JP2554254Y2 - Filter cloth - Google Patents

Filter cloth

Info

Publication number
JP2554254Y2
JP2554254Y2 JP1991072218U JP7221891U JP2554254Y2 JP 2554254 Y2 JP2554254 Y2 JP 2554254Y2 JP 1991072218 U JP1991072218 U JP 1991072218U JP 7221891 U JP7221891 U JP 7221891U JP 2554254 Y2 JP2554254 Y2 JP 2554254Y2
Authority
JP
Japan
Prior art keywords
melting point
filter cloth
fiber
denier
dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1991072218U
Other languages
Japanese (ja)
Other versions
JPH0518615U (en
Inventor
邦夫 俣木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwabo Co Ltd
Daiwabo Holdings Co Ltd
Original Assignee
Daiwabo Co Ltd
Daiwabo Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwabo Co Ltd, Daiwabo Holdings Co Ltd filed Critical Daiwabo Co Ltd
Priority to JP1991072218U priority Critical patent/JP2554254Y2/en
Publication of JPH0518615U publication Critical patent/JPH0518615U/en
Application granted granted Critical
Publication of JP2554254Y2 publication Critical patent/JP2554254Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、気体の濾過に適用され
るバグフィルターに好適な濾過布に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter cloth suitable for a bag filter used for filtering gas.

【0002】[0002]

【従来の技術】従来のバグフィルター用の濾過布として
は、主として織物やフェルトが使用されているが、単な
る織物やフェルトでは微粒子の集塵が難しい。このこと
から微粒子集塵用として特開平3−60712号公報に
みられるように、ニードルフェルトの表面に平均繊度
0.2デニール以下の極細繊維からなる不織布シートを
ラミネートした濾過布が提案されている。
2. Description of the Related Art Fabrics and felts are mainly used as conventional filter cloths for bag filters, but it is difficult to collect fine particles with a mere fabric or felt. For this reason, as disclosed in JP-A-3-60712, a filter cloth has been proposed in which a nonwoven fabric sheet made of ultrafine fibers having an average fineness of 0.2 denier or less is laminated on the surface of a needle felt as disclosed in JP-A-3-60712. .

【0003】[0003]

【考案が解決すべき課題】しかしながらニードルフェル
トの表面に平均繊度0.2デニール以下の極細繊維から
なる不織布シートをラミネートした濾過布は、微粒子の
集塵効率は良いものの、ダストの払い落し性が悪いため
目詰まりが生じ、早期に圧力損失が上昇することから比
較的短期間に濾過布を交換しなければならない。本考案
の目的は、濾過面を改善することによって微粒子の集塵
効率、ダスト払い落し性を良くし、圧力損失の上昇を遅
延させて濾過布の交換周期を延長させることにある。
[Problems to be Solved by the Invention] However, a filter cloth obtained by laminating a nonwoven sheet made of ultrafine fibers having an average fineness of 0.2 denier or less on the surface of a needle felt has a good dust collection efficiency of fine particles, but has a good dust removing property. Since the filter cloth is bad, clogging occurs and the pressure loss increases early, so that the filter cloth must be replaced in a relatively short time. SUMMARY OF THE INVENTION An object of the present invention is to improve the efficiency of collecting fine particles and removing dust by improving the filtering surface, to delay the rise of pressure loss, and to extend the replacement cycle of the filter cloth.

【0004】[0004]

【課題を解決するための手段】本考案は上記目的を達成
するため、濾過布のダスト供給側面(以下濾過面と称す
ることもある)を構成している繊維群に低融点の極細繊
維を混在させ、この濾過面に露出しているこの低融点の
極細繊維を溶融樹脂化することにより濾過面を平滑化す
るとともに緻密化した。
According to the present invention, in order to achieve the above object, low-melting-point ultrafine fibers are mixed in a fiber group constituting a dust supply side (hereinafter sometimes referred to as a filtration side) of a filter cloth. Then, the low-melting point ultrafine fibers exposed on the filtration surface were made into a molten resin to smooth and densify the filtration surface.

【0005】即ち本考案の濾過布は、分割型複合繊維が
分割して形成された低融点成分の極細繊維と高融点成分
の極細繊維とが1:1の割合で混在した0.5デニール
以下の極細繊維が少なくともダスト供給側面に50重量
%以上存在し、かつ構成繊維同士がニードルパンチもし
くは高圧液体流により交絡してなる目付100〜150
g/m2の不織布層を配し、基布を含み1.5デニール以上
の合成繊維からなる目付が200〜450g/m2の不織布
の基材層の上に積層して構成し、このダスト供給側面の
低融点極細繊維の少なくとも一部分を溶融樹脂化して濾
過面を平滑化し、通気度が2〜10ml/cm2/secに緻密化
してなる。
[0005] That is, the filter cloth of the present invention has a split type composite fiber.
At least 50% by weight or more of ultrafine fibers of 0.5 denier or less in which ultrafine fibers of the low melting point component and ultrafine fibers of the high melting point component are mixed at a ratio of 1: 1 are formed at least on the dust supply side surface , And the constituent fibers are needle punched
Or a basis weight of 100 to 150 entangled by a high-pressure liquid flow.
g / m 2 non-woven fabric layer, the basis weight of synthetic fibers of 1.5 denier or more including the base fabric is laminated on the base layer of the non-woven fabric of 200 to 450 g / m 2 , At least a part of the low-melting ultrafine fibers on the supply side is melted and resinized to smooth the filtration surface, and the air permeability is densified to 2 to 10 ml / cm 2 / sec.

【0006】低融点成分の極細繊維と高融点成分の極細
繊維とが混在した0.5デニール以下の極細繊維として
は、分割型複合繊維が好ましいが、特に限定するもので
はない。複合繊維の構成成分としては、例えばポリエチ
レン、ポリプロピレン、ポリ4−メチルペンテン−1、
エチレン−ビニルアルコール共重合体、エチレン−酢酸
ビニル共重合体等のポリオレフィン系重合体もしくは共
重合体、ポリエチレンテレフタレート、ポリブチレンテ
レフタレート等のポリエステル系重合体もしくは共重合
体、ナイロン6、ナイロン66、ナイロン12等のポリ
アミド系重合体もしくは共重合体等の中から適宜選択す
ることができるが、20℃以上の融点差を有する2成分
以上で構成することが好ましい。また、上記重合体もし
くは共重合体に限定するものではない。分割型複合繊維
の繊維断面形状も種々考えられ、特に限定するものでは
ないが、放射線状型が好ましい。
As the ultrafine fibers of 0.5 denier or less in which the ultrafine fibers of the low melting point component and the ultrafine fibers of the high melting point component are mixed, a splittable conjugate fiber is preferable, but is not particularly limited. As constituent components of the conjugate fiber, for example, polyethylene, polypropylene, poly 4-methylpentene-1,
Polyolefin polymers or copolymers such as ethylene-vinyl alcohol copolymers and ethylene-vinyl acetate copolymers; polyester polymers or copolymers such as polyethylene terephthalate and polybutylene terephthalate; nylon 6, nylon 66, nylon Although it can be appropriately selected from polyamide-based polymers or copolymers such as No. 12 and the like, it is preferable to comprise two or more components having a melting point difference of 20 ° C. or more. The invention is not limited to the above-mentioned polymer or copolymer. Various fiber cross-sectional shapes of the splittable conjugate fiber can be considered and are not particularly limited, but a radial type is preferable.

【0007】濾過面側の層は、上記融点差を有する2成
分からなる分割型複合繊維を分割して0.5デニール以
下に極細化した繊維を50重量%以上、好ましくは85
重量%以上含有した目付100〜120g/m2の不織布で
構成することが好ましい。この不織布は、上記分割型複
合繊維をカード法、クロスレイヤー法、ランダムウェバ
ー法、湿式抄造法、乾式または湿熱接着法、ニードルパ
ンチ法、高圧液流法等により不織布となすが、この時点
で分割が不十分のものは更にニードルパンチ処理、高圧
液流処理、超音波処理等の処理を施すとよく、特に分割
と繊維の交絡には高圧液体流処理が好ましい。
[0007] The layer on the filtration surface side is composed of 50% by weight or more, preferably 85% by weight, of fibers obtained by splitting the splittable bicomponent fiber having the above-mentioned melting point difference and making it ultrafine to 0.5 denier or less.
It is preferable to use a nonwoven fabric having a basis weight of 100 to 120 g / m 2 containing not less than 100% by weight. In this nonwoven fabric, the splittable conjugate fiber is formed into a nonwoven fabric by a card method, a cross-layer method, a random webber method, a wet papermaking method, a dry or wet heat bonding method, a needle punch method, a high-pressure liquid flow method, etc. Insufficiency of the composition may be further subjected to a treatment such as needle punching treatment, high-pressure liquid flow treatment, or ultrasonic treatment. Particularly, high-pressure liquid flow treatment is preferable for division and entanglement of fibers.

【0008】この高圧液体流処理の条件としては、吐出
水圧30〜200kg/cm2、 好ましくは80〜150kg/c
m2、速度が1〜5m/min で少なくとも表裏各2回処理す
ることが望ましい。吐出水圧が30kg/cm2未満、速度が
5m/min より速いと分割不十分となり、微粒子集塵効率
があがらず、吐出水圧200kg/cm2より大きく、速度が
1m/min 未満であると過剰処理となり不経済である。ま
たこの不織布には綿、麻等の天然繊維、レーヨン等の半
合成繊維、ポリオレフィン、ポリエステル、ポリアミド
等の他繊維を50重量%未満の混綿してもよい。極細繊
維の太さが0.5デニールを超えたり、極細繊維の混合
割合が50重量%未満であると所望の表面樹脂化が得ら
れず、またこの不織布層の目付が100g/m2未満である
と微粒子集塵が期待でない。そして目付を150g/m2
上としてもさほど微粒子集塵効率が上がらず価格が高く
つくのみとなる。
The conditions for the high-pressure liquid flow treatment are as follows: discharge water pressure 30 to 200 kg / cm 2 , preferably 80 to 150 kg / c
It is desirable to perform the treatment at least twice on each of the front and back sides at m 2 and a speed of 1 to 5 m / min. If the discharge water pressure is less than 30 kg / cm 2 and the speed is higher than 5 m / min, the division will be insufficient, the efficiency of collecting fine particles will not be improved, and if the discharge water pressure is higher than 200 kg / cm 2 and the speed is less than 1 m / min, excessive processing will be performed. It is uneconomical. The non-woven fabric may be mixed with natural fibers such as cotton and hemp, semi-synthetic fibers such as rayon, and other fibers such as polyolefin, polyester, and polyamide at less than 50% by weight. If the thickness of the ultrafine fibers exceeds 0.5 denier, or if the mixing ratio of the ultrafine fibers is less than 50% by weight, desired surface resinification cannot be obtained, and the basis weight of this nonwoven fabric layer is less than 100 g / m 2 . If it is, dust collection is not expected. And even if the basis weight is 150 g / m 2 or more, the efficiency of collecting fine particles does not increase so much and the cost is only high.

【0009】基材層としては、上記低融点極細繊維より
も融点の高い1.5デニール以上の合成繊維を基布に交
絡させた不織布がよい。この基材層の合成繊維として
は、単一繊維あるいは並列型、芯鞘型、分割型、海島型
等の複合繊維のいずれをも用いることができるが、経済
的にみて太さが1.5〜3デニールの単一繊維が好まし
く、構成成分としては、上記記載のポリオレフィン、ポ
リエステル、ポリアミド等を用いれば良い。基材層の目
付としては、200〜450g/m2、好ましくは300〜
400g/m2であり、目付が200g/m2未満であると濾過
布としての形態保持が難しく、450g/m2より大きくな
ると濾過布として嵩張ったものとなる。
As the base material layer, a nonwoven fabric in which synthetic fibers having a melting point of 1.5 denier or more having a melting point higher than that of the low melting point ultrafine fibers are entangled with a base cloth is preferable. As the synthetic fiber of the base layer, any of a single fiber or a composite fiber such as a parallel type, a core-sheath type, a split type, and a sea-island type can be used. A single fiber having a denier of 3 to 3 deniers is preferable, and the above-mentioned components such as polyolefin, polyester, and polyamide may be used. The basis weight of the base material layer is 200 to 450 g / m 2 , preferably 300 to 450 g / m 2 .
If it is 400 g / m 2 and the basis weight is less than 200 g / m 2, it is difficult to maintain the form as a filter cloth, and if it exceeds 450 g / m 2 , the filter cloth becomes bulky.

【0010】上記で得られた不織布層と基材層の間にホ
ットメルト剤を介在させて熱カレンダー加工により一体
化する。この時、上記不織布層表面の低融点極細繊維の
を一部分を溶融樹脂化して通気度を調整し、通気度2〜
10ml/cm2/sec、好ましくは5〜8ml/cm2/secの濾過布
とする。通気度が2ml/cm2/sec未満であると圧力損失が
高くなり、10ml/cm2/secより大きくなるとダスト払い
落し性、集塵効率低下する。濾過面を構成する不織布
と基材層とを接合するホットメルト剤としては、ポリア
ミド系、ポリエステル系、ポリオレフィン系などが使用
でき特に限定を要するものではないが、濾過布に使用す
る繊維素材と同族系の方が好ましい。
[0010] A hot melt agent is interposed between the non-woven fabric layer and the base material layer obtained as described above, and they are integrated by heat calendering. At this time, a part of the low-melting point ultrafine fibers on the surface of the nonwoven fabric layer is melted to resin to adjust the air permeability.
10ml / cm 2 / sec, preferably a filter cloth 5~8ml / cm 2 / sec. Air permeability pressure loss is increased is less than 2ml / cm 2 / sec, dust brushing resistance becomes greater than 10ml / cm 2 / sec, the dust collection efficiency is lowered. As the hot melt agent for joining the nonwoven fabric and the substrate layer constituting the filtration surface, polyamide-based, polyester-based, and polyolefin-based hot melt agents can be used without particular limitation, but are similar to the fiber material used for the filter cloth. Systems are preferred.

【0011】熱カレンダー加工の条件としては、不織布
層の低融点極細繊維成分の融点以上高融点極細繊維成分
の融点以下の範囲にある熱ロールと常温ロールとの2本
のカレンダーロールを用い不織布層側を熱ロールとして
線圧50〜100kg/cm、速度3〜7m/min でもって処理
するとよい。線圧が50kg/cm 未満、速度7m/min 以上
であると濾過面の溶融樹脂化が不十分となって通気度が
10ml/cm2/secを超えることになり、濾過布のダスト払
い落し性、集塵効率下する。また線圧が100kg/c
m より高く、速度3m/min 以下であると、濾過面の溶融
樹脂化が過剰となって通気度が2ml/cm2/sec以下とな
り、濾過布の圧力損失が高くなる。
The conditions of the heat calendering are as follows. Two calender rolls, a hot roll and a normal-temperature roll, having a melting point of the low-melting-point ultrafine fiber component of the nonwoven fabric layer and a melting point of the high-melting-point ultrafine fiber component thereof are used. It is preferable that the side is treated as a hot roll at a linear pressure of 50 to 100 kg / cm and a speed of 3 to 7 m / min. If the linear pressure is less than 50 kg / cm and the speed is 7 m / min or more, the filtration surface becomes insufficiently molten and the air permeability exceeds 10 ml / cm 2 / sec. , that the dust collection efficiency is make low. The linear pressure is 100kg / c
If it is higher than m and the speed is 3 m / min or less, the filtration surface becomes excessively molten resin, the air permeability becomes 2 ml / cm 2 / sec or less, and the pressure loss of the filter cloth increases.

【0012】[0012]

【作用】本考案の濾過布は、ダスト供給側面に分割型複
合繊維が分割して形成された0.5デニール以下の低融
点成分と高融点成分の極細繊維を含み、かつ構成繊維同
士がニードルパンチもしくは高圧液体流の作用により交
絡してなる不織布層を配し、さらに表面の不織布層内の
低融点極細繊維成分の少なくとも一部分を溶融樹脂化す
ることにより、表面の毛羽が抑制され表面が平滑化され
て、濾過布の通気度を2〜10ml/cm2/secとなすことが
できる。そして濾過面を平滑化し通度をこのように調
整することにより、微粒子集塵効率が向上し、ダスト払
い落し性がよくなり、濾過布の交換周期を延長すること
ができる。
[Function] The filter cloth of the present invention is divided into multiple parts on the dust supply side.
The ultrafine fibers of a low melting point component and a high melting point component of 0.5 denier or less that if fibers are formed by dividing seen including, and constituent fibers same
By a needle punch or the action of high pressure liquid flow.
By arranging the non-woven fabric layer which is entangled and further converting at least a part of the low melting point ultrafine fiber component in the non-woven fabric layer on the surface into a molten resin, the fuzz on the surface is suppressed, the surface is smoothed, and the filtration cloth is ventilated. The degree can be between 2 and 10 ml / cm 2 / sec. Then the smoothed through the gas of the filtering surface by adjusting in this manner, improved fine dust collecting efficiency, the dust brushing property becomes better, it is possible to extend the replacement period of the filter cloth.

【0013】[0013]

【実施例】図1は本考案の濾過布の縦方向の断面拡大図
を示し、(1) は濾過布、(2) は不織布層、そして(3) は
基材層である。不織布層(2) の繊維には、図2に示すよ
うな繊維断面(但し、16分割)を有し、A成分(9) と
して低融点のナイロン6、B成分としての高融点のポリ
エチレンテレフタレートを配し、紡糸温度290℃で溶
融複合押出紡糸し、75℃の温水中で3倍延伸後、切断
を行って得た太さ3デニール、長さ45mmの分割型複合
繊維(8) を使用している。そしてこの分割型複合繊維
(8) を100重量%用いてカード機によりカードウェブ
とし、水圧150kg/cm2、速度3m/min で表裏各3回高
圧液体流処理して目付120g/m2の不織布層(2) となし
た。この時、複合繊維(8) のA成分(9) とB成分(10)は
分割され、それぞれ平均0.19デニールの太さの極細
繊維(5) に分割されていた。
1 is an enlarged cross-sectional view of the filter cloth of the present invention in the longitudinal direction, wherein (1) is a filter cloth, (2) is a nonwoven fabric layer, and (3) is a base material layer. The fibers of the non-woven fabric layer (2) have a fiber cross section as shown in FIG. 2 (however, 16 divisions), and a low melting point nylon 6 as the A component (9) and a high melting point polyethylene terephthalate as the B component are used. It is melt-composite extruded and spun at a spinning temperature of 290 ° C., stretched three times in warm water at 75 ° C., and cut to obtain a 3-denier, 45 mm long splittable conjugate fiber (8). ing. And this split type composite fiber
(8) was made into a card web by a card machine using 100% by weight, and subjected to a high-pressure liquid flow treatment three times on each of the front and back sides at a water pressure of 150 kg / cm 2 and a speed of 3 m / min to form a nonwoven fabric layer (2) having a basis weight of 120 g / m 2. did. At this time, the A component (9) and the B component (10) of the composite fiber (8) were split, and each was split into ultrafine fibers (5) having an average thickness of 0.19 denier.

【0014】基材層(3) として、基布(6) を有するポリ
エチレンテレフタレート繊維(太さ2デニール)からな
る目付400g/m2のフェルト[商品名:FT−040
8,日本フェルト工業(株)製]を用いた。
As the base layer (3), a felt having a basis weight of 400 g / m 2 made of polyethylene terephthalate fiber (2 denier in thickness) having a base cloth (6) [trade name: FT-040]
8, manufactured by Nippon Felt Industry Co., Ltd.].

【0015】そして上記不織布層(2) と基材層(3) との
間に低融点ナイロンの目付20g/m2のホットメルト剤
(7) を介在させ、不織布層(2) 側を温度195℃の熱ロ
ーラ、基材層(3) 側を常温ローラとし、線圧100kg/c
m、速度4m/min でカレンダー加工を行い、低融点成分の
一部分を溶融樹脂化(4) すると共にホットメルト剤(7)
を溶かして不織布層(2) と基材層(3) を一体化し、通気
度6ml/cm2/secの濾過布(1) となした。
Then, a hot-melt agent of low melting point nylon having a basis weight of 20 g / m 2 is provided between the nonwoven fabric layer (2) and the base material layer (3).
(7), the non-woven fabric layer (2) side is a heat roller at a temperature of 195 ° C., the base material layer (3) side is a room temperature roller, and the linear pressure is 100 kg / c.
m, calendering at a speed of 4 m / min to convert a part of the low melting point component into molten resin (4) and hot melt agent (7)
And the nonwoven fabric layer (2) and the base material layer (3) were integrated into a filter cloth (1) having an air permeability of 6 ml / cm 2 / sec.

【0016】[比較例] 実施例の不織布層の目付を8
0g/m2とし、実施例と同じ基材層を用いて実施例と同じ
手段によって濾過布となした。
Comparative Example The basis weight of the nonwoven fabric layer of the example was 8
It was set to 0 g / m 2, and a filter cloth was formed by the same means as in the example using the same substrate layer as in the example.

【0017】実施例の濾過布と比較例の濾過布との濾過
布の濾過性能評価を行った結果は表1の通りであった。
Table 1 shows the results of evaluating the filtration performance of the filter cloth of the example and the filter cloth of the comparative example.

【0018】なお、濾過性能については次のように評価
した。JIS験用ダスト10種を使用し、パルス型集塵
試験機でテストした。該試験機の条件は、次の通り設定
した。風量2.5m3/min、濾過面積0.66m2、パルス
間隔2min,0.1sec/1ハ゜ルス 、パルス圧3kg/cm2、試験時
間7hr、温度(室温)とし、加速のためと一次付着層を
形成するため濾過布面圧力ΔP=150mmH2Oに達する
までダストを払い落とさずに行った。
The filtration performance was evaluated as follows. Ten kinds of JIS test dusts were used and tested with a pulse-type dust collector. The conditions of the tester were set as follows. Air volume 2.5m 3 / min, filtration area 0.66m 2 , pulse interval 2min, 0.1sec / 1 pulse, pulse pressure 3kg / cm 2 , test time 7hr, temperature (room temperature), primary adhesion layer for acceleration The formation was performed without removing dust until the pressure on the filter cloth surface reached ΔP = 150 mmH 2 O.

【0019】ダスト洩れ量(g):濾過布を通過したダ
スト0.1μmまで捕集可能な濾紙で捕集した重量。 集塵効率(%):ダスト供給機より入口ダスト濃度A
(g/m3)を測定し、濾過布を通過した風量と上記ダスト
洩れ量により出口ダスト濃度B(g/m3)を測定し、集塵
効率(%)=[1−(B/A)]×100の式より算出
した。 通気低下度(%):上記試験前の通気度C(ml/cm2/se
c)と試験後の通気度D(ml/cm2/sec)とを測定し、通
気低下度(%)=[1−(D/C)]×100の式より
算出した。 圧力損失(mmH2O ):上記試験ΔP=150mmH2O 後の
最大値。 ダスト払い落し性(ダスト付着量(g/m2)):上記試験
後の濾過布の重量を測定し、試験前の濾過布の重量を差
し引いたダスト重量。(ダスト重量が少ない程、剥離性
がよい。)
Dust leakage amount (g): Weight collected by filter paper capable of collecting up to 0.1 μm of dust that has passed through the filter cloth. Dust collection efficiency (%): Inlet dust concentration A from dust feeder
(G / m 3 ), and the outlet dust concentration B (g / m 3 ) was measured based on the amount of air passing through the filter cloth and the amount of dust leakage, and the dust collection efficiency (%) = [1- (B / A) )] × 100. Permeability decrease (%): Permeability C (ml / cm 2 / se) before the above test
c) and the air permeability D (ml / cm 2 / sec) after the test were measured, and calculated from the equation of air permeability reduction (%) = [1- (D / C)] × 100. Pressure loss (mmH 2 O): the test ΔP = 150mmH 2 maximum value after O. Dust removal property (dust adhesion amount (g / m 2 )): The weight of the dust after measuring the weight of the filter cloth after the above test and subtracting the weight of the filter cloth before the test. (The smaller the dust weight, the better the peelability.)

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【考案の効果】本考案の濾過布(1) は、分割型複合繊維
が分割して形成された低融点成分の極細繊維と高融点成
分の極細繊維とが1:1の割合で混在した0.5デニー
ル以下の極細繊維(5) が少なくともダスト供給側面に5
0重量%以上存在し、かつ構成繊維同士がニードルパン
チもしくは高圧液体流の作用により交絡してなる目付1
00〜150g/m2の不織布層(2) と、基布(6) を含み
1.5デニール以上の合成繊維からなる目付が200〜
450g/m2の不織布の基材層(3) とが積層一体化されて
構成され、該ダスト供給側面の低融点極細繊維の少なく
とも一部分が溶融樹脂化(4) されて平滑化され、通気度
が2〜10ml/cm2/secに調整されているから、濾過面側
を形成しているの不織布層(2) の極細繊維によって濾過
精度が著しく向上し、しかも濾過面側の低融点極細繊維
の溶融樹脂化によって毛羽が抑制され、且つ通気度が規
制されていることによってダスト払い落し性および微粒
子の集塵効率が向上し、濾過布の交換周期を大幅に延長
することができるという優れた効果を発揮する。したが
って本考案の濾過布(1) は特にバグフィルター用として
好適なものとなる。
[Effect of the Invention] The filter cloth (1) of the present invention is a split-type composite fiber.
The ultrafine fibers of 0.5 denier or less (5) in which the ultrafine fibers of the low melting point component and the ultrafine fibers of the high melting point component are mixed at a ratio of 1: 1 are formed at least on the dust supply side.
0% by weight or more and constituent fibers are needle pan
Weight or weight entangled by the action of high pressure liquid flow 1
A nonwoven fabric layer (2) of 100 to 150 g / m 2 and a base fabric (6) and a basis weight of synthetic fiber of 1.5 denier or more including 200 to 200 g / m 2
A substrate layer (3) of 450 g / m 2 nonwoven fabric is laminated and integrated, and at least a portion of the low melting point ultrafine fibers on the dust supply side is made into a molten resin (4) and smoothed, and air permeability is reduced. Is adjusted to 2 to 10 ml / cm 2 / sec, so that the filtration accuracy is remarkably improved by the ultrafine fibers of the nonwoven fabric layer (2) forming the filtration surface side, and the low melting point ultrafine fibers on the filtration surface side The fuzz is suppressed by the melt resinification, and the dust removal property and the dust collection efficiency of fine particles are improved by regulating the air permeability, so that the replacement cycle of the filter cloth can be greatly extended, which is excellent. It is effective. Therefore, the filter cloth (1) of the present invention is particularly suitable for bag filters.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案の濾過布の断面図である。FIG. 1 is a sectional view of the filter cloth of the present invention.

【図2】複合繊維の一例を示した繊維断面図である。FIG. 2 is a fiber sectional view showing an example of a conjugate fiber.

【符号の説明】[Explanation of symbols]

1 濾過布 2 不織布層 3 基材層 4 溶融樹脂化 5 極細繊維 6 基布 7 ホットメルト剤 8 分割型複合繊維 9 A成分 10 B成分 DESCRIPTION OF SYMBOLS 1 Filtration cloth 2 Nonwoven fabric layer 3 Base material layer 4 Melt resinization 5 Microfiber 6 Base fabric 7 Hot melt agent 8 Splittable composite fiber 9 A component 10 B component

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 分割型複合繊維が分割して形成された
融点成分の極細繊維と高融点成分の極細繊維とが1:1
の割合で混在した0.5デニール以下の極細繊維が少な
くともダスト供給側面に50重量%以上存在し、かつ構
成繊維同士がニードルパンチもしくは高圧液体流により
交絡してなる目付100〜150g/m2の不織布層と、基
布を含み1.5デニール以上の合成繊維からなる目付が
200〜450g/m2の不織布の基材層とが積層されて構
成され、該ダスト供給側面の低融点極細繊維の少なくと
も一部分が溶融樹脂化されて平滑化され、通気度が2〜
10ml/cm2/secであることを特徴とする濾過布。
An ultra-fine fiber having a low melting point component and an ultra-fine fiber having a high melting point component formed by dividing a splittable conjugate fiber are 1: 1.
The ultrafine fibers of 0.5 denier or less mixed at a ratio of 50% by weight or more exist on at least the dust supply side , and
Needle punch or high pressure liquid flow
Entangled with a nonwoven layer having a basis weight of 100 to 150 g / m 2 comprising, in weight per unit area consisting of 1.5 denier or more synthetic fibers include base fabric and a base material layer of the nonwoven 200~450g / m 2 is laminated structure And at least a part of the low melting point ultrafine fiber on the dust supply side is melted and smoothed, and the air permeability is 2 to 2.
A filter cloth characterized by 10 ml / cm 2 / sec.
JP1991072218U 1991-08-13 1991-08-13 Filter cloth Expired - Fee Related JP2554254Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991072218U JP2554254Y2 (en) 1991-08-13 1991-08-13 Filter cloth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991072218U JP2554254Y2 (en) 1991-08-13 1991-08-13 Filter cloth

Publications (2)

Publication Number Publication Date
JPH0518615U JPH0518615U (en) 1993-03-09
JP2554254Y2 true JP2554254Y2 (en) 1997-11-17

Family

ID=13482891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991072218U Expired - Fee Related JP2554254Y2 (en) 1991-08-13 1991-08-13 Filter cloth

Country Status (1)

Country Link
JP (1) JP2554254Y2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233559B2 (en) * 1982-08-19 1990-07-27 Fujita Corp GASUKIKYU
JPH0796089B2 (en) * 1989-07-28 1995-10-18 市川毛織株式会社 For bag filter

Also Published As

Publication number Publication date
JPH0518615U (en) 1993-03-09

Similar Documents

Publication Publication Date Title
CN101674873B (en) Bag house filters and media
DE10221694B4 (en) Multi-layer filter construction, use of such a multi-layer filter assembly, dust filter bag, bag filter bag, pleated filter, surface exhaust filter and air filter for motor vehicles
JP3802839B2 (en) Nonwoven fabric for filters and filters for engines
JP4236284B2 (en) Cylindrical filter
CN101983097A (en) Air filtration medium with improved dust loading capacity and improved resistance to high humidity environment
JP5344465B2 (en) Air filter with high rigidity
JPH1190135A (en) Pleated filter
JP5080041B2 (en) Air filter medium, streamer filter using the same, and method for producing air filter medium
JP4083951B2 (en) Cylindrical filter
JP3715396B2 (en) Nonwoven fabric for filters
JP4900675B2 (en) Composite nonwoven fabric for air filter
JP3233988B2 (en) Filter cloth and method for producing the same
JP2554254Y2 (en) Filter cloth
JP3326808B2 (en) filter
JP3677385B2 (en) Filter material and filter using the same
JP2554259Y2 (en) Filter cloth
JP3573861B2 (en) Filter material for air cleaner and method for producing the same
JP3331651B2 (en) Composite sheet and method for producing the same
JP2001248056A (en) Composite filament nonwoven fabric and filter obtained therefrom
JP2001321620A (en) Cylindrical filter
JP4137602B2 (en) Surface filter material with high efficiency and low pressure loss
JPH0143135Y2 (en)
JP2555514Y2 (en) Filter cloth
JPH0518614U (en) Cartridge Filter
JP3596150B2 (en) Filter and manufacturing method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees