JP2555525B2 - Sensor for acoustoelastic stress measurement by surface SH wave - Google Patents

Sensor for acoustoelastic stress measurement by surface SH wave

Info

Publication number
JP2555525B2
JP2555525B2 JP5098810A JP9881093A JP2555525B2 JP 2555525 B2 JP2555525 B2 JP 2555525B2 JP 5098810 A JP5098810 A JP 5098810A JP 9881093 A JP9881093 A JP 9881093A JP 2555525 B2 JP2555525 B2 JP 2555525B2
Authority
JP
Japan
Prior art keywords
receiver
transmitter
sensor
waves
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5098810A
Other languages
Japanese (ja)
Other versions
JPH06313739A (en
Inventor
計次 横山
洋治 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAKAI IRON WORKS
Original Assignee
SAKAI IRON WORKS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAKAI IRON WORKS filed Critical SAKAI IRON WORKS
Priority to JP5098810A priority Critical patent/JP2555525B2/en
Publication of JPH06313739A publication Critical patent/JPH06313739A/en
Application granted granted Critical
Publication of JP2555525B2 publication Critical patent/JP2555525B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、表面SH波による応力
測定に用いられる、超音波の送信子と受信子を対設した
応力測定用センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sensor for stress measurement, which is used for stress measurement by surface SH waves, and which has an ultrasonic transmitter and receiver.

【0002】[0002]

【従来の技術】固体中を伝播する振動には、固体を構成
する粒子が音の進行方向に動く縦波と、音の進行方向に
対して垂直方向に振動する横波があり、更にこの横波に
は、固体表面に対して垂直に振動するSV波と、固体表
面に対して平行に振動するSH波とがある。表面に沿っ
て進行するSH波を表面SH波という。
2. Description of the Related Art Vibrations propagating in a solid include a longitudinal wave in which particles constituting the solid move in the sound traveling direction and a transverse wave vibrating in the direction perpendicular to the sound traveling direction. Includes SV waves that oscillate perpendicularly to the solid surface and SH waves that oscillate parallel to the solid surface. SH waves traveling along the surface are called surface SH waves.

【0003】橋梁、鉄管、鉄塔、タンク等の鋼構造物の
応力測定をする方法として、鋼材内部の超音波の伝播速
度が応力により変化する現象を利用して、鋼材表面に密
着した超音波送信子から放射したパルス状の超音波を受
信子により受信して、超音波の伝播時間を測定すること
により、応力を測定する方法が知られている。
As a method for measuring the stress of steel structures such as bridges, steel pipes, steel towers, and tanks, the phenomenon in which the propagation velocity of ultrasonic waves inside the steel material changes due to stress is used to transmit ultrasonic waves in close contact with the surface of the steel material. There is known a method of measuring stress by receiving pulsed ultrasonic waves emitted from a child by a receiver and measuring the propagation time of the ultrasonic waves.

【0004】その応力測定法には、複屈折音弾性法、表
面SH波法、斜角SH波法の3方法が知られ、このうち
複屈折音弾性法と斜角SH波法は部材の板厚の平均応力
を測定するのに対し、表面SH波法は部材の表面近傍の
応力を測定することができる。
As the stress measuring method, there are known three methods including a birefringent acoustoelastic method, a surface SH wave method, and an oblique angle SH wave method. Among them, the birefringent acoustoelastic method and the oblique angle SH wave method are plate members. The surface SH wave method can measure the stress in the vicinity of the surface of the member, while the average stress of the thickness is measured.

【0005】又、鉄道車輛用車軸等の大きな荷重を受け
る鋼材に必要な定期的検査に際し、微細な亀裂等の発生
の有無を検査するために、表面SH波を用いることが提
案されている(戸田裕己ら著、「鉄道車輛用車軸のフレ
ッティング疲労き裂の表面SH波による定量評価」、非
破壊検査、第40巻、第3号、第158〜164頁(平
成3年3月、社団法人日本非破壊検査協会発行))。
Further, it has been proposed to use surface SH waves in order to inspect for the presence or absence of fine cracks in the periodic inspection required for a steel material subjected to a large load such as an axle for railway vehicles. Yuki Toda et al., "Quantitative Evaluation of Fretting Fatigue Cracks on Railroad Vehicle Axles by Surface SH Waves", Non-Destructive Inspection, Volume 40, No. 3, 158-164 (March 1991, Society) Published by Japan Association for Nondestructive Inspection)).

【0006】従来の表面SH波法による応力測定に用い
られるセンサは、図1及び図2に示すように超音波を発
信し鋼材内に放射する送信子と、鋼材内を伝播した超音
波を受信する受信子を一対にして、両者を互に一定の距
離を隔てて、互に斜め内側に向き合うように振動子を対
設、固定したものが用いられる。送信子及び受信子の振
動子としては、それぞれ水晶をYカットした横波用圧電
素子、その他各種セラミックスよりなる圧電素子が用い
られる。
A conventional sensor used for stress measurement by the surface SH wave method is, as shown in FIGS. 1 and 2, a transmitter that emits an ultrasonic wave and radiates it into a steel material and an ultrasonic wave that propagates in the steel material. It is used that a pair of receivers are provided, and the transducers are arranged and fixed so as to face each other obliquely inward with a certain distance therebetween. As the oscillators of the transmitter and the receiver, a transverse wave piezoelectric element obtained by Y-cutting a crystal, and other piezoelectric elements made of various ceramics are used.

【0007】図1及び図2に示すように表面SH波用の
送信子4及び受信子5の圧電素子1、8は、それぞれポ
リメタクリル酸メチル樹脂等の合成樹脂よりなる楔2、
9と合成樹脂等よりなる背面材12の間に挟着して、楔
2及び楔9の底部を除き送信子4及び受信子5の背部の
略全体全体を背面部材3に埋設して、送信子4又は受信
子5を構成する。送信子4の圧電素子1の底面7に対す
る角度、即ち試験体6への超音波の入射角θは、鋼材に
入射する超音波の屈折角が丁度90度となるように、臨
界角と呼ばれる角度とし、又受信子5の圧電素子1の角
度も同じ角度とするのが受信効率を上げるために必要で
ある。
As shown in FIGS. 1 and 2, the piezoelectric elements 1 and 8 of the transmitter 4 and the receiver 5 for the surface SH wave are wedges 2 made of synthetic resin such as polymethylmethacrylate resin, respectively.
9 and a backing material 12 made of synthetic resin or the like, and by embedding substantially the entire backs of the transmitters 4 and 5 in the backing member 3 except the bottoms of the wedges 2 and 9, The child 4 or the receiver 5 is configured. The angle of the transmitter 4 with respect to the bottom surface 7 of the piezoelectric element 1, that is, the incident angle θ of the ultrasonic wave on the test body 6, is an angle called a critical angle so that the refraction angle of the ultrasonic wave incident on the steel material is exactly 90 degrees. It is necessary to increase the angle of the piezoelectric element 1 of the receiver 5 to the same angle in order to improve the reception efficiency.

【0008】図3に示すように、送信子4の圧電素子1
からアクリル樹脂の楔2を介して、試験体6表面に対し
て平行で進行方向に垂直に振動する横波を、試験体6に
入射する。試験体6に入射された横波は表面SH波とな
り、試験体6表面から約15°の範囲の広がりをもって
進行する横波として伝播する。
As shown in FIG. 3, the piezoelectric element 1 of the transmitter 4 is
A transverse wave that is parallel to the surface of the test body 6 and oscillates perpendicularly to the traveling direction is incident on the test body 6 via the acrylic resin wedge 2. The transverse wave incident on the test body 6 becomes a surface SH wave, and propagates as a transverse wave traveling with a spread of about 15 ° from the surface of the test body 6.

【0009】試験体6の表面近傍を伝播した表面SH波
の一部は、受信子5の楔9の底面で屈折して、圧電素子
8野方向に屈折伝播し、圧電素子8を振動させ、検出電
圧を出力する。
A part of the surface SH wave propagating in the vicinity of the surface of the test body 6 is refracted by the bottom surface of the wedge 9 of the receiver 5 and propagates in the direction of the piezoelectric element 8 to vibrate the piezoelectric element 8. Output the detection voltage.

【0010】[0010]

【発明が解決しようとする課題】上記従来の表面SH波
法による応力測定において、測定の精度を上げるために
は、送信子4と受信子5の中心間距離dを常に一定に保
ち、且つ送信子4及び受信子5の底面7をそれぞれ試験
体6表面に密着させる必要がある。このため送信子4及
び受信子5を図1及び図2に示すように同一背面部材3
に埋設して、送信子4と受信子5の間隔を常に一定不変
に保ち、且つ送信子4と受信子5の底面7を完全に平面
状に研磨する。
In order to improve the measurement accuracy in the stress measurement by the conventional surface SH wave method, the distance d between the centers of the transmitter 4 and the receiver 5 is always kept constant and the transmission is performed. It is necessary to make the bottom surfaces 7 of the child 4 and the receiver 5 closely adhere to the surface of the test body 6. Therefore, as shown in FIGS. 1 and 2, the transmitter 4 and the receiver 5 are the same back member 3 as shown in FIG.
Embedded therein, the distance between the transmitter 4 and the receiver 5 is always kept constant, and the bottom surfaces 7 of the transmitter 4 and the receiver 5 are polished to be completely flat.

【0011】このようにして一体に構成した送信子4及
び受信子5の底面に、粘稠液よりなる音響結合剤を薄く
塗布して試験体6表面に密着させ、その音響結合剤の薄
層を介して超音波をできるだけ効率よく伝達させる。そ
の際に送信子4及び受信子5の底面7と試験体6表面の
間の面の平行精度が数μ以内になるように、試験体6表
面を完全に平面に研磨し、大きな力で送信子4及び受信
子5よりなるセンサを試験体6表面に押し付ける必要が
ある。
An acoustic binder made of a viscous liquid is thinly applied to the bottom surfaces of the transmitter 4 and the receiver 5 which are integrally formed in this manner, and they are brought into close contact with the surface of the test body 6 to form a thin layer of the acoustic binder. The ultrasonic waves are transmitted through the as efficiently as possible. At that time, the surface of the test piece 6 is completely polished to be flat so that the parallelism between the bottom surface 7 of the transmitter 4 and the receiver 5 and the surface of the test piece 6 is within several μ, and transmission is performed with great force. It is necessary to press the sensor including the child 4 and the receiver 5 against the surface of the test body 6.

【0012】普通鋼の設計許容応力は120MPa程度
であるが、鋼構造物の応力測定には10MPa程度の測
定精度が必要である。しかし試験体6の表面と送信子4
及び受信子5の底面7の平面度がよくないと、送信子4
及び受信子5を3kgf 以上の力で試験体6表面に押し付
けても、応力の測定精度は30〜40MPaより悪くな
ってしまう。試験体6表面を完全な平面に研磨するのは
極めて困難であり、又センサ全体を試験体6表面に強い
力で密着させるのも容易ではない。
The design allowable stress of ordinary steel is about 120 MPa, but the measurement accuracy of about 10 MPa is necessary for measuring the stress of the steel structure. However, the surface of the test piece 6 and the transmitter 4
If the flatness of the bottom surface 7 of the receiver 5 is not good, the transmitter 4
Also, even if the receiver 5 is pressed against the surface of the test body 6 with a force of 3 kgf or more, the measurement accuracy of stress becomes worse than 30 to 40 MPa. It is extremely difficult to polish the surface of the test body 6 to a completely flat surface, and it is not easy to bring the entire sensor into close contact with the surface of the test body 6 with a strong force.

【0013】従って本発明は試験体6表面の研磨精度を
あまり上げる必要がなく、比較的弱い押圧力でセンサを
試験体6表面に押し付けるだけで、送信子4と受信子5
の間の距離を変えることなく、充分センサの送信子4及
び受信子5の底面7を試験体6の表面に密着させ、高精
度で応力測定をすることができるセンサを提供すること
を目的とする。
Therefore, according to the present invention, it is not necessary to raise the polishing accuracy of the surface of the test body 6 so much, and the sensor is pressed against the surface of the test body 6 with a relatively weak pressing force.
It is an object of the present invention to provide a sensor capable of performing stress measurement with high accuracy by closely adhering the bottom surfaces 7 of the transmitter 4 and the receiver 5 of the sensor to the surface of the test body 6 without changing the distance between the two. To do.

【0014】[0014]

【課題を解決するための手段】上記目的を達成すべく、
本発明者らは鋭意研究を重ねた結果、送信子4と受信子
5を例えば断面凹字状の剛性の比較的大なる弾性板より
なる連結板の両側面にそれぞれ固着し、送信子4及び受
信子5の底面7に応力を加えることにより、両底面のな
す平面が僅かに撓むことができるようにすることによ
り、完全な平面に研磨されていない試験体6表面にで
も、センサの送信子4及び受信子5の底面7を略完全に
密着させることができ、その結果応力の測定精度を容易
に向上させることができることを見出し、本発明を完成
するに至った。
In order to achieve the above object,
As a result of intensive studies, the inventors of the present invention have fixed the transmitter 4 and the receiver 5 to both sides of a connecting plate made of, for example, an elastic plate having a concave cross section and having a relatively large rigidity. By applying a stress to the bottom surface 7 of the receiver 5 so that the plane formed by both bottom surfaces can be slightly bent, the sensor transmission even on the surface of the test body 6 not polished to a perfect plane. The inventors have found that the bottom surfaces 7 of the child 4 and the receiver 5 can be brought into close contact with each other almost completely, and as a result, the accuracy of stress measurement can be easily improved, thereby completing the present invention.

【0015】即ち、本発明は一対の圧電素子をそれぞれ
合成樹脂等の楔上に接合し、その背面にそれぞれ背面部
材を接合してなる送信子及び受信子を、互に一定の距離
を隔てて、該圧電素子が互いに斜め内側に向くように対
向して配設した表面SH波による音弾性応力測定用セン
サにおいて、該送信子及び受信子を適度の弾性を有する
連結板により連結して、該送信子及び受信子の該楔の底
面を試験体表面に押圧したときに、該連結板の僅かな変
形により、送信子と受信子の間の距離を変えることな
く、該底面が試験体表面に沿って密着するようにしたこ
とを特徴とする表面SH波による音弾性応力測定用セン
サを要旨とする。
That is, according to the present invention, a pair of piezoelectric elements are joined to each other on a wedge made of synthetic resin or the like, and a back member is joined to the back surface of each wedge to form a transmitter and a receiver at a fixed distance from each other. In a sensor for measuring acoustic elastic stress by surface SH waves in which the piezoelectric elements are arranged so as to face each other obliquely inward, the transmitter and the receiver are connected by a connecting plate having an appropriate elasticity, When the bottoms of the wedges of the transmitter and the receiver are pressed against the surface of the test body, the bottom of the wedge does not change on the surface of the test body without changing the distance between the transmitter and the receiver due to a slight deformation of the connecting plate. A gist is a sensor for measuring acousto-elastic stress by surface SH waves, which is characterized in that they are closely contacted with each other.

【0016】[0016]

【実施例】次に本発明の表面SH波による音弾性応力測
定用センサを図面により詳細に説明する。図4は本発明
の表面SH波による音弾性応力測定用センサの一例の平
面図、図5は同正面図である。4は送信子、5は受信子
であり、それぞれアクリル樹脂等の合成樹脂よりなる楔
2及び楔9の上面に圧電素子1及び8を密着しその背面
に薄い合成樹脂等よりなる背面材12を密着し、更に圧
電素子1、8を挟む楔9と背面材12全体を合成樹脂等
の背面部材3の中に埋設し、全体とし略直方体状の送信
子4及び受信子5を形成する。背面材12を省略して図
1に示すように、楔2及び圧電素子1を直接背面部材3
に埋設してもよい。両圧電素子1、8は互に内側に向い
て傾け、その中心線IはV字状をなす。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The sensor for measuring acoustic elastic stress by surface SH wave of the present invention will be described in detail with reference to the drawings. FIG. 4 is a plan view of an example of a sensor for measuring acoustic elastic stress by surface SH waves of the present invention, and FIG. 5 is a front view of the same. Reference numeral 4 is a transmitter, and 5 is a receiver. Piezoelectric elements 1 and 8 are closely attached to the upper surfaces of wedges 2 and 9 made of synthetic resin such as acrylic resin, and a backing material 12 made of thin synthetic resin or the like is attached to the back surface thereof. The wedge 9 sandwiching the piezoelectric elements 1 and 8 and the entire backing material 12 are embedded in the backing material 3 made of synthetic resin or the like to form a substantially rectangular parallelepiped transmitter 4 and receiver 5. As shown in FIG. 1, omitting the backing material 12, the wedge 2 and the piezoelectric element 1 are directly connected to the backing member 3.
It may be buried in. The two piezoelectric elements 1 and 8 are inclined inward with respect to each other, and their center lines I are V-shaped.

【0017】送信子4の圧電素子1及び受信子5の圧電
素子8の底面7に対する傾きθ、即ち楔2、9の角度
は、鉄鋼用の応力測定用センサの場合は、横波の臨界角
に略等しい25.3°とするのが好ましい。この角度θ
は試験体6の材質により変化するものであり、本発明の
表面SH波による音弾性応力測定用センサは鉄鋼の応力
測定用だけでなく、鉄鋼以外の金属構造物の応力測定に
用いることができるから、上記角度θは被測定物の材質
により、当然変化するものである。
The inclination θ of the piezoelectric element 1 of the transmitter 4 and the piezoelectric element 8 of the receiver 5 with respect to the bottom surface 7, that is, the angle of the wedges 2 and 9 is the critical angle of the transverse wave in the case of the stress measuring sensor for steel. It is preferable that the angles are approximately equal to 25.3 °. This angle θ
Varies depending on the material of the test body 6, and the sensor for measuring acoustic elastic stress by surface SH waves of the present invention can be used not only for stress measurement of steel but also for stress measurement of metal structures other than steel. Therefore, the angle θ naturally changes depending on the material of the object to be measured.

【0018】送信子4及び受信子5の側面をそれぞれ断
面凹字状のステンレス鋼板等よりなる連結板10の両側
面に接合する。更に図6に示すように送信子4及び受信
子5の上面をそれぞれ発泡ウレタン樹脂等のクッション
材13を介して直方体状の押圧部材11に接合するのが
好ましい。これにより、押圧部材11を押圧するだけ
で、送信子4及び受信子5の底面7を均等に試験体6表
面に密着させることができる。
The side faces of the transmitter 4 and the receiver 5 are respectively joined to both side faces of a connecting plate 10 made of a stainless steel plate or the like having a concave cross section. Further, as shown in FIG. 6, it is preferable that the upper surfaces of the transmitter 4 and the receiver 5 be joined to the rectangular parallelepiped pressing member 11 via cushioning materials 13 such as urethane foam resin. As a result, the bottom surfaces 7 of the transmitter 4 and the receiver 5 can be evenly brought into close contact with the surface of the test body 6 simply by pressing the pressing member 11.

【0019】連結板10の剛性は、完全な平面から僅か
に偏倚した試験体6の表面にセンサを押し付け、押圧部
材11の上面に1kgf 程度の力を加えたとき、送信子4
又は受信子5の底面7が試験体6表面に沿うように、1
〜数μ偏倚してこれに密着しうる程度の剛性とするのが
好ましい。この剛性が小さいと小さな押圧力により、送
信子4及び受信子5の底面7を容易に試験体6の表面に
密着させ易いが、その際の変形が大きく、却って測定精
度が低下する。又その剛性が大き過ぎると、小さい押圧
力により、底面7を試験体6表面に沿って密着させるこ
とができず、応力の測定精度が低下する。
The rigidity of the connecting plate 10 is such that when the sensor is pressed against the surface of the test body 6 which is slightly deviated from the perfect plane and a force of about 1 kgf is applied to the upper surface of the pressing member 11, the transmitter 4 is moved.
Alternatively, 1 so that the bottom surface 7 of the receiver 5 is along the surface of the test body 6.
It is preferable that the rigidity is such that it can be biased by a few μ to be in close contact therewith. If the rigidity is low, the bottom surface 7 of the transmitter 4 and the receiver 5 can be easily brought into close contact with the surface of the test body 6 due to a small pressing force, but the deformation at that time is large and the measurement accuracy is rather deteriorated. On the other hand, if the rigidity is too high, the bottom surface 7 cannot be brought into close contact with the surface of the test body 6 due to a small pressing force, and the accuracy of stress measurement deteriorates.

【0020】送信子4及び受信子5の底面7は同一平面
上にあり、且つ断面凹字形の連結板10の下面14は送
信子4及び受信子5の底面7を含む面に平行で且つその
底面7より0.2mm以内の上方に位置するのが望まし
い。完全に平面でない試験体6表面にセンサを押し付け
たとき、センサの送信子4及び受信子5の底面7は僅か
に同一平面から偏倚して、試験体6表面に密着するが、
この際送信子4及び受信子5は、断面凹字形の連結板1
0の下面両端の屈曲部を支点にして、僅かに回動するた
め、連結板10の下面14が送信子4及び受信子5の底
面7より上方に離れていると、その回動により、常に一
定でなければならない送信子4と受信子5の間隔が変動
してしまい、超音波の伝播時間の測定値がその間隔の変
動に相当する分だけ誤差が大きくなり、正確な応力測定
をすることができなくなる。鋼材の応力を10MPa程
度の測定精度で測定するためにば、超音波の伝播時間を
10-4以内の精度で測定する必要があり、そのためには
連結板10の下面14が送信子4及び受信子5の底面7
より0.2mm以内の上方に位置する必要がある。(図5
及び図6の連結板10の下面14と送信子4及び受信子
5の底面7との間隔は、その下面14と底面7の上下位
置関係を明確に示すために、上記好ましい範囲の間隔よ
りも遙かに大きく描いてある。)
The bottom surfaces 7 of the transmitter 4 and the receiver 5 are on the same plane, and the lower surface 14 of the connecting plate 10 having a concave cross section is parallel to the surface including the bottom surfaces 7 of the transmitter 4 and the receiver 5. It is desirable to be located within 0.2 mm above the bottom surface 7. When the sensor is pressed against the surface of the test body 6 which is not completely flat, the bottom surfaces 7 of the transmitter 4 and the receiver 5 of the sensor are slightly deviated from the same plane and closely contact with the surface of the test body 6.
At this time, the transmitter 4 and the receiver 5 are connected to each other by a connecting plate 1 having a concave cross section.
Since it slightly rotates with the bent portions at both ends of the lower surface of 0 as fulcrums, when the lower surface 14 of the connecting plate 10 is separated above the bottom surfaces 7 of the transmitter 4 and the receiver 5, the rotation always causes The distance between the transmitter 4 and the receiver 5, which must be constant, fluctuates, and the error in the measurement value of the ultrasonic wave propagation time increases by the amount corresponding to the fluctuation in the distance, and accurate stress measurement is performed. Can not be. In order to measure the stress of the steel material with a measurement accuracy of about 10 MPa, it is necessary to measure the propagation time of ultrasonic waves with an accuracy of 10 −4 or less. For that purpose, the lower surface 14 of the connecting plate 10 has the transmitter 4 and the receiver 4. The bottom surface 7 of the child 5
It must be located within 0.2mm above. (Fig. 5
Also, the distance between the lower surface 14 of the connecting plate 10 and the bottom surface 7 of the transmitter 4 and the receiver 5 in FIG. 6 is more than the distance in the above preferable range in order to clearly show the vertical positional relationship between the lower surface 14 and the bottom surface 7. It is drawn much larger. )

【0021】本発明の連結板10の形状及び大きさは図
5、及び6に示すものに限定されるものではなく、セン
サを試験体6表面に押し付けたときに生ずる撓み、捩じ
れの応力に対する剛性が上記目的を達成するのに適する
範囲のものであればよく、上記形状、大きさ等に限定さ
れるものではない。
The shape and size of the connecting plate 10 of the present invention is not limited to those shown in FIGS. 5 and 6, and the rigidity against the stress of bending and twisting which occurs when the sensor is pressed against the surface of the test body 6. Is within the range suitable for achieving the above-mentioned object, and is not limited to the above-mentioned shape, size and the like.

【0022】送信子4と受信子5の圧電素子1、8の中
心線Iの底面7との交点の距離lは特に限定されない
が、例えば30mmが選ばれる。圧電素子1、8の幅dも
特に限定はされないが、たとえば10mm程度が測定精度
を上げるために好ましい。
The distance 1 at the intersection between the transmitter 4 and the bottom surface 7 of the center line I of the piezoelectric elements 1 and 8 of the receiver 5 is not particularly limited, but is selected to be 30 mm, for example. The width d of the piezoelectric elements 1 and 8 is not particularly limited, but is preferably about 10 mm for improving the measurement accuracy.

【0023】[0023]

【作用】本発明の表面SH波による音弾性応力測定用セ
ンサにより構造物の応力測定を行うには、試験体6の測
定部位を略平滑な平面状に研磨し、その上に粘稠液より
なる音響結合剤を薄く塗布し、センサの送信子4及び受
信子5の底面7を密着させ、押圧部材11の上から送信
子4及び受信子5を略均等に試験体6の表面に約1kgf
程度の押圧力で押圧する。適当な弾性を有する連結板1
0の僅かな撓み変形により、送信子4及び受信子5の底
面7が試験体6の表面に沿うように変形し、底面7が試
験体6表面に密着する。
In order to measure the stress of a structure with the acousto-elastic stress measurement sensor using surface SH waves of the present invention, the measurement site of the test body 6 is ground into a substantially smooth flat surface, and a viscous liquid is then applied to it. Is applied thinly, the bottom faces 7 of the transmitter 4 and the receiver 5 of the sensor are brought into close contact with each other, and the transmitter 4 and the receiver 5 are approximately evenly placed on the surface of the test body 6 from above the pressing member 11.
Press with moderate pressing force. Connection plate 1 having appropriate elasticity
With a slight bending deformation of 0, the bottom surfaces 7 of the transmitter 4 and the receiver 5 are deformed along the surface of the test body 6, and the bottom surface 7 comes into close contact with the surface of the test body 6.

【0024】送信子4から横波(SH波)よりなる超音
波パルスを発射すると、試験体6内に放射された超音波
は表面SH波となって、試験体6表面に沿って伝播し、
受信子5により捕らえられ、その圧電素子8から電気信
号として検知、出力される。この超音波パルスの表面S
H波の伝播時間を測定することにより、試験体6表面近
傍の応力を測定することができる。
When an ultrasonic pulse composed of a transverse wave (SH wave) is emitted from the transmitter 4, the ultrasonic wave radiated in the test body 6 becomes a surface SH wave and propagates along the surface of the test body 6,
It is caught by the receiver 5 and detected and output as an electric signal from the piezoelectric element 8. The surface S of this ultrasonic pulse
By measuring the H-wave propagation time, the stress in the vicinity of the surface of the test body 6 can be measured.

【0025】[0025]

【発明の効果】本発明の表面SH波による音弾性応力測
定用センサによれば、試験体6の比較的粗い表面でも、
送信子4と受信子5の間の距離を変えることなく、比較
的弱い押圧力でセンサを試験体6表面に密着させること
ができ、表面SH波による応力測定精度を高めることが
できる。
According to the sensor for measuring acoustic elastic stress by surface SH wave of the present invention, even if the surface of the test body 6 is relatively rough,
The sensor can be brought into close contact with the surface of the test body 6 with a relatively weak pressing force without changing the distance between the transmitter 4 and the receiver 5, and the accuracy of stress measurement by surface SH waves can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の表面SH波による音弾性応力測定用セン
サの平面図。
FIG. 1 is a plan view of a conventional sensor for measuring acoustic elastic stress by surface SH waves.

【図2】従来の表面SH波による音弾性応力測定用セン
サの正面図。
FIG. 2 is a front view of a conventional sensor for measuring acoustic elastic stress by surface SH wave.

【図3】送信子から放射された超音波の表面SH波の伝
播を示す正面断面図。
FIG. 3 is a front sectional view showing the propagation of surface SH waves of ultrasonic waves emitted from a transmitter.

【図4】本発明の表面SH波による音弾性応力測定用セ
ンサの平面図。
FIG. 4 is a plan view of a sensor for measuring acoustic elastic stress by surface SH wave of the present invention.

【図5】本発明の表面SH波による音弾性応力測定用セ
ンサの正面図。
FIG. 5 is a front view of a sensor for measuring acoustic elastic stress by surface SH waves of the present invention.

【図6】本発明の表面SH波による音弾性応力測定用セ
ンサの他の実施例の正面図。
FIG. 6 is a front view of another embodiment of the sensor for measuring acoustic elastic stress by surface SH wave of the present invention.

【符号の説明】[Explanation of symbols]

1、8 圧電素子 2、9 楔 3 背面部材 4 送信子 5 受信子 6 試験体 7 底面 10 連結板 11 押圧部材 12 背面材 13 弾性クッション材 14 下面 1, 8 Piezoelectric element 2, 9 Wedge 3 Back member 4 Transmitter 5 Receiver 6 Test body 7 Bottom surface 10 Connecting plate 11 Pressing member 12 Back material 13 Elastic cushion material 14 Bottom surface

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一対の圧電素子をそれぞれ合成樹脂等の楔
上に接合し、その背面にそれぞれ背面部材を接合してな
る送信子及び受信子を、互に一定の距離を隔てて、該圧
電素子が互いに斜め内側に向くように対向して配設した
表面SH波による音弾性応力測定用センサにおいて、該
送信子及び受信子を適度の弾性を有する連結板により連
結して、該送信子及び受信子の該楔の底面を試験体表面
に押圧したときに、該連結板の僅かな変形により、送信
子と受信子の間の距離を変えることなく、該底面が試験
体表面に沿って密着するようにしたことを特徴とする表
面SH波による音弾性応力測定用センサ。
Claim: What is claimed is: 1. A pair of piezoelectric elements, each of which is bonded to a wedge of synthetic resin or the like, and a rear surface member of which is bonded to a rear surface of the piezoelectric element. In a sensor for measuring acoustic elastic stress by surface SH waves in which elements are arranged so as to face each other obliquely inward, the transmitter and the receiver are connected by a connecting plate having an appropriate elasticity, and the transmitter and When the bottom surface of the wedge of the receiver is pressed against the surface of the specimen, the bottom surface adheres along the surface of the specimen without changing the distance between the transmitter and the receiver due to a slight deformation of the connecting plate. A sensor for measuring acousto-elastic stress by surface SH waves, characterized in that
【請求項2】該連結板が断面凹字状でその両側面に該送
信子及び受信子を接合した請求項1記載の表面SH波に
よる音弾性応力測定用センサ。
2. A sensor for acousto-elastic stress measurement by surface SH waves according to claim 1, wherein the connecting plate has a concave cross section and the transmitter and the receiver are joined to both side surfaces thereof.
【請求項3】断面凹字状の該連結板の下面が該送信子及
び受信子の底面を含む平面に平行で且つ該平面より0.
2mm以内の上方に位置する請求項2記載の表面SH波に
よる音弾性応力測定用センサ。
3. The lower surface of the connecting plate having a concave cross section is parallel to a plane including the bottom surfaces of the transmitter and the receiver and is less than 0.
The sensor for measuring acousto-elastic stress by surface SH waves according to claim 2, which is located above 2 mm.
【請求項4】該送信子及び受信子の上面を弾性クッショ
ン材を介して同一押圧部材に接合した請求項1記載の表
面SH波による音弾性応力測定用センサ。
4. The sensor for measuring acoustic elastic stress by surface SH waves according to claim 1, wherein the upper surfaces of the transmitter and the receiver are joined to the same pressing member via an elastic cushion material.
JP5098810A 1993-03-31 1993-03-31 Sensor for acoustoelastic stress measurement by surface SH wave Expired - Lifetime JP2555525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5098810A JP2555525B2 (en) 1993-03-31 1993-03-31 Sensor for acoustoelastic stress measurement by surface SH wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5098810A JP2555525B2 (en) 1993-03-31 1993-03-31 Sensor for acoustoelastic stress measurement by surface SH wave

Publications (2)

Publication Number Publication Date
JPH06313739A JPH06313739A (en) 1994-11-08
JP2555525B2 true JP2555525B2 (en) 1996-11-20

Family

ID=14229693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5098810A Expired - Lifetime JP2555525B2 (en) 1993-03-31 1993-03-31 Sensor for acoustoelastic stress measurement by surface SH wave

Country Status (1)

Country Link
JP (1) JP2555525B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004037436A (en) * 2002-07-02 2004-02-05 Sakai Iron Works Co Ltd Method of measuring sound elastic stress by surface sh wave and measuring sensor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631055B2 (en) * 2005-08-24 2011-02-16 国立大学法人岩手大学 Stress evaluation method and apparatus using surface acoustic waves
JP6529853B2 (en) * 2015-08-05 2019-06-12 株式会社神戸製鋼所 Residual stress evaluation method
JP6529887B2 (en) * 2015-10-22 2019-06-12 株式会社神戸製鋼所 Residual stress evaluation method
CN107389252B (en) * 2017-07-31 2018-05-11 中国人民解放军国防科学技术大学 A kind of electric propulsion field microthrust transient measurement system based on acoustic elasticity technology

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53121675A (en) * 1977-03-31 1978-10-24 Hitachi Ltd Method and apparatus of measuring surface stress
JP2659236B2 (en) * 1989-02-03 1997-09-30 株式会社トキメック Ultrasonic probe
JPH04238208A (en) * 1991-01-23 1992-08-26 Osaka Gas Co Ltd Ultrasonic sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004037436A (en) * 2002-07-02 2004-02-05 Sakai Iron Works Co Ltd Method of measuring sound elastic stress by surface sh wave and measuring sensor

Also Published As

Publication number Publication date
JPH06313739A (en) 1994-11-08

Similar Documents

Publication Publication Date Title
US3512400A (en) Ultrasonic testing method
Nagy Ultrasonic detection of kissing bonds at adhesive interfaces
US6959602B2 (en) Ultrasonic detection of porous medium characteristics
JPH0525045B2 (en)
US5913243A (en) Ultrasonic transducer for nondestructive testing of generator field coils of dynamoelectric machines
JP2555525B2 (en) Sensor for acoustoelastic stress measurement by surface SH wave
JP4022589B2 (en) Acoustoelastic stress measurement method by surface SH wave and measurement sensor
US4680967A (en) Ultrasonic angle test probe having at least two transducers
US5549001A (en) Set of ultrasonic probeheads for measurements of times of flight of ultrasonic pulses
US11237136B2 (en) Method for installing probes, and method for driving transmission probe
JP3726067B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JPH0740020B2 (en) Ceramic Judgment Strength Evaluation Method
JP2002071332A (en) Probe for measurement thickness of clad steel ply material
EP1394538A1 (en) Ultrasound low frequency composition converter provided with mode switch
JP2006284486A (en) Ultrasonic probe, and soft delay material for ultrasonic probe
Bray et al. Residuol stress Mopping in o steom Turbine Disk Using the Lcn Ultrosonic Technique
JPS6133518B2 (en)
JPH11316216A (en) Ultrasonic probe
RU2190212C2 (en) Method measuring mechanical stress in structural materials
JP3023642B2 (en) Insertion depth measurement method for welded pipe joints
Nagy et al. Interface characterization by true guided modes
Vladišauskas et al. Application of ultrasonic transducers for investigation of composite materials
IL96692A (en) Method and apparatus for measuring forces
SU1594416A1 (en) Transducer of impedance flaw detector
JPH0416708A (en) Surface acoustic wave probe