JP2555050B2 - Phase change optical recording medium - Google Patents

Phase change optical recording medium

Info

Publication number
JP2555050B2
JP2555050B2 JP62032397A JP3239787A JP2555050B2 JP 2555050 B2 JP2555050 B2 JP 2555050B2 JP 62032397 A JP62032397 A JP 62032397A JP 3239787 A JP3239787 A JP 3239787A JP 2555050 B2 JP2555050 B2 JP 2555050B2
Authority
JP
Japan
Prior art keywords
recording medium
optical recording
recording
semiconductor laser
phase change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62032397A
Other languages
Japanese (ja)
Other versions
JPS63201926A (en
Inventor
高弘 大道
博志 松沢
薫 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP62032397A priority Critical patent/JP2555050B2/en
Publication of JPS63201926A publication Critical patent/JPS63201926A/en
Application granted granted Critical
Publication of JP2555050B2 publication Critical patent/JP2555050B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の利用分野] 本発明は、半導体レーザーで追記可能でかつ必要に応
じて消去可能な有機光記録媒体に関する。
Description: FIELD OF THE INVENTION The present invention relates to an organic optical recording medium that can be additionally written with a semiconductor laser and can be erased as necessary.

[発明の背景] 従来、半導体レーザーによる追記型高密度光記録法と
しては、例えば、テルル等の低融点金属薄膜にレーザー
光を照射して、ピットを形成し、反射率等の光学的変化
を読み取る方法が知られている。しかしながらこれらの
媒体は、腐蝕性や毒性等の致命的な欠点を有する。かか
る観点から、最近低融点金属の代りに有機色素を用いた
記録媒体が提案されている。これらは、色素がレーザー
エネルギーを吸収することにより、昇華,熱分解等を起
こし、ピットを形成する性質を利用している。しかしな
がら、一般に半導体レーザー発振波長域(800nm近傍の
近赤外領域)に吸収を示し、かつ熱的にも環境的にも安
定な色素は極めて少い。しかも近赤外域に吸収を示す色
素は、有機溶媒に対する溶解性に乏しく塗工が困難であ
るばかりでなく、十分な強度の塗膜が得にくく、丈夫な
均質膜を得るためには、蒸着等による膜形成が考えられ
るが、有機物であるため分解しやすく困難である等の欠
点を有する。その上、昇華,熱分解によるピット形成に
は、大きいエネルギーを必要とするため、低出力の小型
半導体レーザーで記録することが困難であったり、記録
出来ても感度が低い等の欠点を有する。
BACKGROUND OF THE INVENTION Conventionally, as a write-once high-density optical recording method using a semiconductor laser, for example, a low-melting-point metal thin film such as tellurium is irradiated with laser light to form pits, and optical changes such as reflectance are changed. How to read is known. However, these media have fatal defects such as corrosiveness and toxicity. From this point of view, recently, a recording medium using an organic dye instead of the low melting point metal has been proposed. These utilize the property that a dye absorbs laser energy to cause sublimation, thermal decomposition, and the like to form a pit. However, there are generally very few dyes that exhibit absorption in the semiconductor laser oscillation wavelength range (near infrared region near 800 nm) and are thermally and environmentally stable. Moreover, dyes that absorb in the near-infrared region not only have poor solubility in organic solvents and are difficult to apply, but it is difficult to obtain a coating film with sufficient strength, and in order to obtain a strong homogeneous film, vapor deposition, etc. Although it is possible to form a film by the method described above, it has a defect that it is easily decomposed and difficult because it is an organic substance. In addition, pit formation by sublimation and thermal decomposition requires a large amount of energy, so that it is difficult to record with a small semiconductor laser with low output, and even if recording is possible, the sensitivity is low.

一般にはこれらの問題点を内包する有機色素の中で
も、フタロシアニン類は、熱的にも、環境的にも極め
て、安定で蒸着等に耐え、その種類によっては近赤外に
吸収を示すものや、結晶多系を示しかつ、加熱により相
転移を起すものは知られている。例えば、特開昭60-483
96号公報では、アルミニウムフタロシアニン,スズフタ
ロシアニン,ゲルマニウムフタロシアニンが半導体レー
ザー(発振波長830nm)照射により酸化されて、吸収ス
ペクトルが変化することを利用した記録媒体や、特開昭
60-154098号公報では無金属フタロシアニン,銅フタロ
シアニン,コバルトフタロシアニン,アルミニウムフタ
ロシアニンクロリドが、550〜700nmに吸収を示し、ヘリ
ウムネオンレーザー(発振波長632.4nm)光照射によ
り、結晶型がα型からβ型に変化することを利用した記
録媒体が提案されている。
In general, among the organic dyes that include these problems, phthalocyanines are extremely stable both thermally and environmentally, and are resistant to vapor deposition and the like, and exhibit absorption in the near infrared depending on the type, It is known that it exhibits a crystalline polymorphism and causes a phase transition upon heating. For example, JP-A-60-483
In JP-A-96, a recording medium utilizing the fact that aluminum phthalocyanine, tin phthalocyanine, and germanium phthalocyanine are oxidized by irradiation with a semiconductor laser (oscillation wavelength: 830 nm) to change the absorption spectrum,
In the 60-154098 publication, metal-free phthalocyanine, copper phthalocyanine, cobalt phthalocyanine, and aluminum phthalocyanine chloride show absorption at 550 to 700 nm, and the crystalline form changes from α to β by irradiation with helium neon laser (oscillation wavelength 632.4 nm). A recording medium that utilizes the change to

しかしながら、前者の場合は、非可逆の酸化反応を利
用しているために書き込まれた記録を可逆的に消去する
ことが出来ないばかりか、記録には高エネルギーを要す
る等の欠点を有する。また、後者の場合は、媒体の吸収
波長域が550〜700nmであるため、ガスエーテルーである
He-Neレーザー(発振波長域633nm)による記録には適す
るが小型半導体レーザーによる記録には適当でない。従
って、小型軽量性を要求される光記録システムには不適
当である。
However, in the former case, since the recorded record cannot be reversibly erased because it utilizes an irreversible oxidation reaction, there is a defect that the recording requires high energy. The latter case is a gas ether because the absorption wavelength range of the medium is 550 to 700 nm.
Suitable for recording with He-Ne laser (oscillation wavelength range 633 nm), but not suitable for recording with small semiconductor laser. Therefore, it is not suitable for an optical recording system that requires small size and light weight.

本発明者らは以上の問題点に鑑み鋭意検討の結果、特
定の溶媒で処理したマグネシウムフタロシアニンがα型
とも、β型とも異なる結晶系になり、かつ半導体レーザ
ー発振波長域に極めて近接した820nm近傍に最大吸収波
長(λmax)を示すばかりか、加熱により容易に相転移
をし、溶媒によりもとにもどる驚くべき性質を見出し本
発明に到達した。
As a result of intensive studies in view of the above problems, the present inventors have found that magnesium phthalocyanine treated with a specific solvent has a crystal system different from both α-type and β-type, and is in the vicinity of 820 nm which is extremely close to the semiconductor laser oscillation wavelength range. In addition to exhibiting the maximum absorption wavelength (λmax), the present invention has reached the present invention by finding a surprising property that it easily undergoes a phase transition by heating and returns to the original state by a solvent.

[発明の目的] 本発明の目的は、従来技術の問題点に鑑み、小型半導
体レーザーで記録可能で、必要に応じて消去も可能な、
高感度・無毒・安定な光記録媒体を提供することにあ
る。
[Object of the Invention] In view of the problems of the prior art, an object of the present invention is that recording is possible with a small semiconductor laser, and erasing is possible if necessary.
It is to provide an optical recording medium with high sensitivity, non-toxicity, and stability.

[発明の概要] 本媒体による記録原理は、次の通りである。半導体レ
ーザー光を記録層に照射すると、記録層中のフタロシア
ニン会合体は効率よくレーザー光を吸収し、吸収した光
エネルギーにより結晶相変化を起す。そして、変化した
部分(記録部)と未変化の部分(非記録部)との透過率
の差を弱い半導体レーザー光により読み取る。媒体の構
成によっては、図1に示すように透過型の読み取りも可
能であるし、図2に示すように記録層の背後に反射層を
設ければ反射型の読み取りも可能である。
[Outline of the Invention] The recording principle of this medium is as follows. When the recording layer is irradiated with a semiconductor laser beam, the phthalocyanine aggregate in the recording layer efficiently absorbs the laser beam and a crystal phase change occurs due to the absorbed light energy. Then, the difference in transmittance between the changed portion (recording portion) and the unchanged portion (non-recording portion) is read by a weak semiconductor laser beam. Depending on the structure of the medium, transmissive reading is possible as shown in FIG. 1, and reflective reading is possible by providing a reflective layer behind the recording layer as shown in FIG.

本発明においては、800〜850nmに最大吸収波長(λma
x)を有するマグネシウムフタロシアニン結晶相から成
る薄膜は、基板上に蒸着法やスパッタリング法によりマ
グネシウムフタロシアニンの薄膜を形成した後、特定の
有機溶媒により処理することとにより得られる。有機溶
媒としては、クロロホルム,塩化メチレン,四塩化炭
素,ジクロルエタン,ジブロモエタン,テトラクロロエ
チレン等のハロゲン化炭化水素が好適に用いられる。溶
媒処理を行う前の薄膜は、A.M.Hor,R.O.Loutfy,Thin So
lid Films,106 291-301(1983)で報告されているよう
にα型結晶であり695および640nmにλmaxを示す。ま
た、グエン・チャン・ケー,相沢政男,日本化学会誌19
86(3)p393〜401に報告されているようにβ型結晶は6
80および625nmにλmaxを示す。それに対して、該有機溶
媒で処理した薄膜は、R.O.Loutfy,A.M.Hor,G.Dipaola-B
aranyi,C.K.Hsiao,J.Imag.Sci.,29(3)116-121(198
5)に示されているようにα型でもβ型でもない結晶相
であり約820nmにλmaxを示す。本発明で用いられる薄膜
は、半導体レーザー発振波長域に強い吸収を示す為に0.
05〜1.0μmの薄膜が好適である。
In the present invention, the maximum absorption wavelength (λma
The thin film of the magnesium phthalocyanine crystal phase having x) is obtained by forming a thin film of magnesium phthalocyanine on a substrate by a vapor deposition method or a sputtering method, and then treating it with a specific organic solvent. As the organic solvent, halogenated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, dichloroethane, dibromoethane and tetrachloroethylene are preferably used. The thin film before solvent treatment is AMHor, ROLoutfy, Thin So
As reported in lid Films, 106 291-301 (1983), it is an α-type crystal and shows λmax at 695 and 640 nm. Nguyen Chan Kae, Masao Aizawa, Journal of the Chemical Society of Japan 19
86 (3) β-type crystals are 6 as reported in p393-401.
Λ max at 80 and 625 nm. On the other hand, the thin film treated with the organic solvent is ROLoutfy, AMHor, G. Dipaola-B.
aranyi, CKHsiao, J.Imag.Sci., 29 (3) 116-121 (198
As shown in 5), it is a crystalline phase that is neither α-type nor β-type, and shows λmax at about 820 nm. The thin film used in the present invention has a strong absorption in the semiconductor laser oscillation wavelength range.
A thin film of 05 to 1.0 μm is suitable.

本発明に於て用いられる基板としては、ガラスや金属
のほか、ポリエステル、ポリカーボネート,ポリメチル
メタアクリレート,ポリビニルクロリド,エポキシ樹
脂,ポリイミド樹脂,セルロース系樹脂等の有機高分子
材料のフイルムや板が好適に用いられる。また、反射光
を利用して読み取る場合には、反射層を設ける必要があ
る。反射層としては、Al,Cr,Au,Pt,Sn,Ag,Bi等のレーザ
ー発振波長域で高い反射率を有する金属が好ましい。
As the substrate used in the present invention, in addition to glass and metal, films and plates of organic polymer materials such as polyester, polycarbonate, polymethylmethacrylate, polyvinyl chloride, epoxy resin, polyimide resin, and cellulosic resin are suitable. Used for. Further, when reading using reflected light, it is necessary to provide a reflective layer. As the reflective layer, a metal having a high reflectance in the laser oscillation wavelength region such as Al, Cr, Au, Pt, Sn, Ag, Bi is preferable.

以下、実施例により本発明を詳述する。但し、本発明
は、これに限定されない。
Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to this.

実施例1 ガラス基板上に、薄膜0.18μmのマグネシウムフタロ
シアニン薄膜を真空蒸着により形成し、丈夫な青色の透
明均質膜を得た。これをクロロホルム中に、常温で10分
間浸漬し、乾燥することにより媒体を作成した。得られ
た塗膜を150℃で5分間加熱した。図3に、溶媒処理
前、溶媒処理後、加熱後の可視スペクトルを示す。図か
ら明らかなように、溶媒処理前の塗膜のスペクトルは、
692および638nmにλmaxを示し、α型結晶を示した。ま
た溶媒処理後の塗膜のスペクトルは、処理前と異なり、
820nmに、吸光度2.2の強い吸収を示した。それに対し
て、熱処理後の塗膜の吸収スペクトルは、820nmの吸収
ピークは全く消失した。熱処理後、この塗膜をクロロホ
ルム中に浸漬すると820nmの吸収は完全に回復し、可逆
的であることが示された。
Example 1 A magnesium phthalocyanine thin film having a thin film of 0.18 μm was formed on a glass substrate by vacuum vapor deposition to obtain a strong blue transparent homogeneous film. This was immersed in chloroform at room temperature for 10 minutes and dried to prepare a medium. The coating film obtained was heated at 150 ° C. for 5 minutes. FIG. 3 shows visible spectra before the solvent treatment, after the solvent treatment, and after the heating. As is clear from the figure, the spectrum of the coating film before solvent treatment is
It showed λmax at 692 and 638 nm and showed α-type crystals. The spectrum of the coating film after solvent treatment is different from that before treatment,
It showed a strong absorption at 820 nm with an absorbance of 2.2. On the other hand, in the absorption spectrum of the coating film after the heat treatment, the absorption peak at 820 nm disappeared at all. After heat treatment, the coating was immersed in chloroform and the absorption at 820 nm was completely recovered, indicating that it was reversible.

溶媒処理後の塗膜のX線回折スペクトルを測定したと
ころ、図4に示したように結晶であることがわかった。
そして、その塗膜を顕微鏡で400倍に拡大して観察した
が、均一であり、この結晶が極めて微細であることがわ
かった。
When the X-ray diffraction spectrum of the coating film after the solvent treatment was measured, it was found to be crystals as shown in FIG.
Then, the coating film was observed under a microscope at a magnification of 400 times and found to be uniform, and the crystals were extremely fine.

次に、クロロホルム処理後の塗膜を種々の温度で加熱
した場合の820nmにおける吸光度の経時変化を図5に示
す。
Next, FIG. 5 shows changes with time in absorbance at 820 nm when the coating film after the chloroform treatment was heated at various temperatures.

図から明らかな様に、150℃で加熱した場合は、吸光
度は急激に低下した。言い代えれば透過率が急激に増大
した。それに対して100℃では、1時間では殆ど変化せ
ず、80℃では、100時間放置しても全く変化しなかっ
た。このことは、この相転移は極めて、鋭敏な温度の閾
値を有し、それ以上では、極めてすみやかに変化するが
それ以下では極めて変化しにくいことを示している。即
ち一般に行われているように記録の際に用いた半導体レ
ーザー光より弱いパワーの半導体レーザー光を照射して
読み取っても、未記録部に何ら影響を与えることがない
ため、高いS/N比が得られることを意味している。
As is clear from the figure, the absorbance decreased sharply when heated at 150 ° C. In other words, the transmittance increased sharply. On the other hand, at 100 ° C, there was almost no change in 1 hour, and at 80 ° C, there was no change even after standing for 100 hours. This indicates that this phase transition has a very sensitive temperature threshold, above which it changes very quickly, but below that it is very unlikely. That is, even if the semiconductor laser light having a weaker power than the semiconductor laser light used for recording is read as in general, it does not affect the unrecorded area at all, so that the high S / N ratio Is obtained.

この塗膜に2μm,パワー20mWの半導体レーザー(波長
830nm)で書き込みを行うことにより、未照射部に比べ
て、照射部分の透過率は著しく増加した。
A semiconductor laser (wavelength: 2 μm, power: 20 mW)
By writing at 830 nm), the transmissivity of the irradiated part increased remarkably compared with the unirradiated part.

実施例2 ガラス基板上に膜厚0.18nmのマグネシウムフタロシア
ニン薄膜を真空蒸着により形成した。次いで、この薄膜
をジクロルメタン,ジクロルエタン,ジブロモエタン,
トリクロルエチレン,四塩化炭素のいずれかに、常温で
10分間浸漬し、乾燥し媒体を作成した。溶媒処理前後の
吸収スペクトルを図6に示す。図より明らかなように、
いずれのハロゲン系溶媒の場合も、820nm近傍にピーク
を示した。そして、このピークは、150℃で10分間加熱
処理することにより、完全に消失することが分った。
Example 2 A 0.18 nm thick magnesium phthalocyanine thin film was formed on a glass substrate by vacuum evaporation. Then, this thin film is treated with dichloromethane, dichloroethane, dibromoethane,
Either trichloroethylene or carbon tetrachloride at room temperature
It was immersed for 10 minutes and dried to prepare a medium. The absorption spectra before and after the solvent treatment are shown in FIG. As is clear from the figure,
In each of the halogen-based solvents, a peak was shown near 820 nm. It was found that this peak disappeared completely by heat treatment at 150 ° C for 10 minutes.

【図面の簡単な説明】[Brief description of drawings]

図1は、本発明の透過型媒体の構成例を示す断面図であ
り、1は記録層,2は基板を示す。図2は反射型媒体の構
成例を示す断面図であり、3は反射層,4は記録層,5は透
明基板を示す。図3は実施例1の溶媒処理前及び後、お
よび加熱後の媒体の可視吸収スペクトルを示す。図中a
は、溶媒処理前,bは溶媒処理後,cはbの熱処理後のスペ
クトルにそれそれ対応している。図4は溶媒処理後の塗
膜のX線回折スペクトルを示す。図5は溶媒処理後の塗
膜を種々の温度で加熱した場合の820nmにおける吸光度
の経時変化を示す。図6は実施例2の溶媒処理前及び後
の媒体の可視吸収スペクトルを示す。図中aは、溶媒処
理前,bはジクロルエタン,cはジブロモエタン,dはジクロ
ルメタン,eはテトラクロルエチレン,fは四塩化炭素で処
理後のスペクトルに、それぞれ対応している。
FIG. 1 is a cross-sectional view showing a structural example of a transmissive medium of the present invention, wherein 1 is a recording layer and 2 is a substrate. FIG. 2 is a cross-sectional view showing a structural example of a reflective medium, in which 3 is a reflective layer, 4 is a recording layer, and 5 is a transparent substrate. FIG. 3 shows visible absorption spectra of the medium of Example 1 before and after the solvent treatment and after heating. A in the figure
Correspond to spectra before solvent treatment, b after solvent treatment, and c after heat treatment of b, respectively. FIG. 4 shows the X-ray diffraction spectrum of the coating film after the solvent treatment. FIG. 5 shows changes with time in absorbance at 820 nm when the coating film after the solvent treatment was heated at various temperatures. FIG. 6 shows visible absorption spectra of the medium of Example 2 before and after the solvent treatment. In the figure, a corresponds to the spectrum before treatment with a solvent, b to dichloroethane, c to dibromoethane, d to dichloromethane, e to tetrachloroethylene, and f to the spectrum after treatment with carbon tetrachloride, respectively.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】800〜850nmに最大吸収波長(λmax)を有
するマグネシウムフタロシアニン結晶相から主として成
ることを特長とする相変化型光記録媒体。
1. A phase change type optical recording medium which is mainly composed of a magnesium phthalocyanine crystal phase having a maximum absorption wavelength (λmax) at 800 to 850 nm.
JP62032397A 1987-02-17 1987-02-17 Phase change optical recording medium Expired - Lifetime JP2555050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62032397A JP2555050B2 (en) 1987-02-17 1987-02-17 Phase change optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62032397A JP2555050B2 (en) 1987-02-17 1987-02-17 Phase change optical recording medium

Publications (2)

Publication Number Publication Date
JPS63201926A JPS63201926A (en) 1988-08-22
JP2555050B2 true JP2555050B2 (en) 1996-11-20

Family

ID=12357819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62032397A Expired - Lifetime JP2555050B2 (en) 1987-02-17 1987-02-17 Phase change optical recording medium

Country Status (1)

Country Link
JP (1) JP2555050B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003074282A1 (en) * 2002-02-15 2003-09-12 Sony Corporation Rewritable optical information recording medium and recording/reproducing method, recording/reproducing device

Also Published As

Publication number Publication date
JPS63201926A (en) 1988-08-22

Similar Documents

Publication Publication Date Title
US4529688A (en) Infrared sensitive phthalocyanine compositions
Gu et al. Optical recording performance of thin films of phthalocyanine compounds
EP0289352A2 (en) Optical recording medium and process for making an optical recording medium
JPS58173696A (en) Optical recording medium
Gu et al. Application of phthalocyanine thin films in optical recording
JP3648823B2 (en) Optical recording medium and information recording method
US4753861A (en) Organic optical information storage medium employing crystalline transitions
EP0977754B1 (en) Writable and erasable high-density optical storage media
JP2555050B2 (en) Phase change optical recording medium
US5356685A (en) Recordable optical element having a leuco dye
JPH02243656A (en) Infrared absorbing compound and optical recording medium using the same
EP1092753A1 (en) Cyanine dye
JPH0696347B2 (en) Optical recording body
JPH0513190B2 (en)
JP2564292B2 (en) Optical recording medium
Zhang et al. Diarylethene materials for photon-mode optical storage
EP0381210A2 (en) Optical recording media and process for preparing same
JP2778132B2 (en) Optical recording medium
JP2697770B2 (en) Optical recording and reproduction method
JPS61179792A (en) Photo-thermal conversion recording medium
JP2953543B2 (en) Optical information recording medium
JPH01294791A (en) Information recording medium
JPH0441916B2 (en)
Tang et al. Dye-doped optical storage films prepared by the sol-gel process
JP2585459B2 (en) Optical information recording medium