperature or higher, then reheated and maintained at the temperature of the second stage, after being maintained at the temperature of the first stage. , Raise the temperature to the second
Other than the normal pattern such as keeping the temperature at 600-800 ℃
It is also possible to raise the temperature for a certain period of time or more and then keep the temperature in the second stage. At this time, the holding time in
The temperature rise time at ˜800 ° C. is preferably 30 seconds to 10 minutes, but is not limited thereto.
(実施例) 実施例1 第1表に示す成分組成になる各種の合金鋼を真空溶解
法により50kgのインゴットとし、表面を研削して後1300
℃に加熱し、ただちに熱間圧延を施して厚さ25mmのシー
トバーとした。次にこのシートバーの表面を研削した後
1250℃に加熱して熱間圧延を施し、厚さ3.0mmの熱延板
とした。この熱延板を酸洗した後、1回目の冷間圧延を
施し、厚さ1.2mmの板とし、Ar雰囲気中950℃3分間の中
間焼鈍を施し、その後2時間の冷間圧延を施して厚さ0.
5mmの冷延板とした。この冷延板から30mm×280mmのエプ
スタイン試験片をその長辺が圧延方向と平行になるよう
に切り出し、Ar雰囲気中で760℃で4分間保持後、一旦
室温まで空冷後再度昇温して1050℃2分間保持する2段
焼鈍を施した。また前記シートバーの一部に厚さ1.5mm
までの熱間圧延を施し、酸洗の後、冷間圧延を施して厚
さ0.65mmの冷延板とし、これからエプスタイン試験片を
その長辺が圧延方向と平行になるように切り出し、Ar雰
囲気中で600℃から800℃まで50℃/minで昇温し、800℃
から1050℃まで500℃/minで昇温して1050℃で2分間保
持する最終2段焼鈍を施した。これらの処理を施した各
試験片の磁気特性および耐食性について調べた結果を第
2表に示す。(Example) Example 1 Various alloy steels having the composition shown in Table 1 were made into 50 kg ingots by a vacuum melting method, and the surface was ground to give 1300
It was heated to ℃ and immediately hot-rolled into a sheet bar having a thickness of 25 mm. Then after grinding the surface of this sheet bar
It was heated to 1250 ° C and hot-rolled to obtain a hot-rolled sheet having a thickness of 3.0 mm. After pickling this hot-rolled sheet, it was cold-rolled for the first time to make a sheet with a thickness of 1.2 mm, subjected to intermediate annealing at 950 ° C for 3 minutes in an Ar atmosphere, and then cold-rolled for 2 hours. Thickness 0.
It was a cold rolled sheet of 5 mm. A 30 mm × 280 mm Epstein test piece was cut out from this cold-rolled sheet so that its long side was parallel to the rolling direction, kept at 760 ° C for 4 minutes in an Ar atmosphere, once air-cooled to room temperature and then raised again to 1050 Two-stage annealing was performed at 2 ° C for 2 minutes. In addition, a thickness of 1.5 mm on a part of the seat bar
Hot-rolled, pickled, and cold-rolled to give a cold-rolled sheet with a thickness of 0.65 mm. Epstein test pieces are cut from this with the long side parallel to the rolling direction, and then placed in an Ar atmosphere. Temperature rises from 600 ℃ to 800 ℃ at 50 ℃ / min at 800 ℃
To 1050 ° C. at a temperature of 500 ° C./min and a final two-stage annealing in which the temperature was maintained at 1050 ° C. for 2 minutes. Table 2 shows the results of examining the magnetic properties and corrosion resistance of each test piece subjected to these treatments.
なお、最大透磁率と保磁力(Bm=1.0T)は直流磁化測
定装置を用いて測定した。また耐食性はJIS Z2371に従
って24時間の塩水噴霧試験を行って、次の基準で判定し
た。The maximum magnetic permeability and the coercive force (Bm = 1.0T) were measured using a DC magnetization measuring device. In addition, the corrosion resistance was evaluated by the following criteria after performing a 24-hour salt spray test according to JIS Z2371.
○:目でみて殆ど発錆が見当たらない、 △:点錆が軽く分布、 ×:面積率で10%以上の錆が発生、 実施例2 第3表に示す成分組成になる各種合金鋼を真空溶解法
により500kgのインゴットとし、表面研削の後1300℃に
加熱、分塊圧延および熱間圧延を施してから厚さ2.5mm
の熱延コイルとして巻取った。この熱延コイルに950℃3
0秒間の焼鈍を施して酸洗した後切断し、ついでH2雰囲
気中で950℃2分間の中間焼鈍を挟む圧下率を変えた2
回の冷間圧延を施し、最終板厚を0.35mmとした。この冷
延板から30mm×280mmのエプスタイン試験片をその長辺
が圧延方向と平行になるように採取し、H2雰囲気中にて
640℃で1分間保持後直ちに500℃/minで昇温して700〜1
250℃で4分間保持する最終2段焼鈍を施した。この処
理を施した試験片の磁気特性および耐食性について実施
例1と同様の方法に従って評価した。第5図に、最終冷
延圧下率30〜80%、最終第2の段焼鈍温度1050℃とする
処理を施した試験片の最大透磁率を、また第6図に、最
終冷延圧下率60%、最終第2段焼鈍温度700〜1250℃と
する処理を施した試験片の最大透磁率をそれぞれ示す。
また、最終冷延圧下率60%、最終第2段焼鈍温度1050℃
とする処理を施した試験片について耐食性試験を行っ
た。その結果を第3表に併記する。◯: Almost no rust is visually observed, Δ: Light distribution of spot rust, ×: Rust of 10% or more in area ratio, Example 2 Various alloy steels having the composition shown in Table 3 were made into 500 kg ingots by the vacuum melting method, heated to 1300 ° C. after surface grinding, subjected to slab rolling and hot rolling, and then had a thickness of 2.5 mm.
It was wound as a hot rolled coil. 950 ℃ 3 in this hot rolled coil
Annealing was performed for 0 seconds, pickled, and then cut, and then a reduction rate was changed by sandwiching an intermediate annealing at 950 ° C. for 2 minutes in an H 2 atmosphere.
It was cold-rolled once to give a final plate thickness of 0.35 mm. A 30 mm × 280 mm Epstein test piece was sampled from this cold-rolled sheet with its long side parallel to the rolling direction and placed in an H 2 atmosphere.
Hold at 640 ℃ for 1 minute and immediately raise the temperature at 500 ℃ / min to 700-1
A final two-stage annealing was carried out at 250 ° C. for 4 minutes. The magnetic properties and corrosion resistance of the test pieces subjected to this treatment were evaluated in the same manner as in Example 1. Fig. 5 shows the final cold rolling reduction of 30 to 80% and the maximum magnetic permeability of the test piece subjected to the final second stage annealing temperature of 1050 ° C. Fig. 6 shows the final cold rolling reduction of 60%. %, And the maximum magnetic permeability of the test piece subjected to the treatment of the final second stage annealing temperature of 700 to 1250 ° C.
Also, the final cold rolling reduction is 60%, the final second stage annealing temperature is 1050 ° C.
A corrosion resistance test was performed on the test piece that was subjected to the treatment. The results are also shown in Table 3.
(発明の効果) この発明によれば、合金成分および冷間圧延・焼鈍工
程を最適化することにより、耐食軟磁性鋼板に方向性を
付与して優れた磁気特性を得ることができ、また経済的
にも有利な方法を与えることになるので産業上の利益も
大きい。 (Effects of the Invention) According to the present invention, by optimizing the alloy components and the cold rolling / annealing process, it is possible to impart directionality to the corrosion-resistant soft magnetic steel sheet and obtain excellent magnetic properties, and it is economical. The industrial advantage is also great because it will provide an advantageous method.
第1図は平均粒径とS含有量の関係を示すグラフ、 第2図は最大透磁率とMn/S含有量比の関係を示すグラ
フ、 第3図はX線(200)反射極点図、 第4図はX線(200)反射ピーク強度と最終第2段焼鈍
温度との関係を示すグラフ、 第5図は最大透磁率と最終冷間圧延圧下率の関係を示す
グラフ、 第6図は最大透磁率と最大第2段焼鈍温度の関係を示す
グラフである。FIG. 1 is a graph showing the relationship between the average particle size and the S content, FIG. 2 is a graph showing the relationship between the maximum magnetic permeability and the Mn / S content ratio, and FIG. 3 is the X-ray (200) reflection pole figure, 4 is a graph showing the relationship between the X-ray (200) reflection peak intensity and the final second stage annealing temperature, FIG. 5 is a graph showing the relationship between the maximum magnetic permeability and the final cold rolling reduction, and FIG. 6 is It is a graph which shows the relationship between the maximum magnetic permeability and the maximum second stage annealing temperature.
Claims (1)
施して熱延板とした後、1回あるいは中間焼鈍を含む2
回以上の冷間圧延を最終圧下率40〜85%にて施し、しか
る後最終焼鈍を600〜800℃の温度範囲と850〜1200℃の
温度範囲の2段階で施すことを特徴とする耐食性軟磁性
鋼板の製造方法。1. C: 0.01 wt% or less, Cr: 11.0 to 18.0 wt% Si + Al: 5.0 wt% or less, and Mn and S are S: 0.005 wt% or less and satisfy Mn / S ≧ 100. The steel material contained in the range of
Corrosion resistance softening characterized by performing cold rolling more than once at a final reduction of 40 to 85% and then performing final annealing in two stages of a temperature range of 600 to 800 ° C and a temperature range of 850 to 1200 ° C. Method for manufacturing magnetic steel sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP64000136A JP2556571B2 (en) | 1989-01-05 | 1989-01-05 | Method for manufacturing corrosion-resistant soft magnetic steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP64000136A JP2556571B2 (en) | 1989-01-05 | 1989-01-05 | Method for manufacturing corrosion-resistant soft magnetic steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02182834A JPH02182834A (en) | 1990-07-17 |
JP2556571B2 true JP2556571B2 (en) | 1996-11-20 |
Family
ID=11465616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP64000136A Expired - Fee Related JP2556571B2 (en) | 1989-01-05 | 1989-01-05 | Method for manufacturing corrosion-resistant soft magnetic steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2556571B2 (en) |
-
1989
- 1989-01-05 JP JP64000136A patent/JP2556571B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02182834A (en) | 1990-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4613748B2 (en) | Manufacturing method of electrical steel sheet | |
WO2017030063A1 (en) | Vibration-damping ferritic stainless steel material, and production method | |
JPS63317627A (en) | Semiprocessing non-oriented silicon steel sheet combining low iron loss with high magnetic permeability and its production | |
JPH0741891A (en) | Wear resistant high permeability alloy, its production and magnetic recording and reproducing head | |
JPS61117215A (en) | Manufacture of grain oriented magnetic steel sheet of low iron loss | |
JP2535963B2 (en) | Silicon steel sheet having excellent magnetic properties and method for producing the same | |
JPH10176251A (en) | Nonoriented silicon steel sheet excellent in magnetic characteristic and its production | |
JP2639227B2 (en) | Manufacturing method of non-oriented electrical steel sheet | |
EP0877825B1 (en) | Method of preparing a magnetic article from a duplex ferromagnetic alloy | |
JP2556571B2 (en) | Method for manufacturing corrosion-resistant soft magnetic steel sheet | |
JP2004332031A (en) | Method for manufacturing non-oriented electromagnetic steel sheet superior in magnetic properties | |
JPS58123825A (en) | Manufacture of nonoriented electrical steel sheet | |
JP2556599B2 (en) | Method for manufacturing corrosion-resistant soft magnetic steel sheet | |
JP3357602B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP3551849B2 (en) | Primary recrystallization annealed sheet for unidirectional electrical steel sheet | |
JP3968883B2 (en) | Soft magnetic stainless steel sheet and manufacturing method thereof | |
JP2000034521A (en) | Production of grain oriented silicon steel sheet excellent in magnetic property | |
JPH08134604A (en) | Soft-magnetic material, excellent in magnetic flux density, coercive force, and corrosion resistance and having high electric resistance, and its production | |
JP7415138B2 (en) | Manufacturing method of non-oriented electrical steel sheet | |
JP3331402B2 (en) | Manufacturing method of semi-process non-oriented electrical steel sheet with excellent all-around magnetic properties | |
JP2001262289A (en) | NONORIENTED SILICON STEEL SHEET EXCELLENT IN MAGNETIC PROPERTY IN >=1 kHz FREQUENCY REGION | |
JPH10259439A (en) | Wear resistant high permeability alloy and magnetic recording and reproducing head | |
JPH0261031A (en) | Non-oriented silicon steel sheet excellent in magnetic property and its production | |
JP3300034B2 (en) | Method for producing oriented silicon steel sheet with extremely high magnetic flux density | |
JP4320794B2 (en) | Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |