JP2556118B2 - Manufacturing method of superconducting ceramic coil by plasma - Google Patents

Manufacturing method of superconducting ceramic coil by plasma

Info

Publication number
JP2556118B2
JP2556118B2 JP63288068A JP28806888A JP2556118B2 JP 2556118 B2 JP2556118 B2 JP 2556118B2 JP 63288068 A JP63288068 A JP 63288068A JP 28806888 A JP28806888 A JP 28806888A JP 2556118 B2 JP2556118 B2 JP 2556118B2
Authority
JP
Japan
Prior art keywords
superconducting ceramic
film
superconducting
plasma
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63288068A
Other languages
Japanese (ja)
Other versions
JPH02133905A (en
Inventor
元一 鈴木
貞明 萩野
拓夫 武下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP63288068A priority Critical patent/JP2556118B2/en
Publication of JPH02133905A publication Critical patent/JPH02133905A/en
Application granted granted Critical
Publication of JP2556118B2 publication Critical patent/JP2556118B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、超電導セラミックス膜を螺旋状に成形し
た超電導セラミックスコイルの製造法に関するものであ
る。
The present invention relates to a method for manufacturing a superconducting ceramic coil in which a superconducting ceramic film is spirally formed.

〔従来の技術およびその課題〕[Conventional technology and its problems]

プラズマ炎を用いた高温超電導セラミックス膜の製造
法は、例えば、日本金属学会春期大会一般講演概要(19
88),第255頁に、 「(385)反応性熱プラズマ蒸発法による高温超伝導セ
ラミックスの超高速堆積」 という講演題目で発表されているように公知である。
A method of manufacturing a high temperature superconducting ceramics film using a plasma flame is described in, for example, the general presentation of the Spring Meeting of the Japan Institute of Metals (19
88), p. 255, "(385) Ultra-high-speed deposition of high-temperature superconducting ceramics by reactive thermal plasma evaporation method" is known.

この方法は、(Ar+O2)ガスと共に、平均粒径:数μ
m以下のY2O3微粉末、BaCO3微粉末、およびCuO微粉末か
らなる混合微粉末(以下、この混合微粉末を原料混合微
粉末という)を0.2〜0.3g/minの投入速度で高周波プラ
ズマ発生装置によるプラズマ炎中に投入し、上記プラズ
マ炎中で上記原料混合微粉末は蒸発、分解、反応し、上
記プラズマ炎下流に設置した温度:600〜700℃のMgO基板
上にYBa2Cu3O7−δの組成を有する超電導セラミックス
を堆積させ、超電導セラミックス膜を形成するものであ
る。
This method, with (Ar + O 2 ) gas, average particle size: several μ
High-frequency mixed fine powder consisting of Y 2 O 3 fine powder of m or less, BaCO 3 fine powder, and CuO fine powder (hereinafter, this mixed fine powder is referred to as raw material mixed fine powder) at a charging rate of 0.2 to 0.3 g / min. It is put into a plasma flame by a plasma generator, the raw material mixed fine powder in the plasma flame is evaporated, decomposed, and reacted, and the temperature installed at the downstream of the plasma flame is 600 to 700 ° C. YBa 2 Cu on a MgO substrate. A superconducting ceramics film having a composition of 3 O 7-δ is deposited to form a superconducting ceramics film.

上記従来のプラズマ炎による超電導セラミックス膜の
成膜速度は、10μm/min程度で、一般に知られているス
パッタリングなどによる成膜速度に比べて2〜3桁も速
い成膜速度を有するものであり、さらにプラズマ炎中で
気相反応を行なうために、基板上でのエピタキシャル成
長によるC軸配向も起りやすいという優れた効果を奏す
るものである。
The superconducting ceramics film formed by the conventional plasma flame has a film forming rate of about 10 μm / min, which is two to three orders of magnitude faster than the generally known film forming rate by sputtering. Further, since the gas phase reaction is performed in the plasma flame, the excellent effect that the C-axis orientation due to the epitaxial growth on the substrate is likely to occur is exerted.

上空従来の方法を用いて、円筒基板外周表面に超電導
セラミックス膜を堆積させ、上記超電導セラミックス膜
に螺旋状切欠き溝を付して超電導セラミックスコイルを
製造する手段もあるが、上記円筒基板外周表面に螺旋状
超電導セラミックス膜を形成させて得られた超電導セラ
ミックスコイルは、螺旋状超電導セラミックス膜が上記
円筒基板外周表面に存在するために、上記超電導セラミ
ックスコイルを搬送および取扱いの際に、上記超電導セ
ラミックス膜に傷がつきやすく、傷がついた超電導セラ
ミックスコイルは使用不能となり、製品の歩留りが低下
するという問題点があった。
There is also a means for manufacturing a superconducting ceramics coil by depositing a superconducting ceramics film on the outer peripheral surface of a cylindrical substrate using a conventional method, and forming a spiral cutout groove on the superconducting ceramics film. The superconducting ceramics coil obtained by forming the spiral superconducting ceramics film on the superconducting ceramics film is present on the outer peripheral surface of the cylindrical substrate. There is a problem that the film is easily scratched, the scratched superconducting ceramic coil becomes unusable, and the product yield is reduced.

〔課題を解決するための手段〕[Means for solving the problem]

そこで、本発明者等は、円筒基板内面に螺旋状超電導
セラミックス膜を有する超電導セラミックスコイルは搬
送および取扱い中に膜に傷がつく心配もないとの観点の
もとに、上記円筒基板内面に螺旋状超電導セラミックス
膜の有する超電導セラミックスコイルを開発すべく研究
を行なっていたところ、上記従来の技術で述べたプラズ
マによる超電導セラミックス膜の製造方法を追試検討中
に偶然にも、プラズマ炎下方に設置した基板表面だけで
なく、プラズマ炎を保護するための保護外筒内面にも超
電導セラミックス膜が形成される事実を知見し、この発
明に至ったものである。
Therefore, the present inventors have considered that the superconducting ceramics coil having the spiral superconducting ceramics film on the inner surface of the cylindrical substrate has a spiral on the inner surface of the cylindrical substrate from the viewpoint that the film is not damaged during transportation and handling. While conducting research to develop a superconducting ceramic coil having a superconducting ceramics film, it was accidentally installed below the plasma flame during a follow-up examination of the method for producing a superconducting ceramics film by plasma described in the above conventional technique. The present invention has been accomplished by finding the fact that a superconducting ceramic film is formed not only on the surface of the substrate but also on the inner surface of the protective outer cylinder for protecting the plasma flame.

この発明は、上記事実の知見にもとづいてなされたも
のであって、 プラズマ炎保護外筒下方に、上記プラズマ炎保護外筒
と同軸状に円筒基板を設置して上記円筒基板の内面に超
電導セラミックス膜を形成し、ついで上記超電導セラミ
ックス膜に螺旋状の切欠き溝を付けるプラズマによる超
電導セラミックスコイルの製造法に特徴を有するもので
ある。
The present invention has been made based on the findings of the above facts, in which a cylindrical substrate is installed coaxially with the plasma flame protection outer cylinder below the plasma flame protection outer cylinder, and a superconducting ceramic is formed on the inner surface of the cylindrical substrate. The method is characterized by a method for producing a superconducting ceramic coil by forming a film and then forming a spiral notch in the superconducting ceramic film by plasma.

上記超電導セラミックス膜は、Y−Ba−Cu−O系超電
導セラミックス膜であってもよく、またBi−Sr−Ca−Cu
−O系超電導セラミックス膜であってもよい。
The superconducting ceramic film may be a Y-Ba-Cu-O-based superconducting ceramic film, or may be a Bi-Sr-Ca-Cu film.
It may be a -O-based superconducting ceramic film.

上記円筒基板は、MgO,Al2O3等の酸化物からなること
が好ましく、この円筒基板内面にY−Ba−Cu−O系超電
導セラミックス膜を形成するには上記円筒基板をヒータ
ー等の適当な手段で温度:800〜900℃に保持すると緻密
で表面がなめらかな臨海電流密度JcのすぐれたY−Ba−
Cu−O系超電導セラミックス膜が形成されることがわか
った。
The cylindrical substrate is preferably made of an oxide such as MgO, Al 2 O 3 or the like. In order to form a Y-Ba-Cu-O-based superconducting ceramics film on the inner surface of the cylindrical substrate, the cylindrical substrate may be appropriately heated by a heater or the like. By keeping the temperature at 800-900 ℃ by various means, Y-Ba-, which is dense and has a smooth surface and excellent seaside current density J c
It was found that a Cu-O based superconducting ceramic film was formed.

さらに、上記円筒基板内面にBi−Sr−Ca−Cu−O系超
電導セラミックス膜を形成するには上記円筒基板を温
度:700〜850℃に保持すると最も良い結果が得られるこ
ともわかったのである。
Further, it has been found that the best results can be obtained by maintaining the temperature of the cylindrical substrate at 700 to 850 ° C. in order to form the Bi-Sr-Ca-Cu-O-based superconducting ceramics film on the inner surface of the cylindrical substrate. .

このような条件で上記円筒基板内面に形成された超電
導セラミックス膜に螺旋状の切欠き溝を形成して、超電
導セラミックス膜を螺旋状コイルに仕上げ、ついで、大
気中、温度:850℃、2〜5時間放置することにより熱処
理して超電導セラミックスコイルを製造した。
Under such conditions, a spiral notch groove is formed in the superconducting ceramic film formed on the inner surface of the cylindrical substrate, the superconducting ceramic film is finished into a spiral coil, and then, in the atmosphere, temperature: 850 ° C, 2 to A superconducting ceramic coil was manufactured by heat treatment by leaving it for 5 hours.

このプラズマによる超電導セラミックスコイルの製造
法を図面にもとづいて具体的に説明する。
A method of manufacturing the superconducting ceramic coil using this plasma will be specifically described with reference to the drawings.

第1図は、この発明の超電導セラミックス膜を円筒基
板内面に形成する状態を示す概略図であり、第1図にお
いて、1はプラズマ炎保護外筒、2は高周波コイル、3
はプラズマ炎、4はガス導入管、5は基板、6は超電導
セラミックス膜、7は高周波電源、8は円筒基板であ
る。
FIG. 1 is a schematic view showing a state in which a superconducting ceramics film of the present invention is formed on the inner surface of a cylindrical substrate. In FIG. 1, 1 is a plasma flame protection outer cylinder, 2 is a high frequency coil, and 3 is a high frequency coil.
Is a plasma flame, 4 is a gas introduction tube, 5 is a substrate, 6 is a superconducting ceramic film, 7 is a high frequency power source, and 8 is a cylindrical substrate.

第2図は、超電導セラミックスコイルの断面図であ
り、第2図において、9は螺旋状切欠き溝、10は螺旋状
超電導セラミックス膜である。
FIG. 2 is a cross-sectional view of the superconducting ceramic coil. In FIG. 2, 9 is a spiral notch groove, and 10 is a spiral superconducting ceramic film.

通常の方法で(Ar+O2)ガスをプラズマ炎発生ガスと
しプラズマ炎3を発生せしめ、このプラズマ炎3に超電
導セラミックス粉末を(Ar+O2)ガスとともに投入し、
基板5の表面に超電導セラミックス膜6を形成すると同
時に円筒基板8の内面にも超電導セラミックス膜6を形
成する。
In a normal method, (Ar + O 2 ) gas is used as a plasma flame generating gas to generate plasma flame 3, and superconducting ceramic powder is charged into this plasma flame 3 together with (Ar + O 2 ) gas.
The superconducting ceramic film 6 is formed on the surface of the substrate 5, and at the same time the superconducting ceramic film 6 is formed on the inner surface of the cylindrical substrate 8.

上記円筒基板8の内面に形成された超電導セラミック
ス膜6に、第2図に示されるように、螺旋状切欠き溝9
を形成して螺旋状超電導セラミックス膜10を形成し、つ
いで大気中で熱処理して超電導セラミックスコイルを製
造した。このように製造した径の異なった超電導セラミ
ックスコイルを第3図に示されるように同心円状に重ね
て多重コイルとし、電磁石用コイルを製造することもで
きる。
As shown in FIG. 2, the spiral cutout groove 9 is formed in the superconducting ceramic film 6 formed on the inner surface of the cylindrical substrate 8.
To form a spiral superconducting ceramic film 10 and then heat-treated in the atmosphere to manufacture a superconducting ceramic coil. The superconducting ceramics coils having different diameters thus manufactured may be concentrically overlapped as shown in FIG. 3 to form a multiple coil to manufacture an electromagnet coil.

上記プラズマ炎3中に投入される超電導セラミックス
原料は、 (1)Y2O3粉末、BaCO3粉末、およびCuO粉末をモル比
で、 の割合で配合し混合し、ついで焼成し、粉砕して得られ
た超電導セラミックス粉末、 (2)bi2O3粉末、SrCO3粉末、CaCO3粉末、およびCuO粉
末をモル比で、 の割合で配合し嵌合し、ついで焼成し、粉砕して得られ
た超電導セラミックス粉末、 (3)Yの硝酸塩、Baの硝酸塩、Cuの硝酸塩をモル比
で、 Y(NO33:Ba(NO32:Cu(NO3=1:2:3 となるように溶解して得られた硝酸塩水溶液、 (4)Yの硫酸塩、Baの硫酸塩およびCuの硫酸塩をモル
比で、 となるように溶解して得られた硫酸塩水溶液、 (5)Yの酢酸塩、Baの酢酸塩およびCuの酢酸塩をモル
比で、 Y(C2H3O)3:Ba(C2H3O22:Cu(C2H3O2)=1:2:3 となるように溶解して得られた酢酸塩水溶液、 (6)Yの塩化物、Baの塩化物、およびCuの塩化物をモ
ル比で、 YCl3:BaCl2:CuCl2=1:2:3 となるように溶解して得られた塩化物水溶液、 (7)Biの硝酸塩、Srの硝酸塩、Caの硝酸塩、およびCu
の硝酸塩をモル比で、 Bi(NO33:Sr(NO32:Ca(NO32: Cu(NO3=1:1:1:2 となるようにBiの硝酸塩の硝酸酸性水溶液に溶解して得
られた硝酸酸性水溶液、 (8)Biの酢酸塩、Srの酢酸塩、Caの酢酸塩、およびCu
の酢酸塩をモル比で、 Bi(C2H3O23:Sr(C2H3O22: Ca(C2H3O22:Cu(C2H3O2)= 1:1:1:2 となるようにBiの酢酸塩の酢酸酸性水溶液に溶解して得
られた酢酸酸性水溶液、 (9)Biの塩酸塩、Srの塩酸塩、Caの塩酸塩、およびCu
の塩酸塩をモル比で、 BiCl3:SrCl2:CaCl2:CuCl2=1:1:1:2 となるようにエタノールに溶解して得られた溶液などを
用いることができる。
The superconducting ceramic raw material to be charged into the plasma flame 3 is (1) Y 2 O 3 powder, BaCO 3 powder, and CuO powder in a molar ratio, In a molar ratio of superconducting ceramic powder obtained by mixing, mixing, firing and crushing (2) bi 2 O 3 powder, SrCO 3 powder, CaCO 3 powder, and CuO powder, The superconducting ceramic powder obtained by blending, fitting, firing and crushing in a ratio of (3) Y nitrate, Ba nitrate, Cu nitrate in a molar ratio of Y (NO 3 ) 3 : Ba (NO 3 ) 2 : Cu (NO 3 ) 2 = 1: 2: 3 dissolved nitrate solution obtained, (4) Y sulfate, Ba sulfate and Cu sulfate in molar By ratio, An aqueous solution of sulfate obtained by dissolving so as to obtain (5) Y acetate, Ba acetate and Cu acetate in a molar ratio of Y (C 2 H 3 O) 3 : Ba (C 2 H 3 O 2 ) 2 : Cu (C 2 H 3 O 2 ) = 1: 2: 3 dissolved in an aqueous solution of acetate, (6) Y chloride, Ba chloride, and A chloride aqueous solution obtained by dissolving Cu chloride in a molar ratio of YCl 3 : BaCl 2 : CuCl 2 = 1: 2: 3, (7) Bi nitrate, Sr nitrate, Ca Nitrate, and Cu
Of the nitrate of Bi in a molar ratio of Bi (NO 3 ) 3 : Sr (NO 3 ) 2 : Ca (NO 3 ) 2 : Cu (NO 3 ) 2 = 1: 1: 1: 1: Acidic nitric acid aqueous solution obtained by dissolving in nitric acid acidic aqueous solution, (8) Bi acetate, Sr acetate, Ca acetate, and Cu
In a molar ratio of Bi (C 2 H 3 O 2 ) 3 : Sr (C 2 H 3 O 2 ) 2 : Ca (C 2 H 3 O 2 ) 2 : Cu (C 2 H 3 O 2 ). An acidic aqueous solution of acetic acid of Bi acetate so as to be = 1: 1: 1: 2, (9) Bi hydrochloride, Sr hydrochloride, Ca hydrochloride, and Cu
It is possible to use a solution obtained by dissolving the hydrochloride of the above in ethanol in a molar ratio of BiCl 3 : SrCl 2 : CaCl 2 : CuCl 2 = 1: 1: 1: 2.

〔実 施 例〕〔Example〕

実施例1〜3および比較例1〜2 平均粒径:1.5μmのY−Ba−Cu−O系超電導セラミッ
クス微粉末を用意し、この超電導セラミックス微粉末を
(Ar+O2)ガスとともに供給量:0.5g/minでプラズマ炎
中に投入し、蒸発、分解、反応させたのち、MgOからな
る円筒基板内面にYBa2Cu3O7−δの組成からなる膜を形
成した。
Examples 1 to 3 and Comparative Examples 1 to 2 Y-Ba-Cu-O-based superconducting ceramics fine powder having an average particle diameter of 1.5 μm was prepared, and this superconducting ceramics fine powder was supplied together with (Ar + O 2 ) gas in an amount of 0.5. The film was introduced into a plasma flame at a rate of g / min, evaporated, decomposed and reacted, and then a film made of a composition of YBa 2 Cu 3 O 7-δ was formed on the inner surface of the cylindrical substrate made of MgO.

その際MgO円筒基板の保持温度を第1表の実施例1〜
3および比較例1〜2に示されるように変化せしめた。
ついで上記円筒基板内面に形成した上記YBa2Cu3O7−δ
の組成を有する膜に幅:2mmの切欠き溝を付して螺旋状YB
a2Cu3O7−δ膜を形成し、この螺旋状YBa2Cu3O7−δ
を大気中、温度:910℃、1.5時間保持の条件で熱処理し
て超電導セラミックスコイルを作製し、そのコイルの超
電導特性を測定して、その結果を第1表に示した。
At that time, the holding temperature of the MgO cylindrical substrate was set to 1 to 1 in Table 1.
3 and Comparative Examples 1 and 2 were changed.
Then, the YBa 2 Cu 3 O 7-δ formed on the inner surface of the cylindrical substrate
A spiral YB with a 2 mm width notch groove on a film with the composition
a 2 Cu 3 O 7-δ film is formed, and this spiral YBa 2 Cu 3 O 7-δ film is heat-treated in the atmosphere at a temperature of 910 ° C. for 1.5 hours to produce a superconducting ceramic coil, The superconducting properties of the coil were measured, and the results are shown in Table 1.

第1表の結果から、円筒基板の保持温度が800〜900℃
であると、臨界電流密度の優れたY−Ba−Cu−O系超電
導セラミックスコイルが得られることがわかる。
From the results in Table 1, the holding temperature of the cylindrical substrate is 800-900 ℃.
It is understood that, when it is, a Y-Ba-Cu-O-based superconducting ceramic coil having an excellent critical current density can be obtained.

実施例4〜6および比較例3〜4 いずれも、平均粒径:10μm以下のBi2O3粉末、SrCO3
粉末、CaCO3粉末、およびCuO粉末を用意し、これら粉末
をモル比で、 となるように配合し、混合し、焼成し、粉砕して得られ
たBi−Sr−Ca−Cu−O系超電導セラミックス粉末を実施
例1〜3と同一条件でプラズマ炎中に投入し、プラズマ
炎中で加熱、蒸発させたのち、MgOの基板からなる円筒
基板内面にBiSrCaCuOXの組成からなる膜を形成した。そ
の際上記MgOの円筒基板の保持温度を第2表の実施例4
〜6および比較例3〜4に示されるように変化せしめ
た。ついで上記円筒基板内面に形成したBiSrCaCuOXの組
成を有する膜に幅:2mmの切欠き溝を付して螺旋状BiSrCa
CuOX膜を形成し、この螺旋状BiSrCaCuOX膜を大気中、温
度:850℃、20時間保持の条件で熱処理して超電導セラミ
ックスコイルを作製し、そのコイルの超電導特性を測定
して、その結果を第2表に示した。
In each of Examples 4 to 6 and Comparative Examples 3 to 4, Bi 2 O 3 powder having an average particle size of 10 μm or less, SrCO 3
Powder, CaCO 3 powder, and CuO powder are prepared, and these powders are mixed at a molar ratio, The Bi-Sr-Ca-Cu-O-based superconducting ceramic powder obtained by blending, mixing, firing, and pulverizing as described below was put into a plasma flame under the same conditions as in Examples 1 to 3, and plasma was added. After heating and evaporating in a flame, a film made of a composition of BiSrCaCuO X was formed on the inner surface of a cylindrical substrate made of a MgO substrate. At that time, the holding temperature of the MgO cylindrical substrate was set to the value of Example 4 in Table 2.
6 and Comparative Examples 3 and 4 were changed. Then, a film having a composition of BiSrCaCuO X formed on the inner surface of the cylindrical substrate was provided with a notch groove having a width of 2 mm to form a spiral BiSrCa film.
A CuO X film was formed, and this spiral BiSrCaCuO X film was heat-treated in the atmosphere at a temperature of 850 ° C for 20 hours to produce a superconducting ceramic coil, and the superconducting properties of the coil were measured. Is shown in Table 2.

第2表の結果から、円筒基板の保持温度が700〜850℃
であると、臨界電流密度の優れたBi−St−Ca−Cu−O系
超電導セラミックスコイルが得られることがわかる。
From the results in Table 2, the holding temperature of the cylindrical substrate is 700-850 ° C.
It can be seen that a Bi-St-Ca-Cu-O-based superconducting ceramic coil having an excellent critical current density can be obtained.

実施例ではY−Ba−Cu−O系およびBi−Sr−Ca−Cu−
O系の超電導セラミックス膜形成のための原料として粉
末を用いたが、粉末に限定されることなく、上記Y,Baお
よびCuの塩の水溶液およびBi,Sr,CaおよびCuの塩の水溶
液およびエタノール液を用いても同じ結果が得られるこ
とを確認した。
In the examples, Y-Ba-Cu-O system and Bi-Sr-Ca-Cu-
The powder was used as a raw material for forming the O-based superconducting ceramics film, but the powder is not limited to the powder, and the aqueous solution of the Y, Ba and Cu salts, the aqueous solution of the Bi, Sr, Ca and Cu salts, and ethanol are used. It was confirmed that the same result was obtained using the liquid.

〔発明の効果〕〔The invention's effect〕

円筒基板の内面に緻密でなめらかな螺旋状超電導セラ
ミックス膜を付けたこの発明の超電導セラミックスコイ
ルは、上記螺旋状超電導セラミックス膜が円筒基板によ
って保護されているので、搬送中および取扱い中に上記
螺旋状超電導セラミックス膜に傷が付くことがなく、し
たがって不良品の発生が少なく、また径の異なった上記
超電導セラミックスコイルを第3図に示されるように同
心円状に重ねて臨界電流密度の高い多重コイルを製造す
ることができるので産業上すぐれた効果を奏するもので
ある。
The superconducting ceramic coil of the present invention in which a dense and smooth spiral superconducting ceramic film is attached to the inner surface of the cylindrical substrate has the spiral superconducting ceramic film protected by the cylindrical substrate. The superconducting ceramics film is not scratched, and therefore defective products are less likely to occur, and the superconducting ceramics coils having different diameters are concentrically stacked as shown in FIG. 3 to form a multiple coil having a high critical current density. Since it can be manufactured, it has excellent industrial effects.

【図面の簡単な説明】[Brief description of drawings]

第1図は、超電導セラミックス膜を円筒基板内面に形成
する状態を示す概略図、 第2図は、超電導セラミックスコイルの断面図、 第3図は、多重コイルの平面図、 1:プラズマ炎保護外筒、2:高周波コイル、 3:プラズマ炎、4:ガス導入管、 5:基板、 6:超電導セラミックス膜、 7:高周波電源、8:円筒基板、 9:切欠き溝、 10:螺旋状超電導セラミックス膜。
FIG. 1 is a schematic view showing a state in which a superconducting ceramics film is formed on the inner surface of a cylindrical substrate, FIG. 2 is a cross-sectional view of a superconducting ceramics coil, FIG. 3 is a plan view of multiple coils, 1: Plasma flame protection outside Cylinder, 2: High frequency coil, 3: Plasma flame, 4: Gas introduction tube, 5: Substrate, 6: Superconducting ceramic film, 7: High frequency power supply, 8: Cylindrical substrate, 9: Notched groove, 10: Spiral superconducting ceramic film.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 12/06 ZAA H01B 12/06 ZAA 13/00 HCU 7244−5L 13/00 HCUZ ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01B 12/06 ZAA H01B 12/06 ZAA 13/00 HCU 7244-5L 13/00 HCUZ

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アルゴンガスと酸素ガスの混合ガスととも
に超電導セラミックス粉末をプラズマ炎中に投入し、上
記プラズマ炎中で上記超電導セラミックス粉末を加熱蒸
発させたのち、プラズマ炎保護外筒下方に設置した円筒
基板内面に超電導セラミックス膜を形成し、上記円筒基
板内面に形成した超電導セラミックス膜に螺旋状切欠き
溝を付けることを特徴とするプラズマによる超電導セラ
ミックスコイルの製造法。
1. A superconducting ceramic powder is put into a plasma flame together with a mixed gas of argon gas and oxygen gas, and the superconducting ceramic powder is heated and vaporized in the plasma flame, and then placed below a plasma flame protective outer cylinder. A method for producing a superconducting ceramic coil by plasma, comprising forming a superconducting ceramic film on an inner surface of a cylindrical substrate, and forming a spiral notch in the superconducting ceramic film formed on the inner surface of the cylindrical substrate.
【請求項2】上記円筒基板は、上記プラズマ炎保護外筒
と同軸状に設置することを特徴とする請求項1記載のプ
ラズマによる超電導セラミックスコイルの製造法。
2. The method for producing a superconducting ceramic coil using plasma according to claim 1, wherein the cylindrical substrate is installed coaxially with the plasma flame protection outer cylinder.
【請求項3】上記超電導セラミックス膜は、Y−Ba−Cu
−O系超電導セラミックス膜であることを特徴とする請
求項1または2記載のプラズマによる超電導セラミック
スコイルの製造法。
3. The above-mentioned superconducting ceramic film is Y-Ba-Cu.
3. A method for producing a superconducting ceramic coil by plasma according to claim 1, which is a -O-based superconducting ceramic film.
【請求項4】上記超電導セラミックス膜は、Bi−Sr−Ca
−Cu−O系超電導セラミックス膜であることを特徴とす
る請求項1または2記載のプラズマによる超電導セラミ
ックスコイルの製造法。
4. The above-mentioned superconducting ceramics film is made of Bi-Sr-Ca.
The method for producing a superconducting ceramic coil by plasma according to claim 1 or 2, which is a -Cu-O-based superconducting ceramic film.
JP63288068A 1988-11-15 1988-11-15 Manufacturing method of superconducting ceramic coil by plasma Expired - Lifetime JP2556118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63288068A JP2556118B2 (en) 1988-11-15 1988-11-15 Manufacturing method of superconducting ceramic coil by plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63288068A JP2556118B2 (en) 1988-11-15 1988-11-15 Manufacturing method of superconducting ceramic coil by plasma

Publications (2)

Publication Number Publication Date
JPH02133905A JPH02133905A (en) 1990-05-23
JP2556118B2 true JP2556118B2 (en) 1996-11-20

Family

ID=17725403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63288068A Expired - Lifetime JP2556118B2 (en) 1988-11-15 1988-11-15 Manufacturing method of superconducting ceramic coil by plasma

Country Status (1)

Country Link
JP (1) JP2556118B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19742691C1 (en) * 1997-09-26 1999-01-28 Siemens Ag Method and apparatus for coating substrates
JP2010157440A (en) * 2008-12-26 2010-07-15 Toshiba Corp Oxide superconductor, and method for reducing ac loss of oxide superconductor
CN112582128B (en) * 2020-12-02 2022-05-20 西安交通大学 Compact high-voltage large-current electromagnetic repulsion coil

Also Published As

Publication number Publication date
JPH02133905A (en) 1990-05-23

Similar Documents

Publication Publication Date Title
JP2567460B2 (en) Superconducting thin film and its manufacturing method
US6027826A (en) Method for making ceramic-metal composites and the resulting composites
US8653005B2 (en) Fluorinated precursors of superconducting ceramics, and methods of making the same
EP0285030A2 (en) Process for producing superconducting thin films
WO1991003323A1 (en) Plasma deposition of superconducting thick films
JP2002527345A (en) Superconducting structure containing mixed rare earth barium-copper composition
JPH08506216A (en) Superconducting YBa formed at a low temperature. Lower 2 Cu Cu Lower 3 O Lower 7-x
WO1988010235A1 (en) Improved process for making 90 k superconductors
US4861753A (en) Process for making superconductors using barium nitrate
JP2556118B2 (en) Manufacturing method of superconducting ceramic coil by plasma
JP2877367B2 (en) Superconducting wire
CN1970454A (en) Precursor material for Bi-based oxide superconductor and process for preparing such material
US5041417A (en) Conductive articles and intermediates containing heavy pnictide mixed alkaline earth oxide layers
EP0366721A4 (en) Improved process for making 90 k superconductors
JP2603688B2 (en) Superconducting material reforming method
JPS63285812A (en) Manufacture of oxide superconductive wire material
EP0360550A2 (en) Fibres of YBa2 Cu3 O7
JP2822328B2 (en) Superconductor manufacturing method
JPH05246714A (en) High-temperature superconducting tl-ca-ba-cu-o-based, article and preparation thereof
JPH01203258A (en) Production of oxide superconducting sintered body
JPS63278308A (en) Superconductive coil and its manufacture
JPH01161806A (en) Superconductor coil
JPH01215702A (en) Production of superconducting thin film
JPH0297422A (en) Production of tl-pb-sr-ca-cu-o type oxide superconductor
JPH05279025A (en) Oxide superconducting thin film