JP2553989B2 - Air liquefaction separation method - Google Patents

Air liquefaction separation method

Info

Publication number
JP2553989B2
JP2553989B2 JP4170577A JP17057792A JP2553989B2 JP 2553989 B2 JP2553989 B2 JP 2553989B2 JP 4170577 A JP4170577 A JP 4170577A JP 17057792 A JP17057792 A JP 17057792A JP 2553989 B2 JP2553989 B2 JP 2553989B2
Authority
JP
Japan
Prior art keywords
rectification column
column
nitrogen
nitrogen gas
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4170577A
Other languages
Japanese (ja)
Other versions
JPH05180559A (en
Inventor
▲高▼司 辰巳
秀幸 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Original Assignee
Japan Oxygen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd filed Critical Japan Oxygen Co Ltd
Priority to JP4170577A priority Critical patent/JP2553989B2/en
Publication of JPH05180559A publication Critical patent/JPH05180559A/en
Application granted granted Critical
Publication of JP2553989B2 publication Critical patent/JP2553989B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/0443A main column system not otherwise provided, e.g. a modified double column flowsheet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04448Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system in a double column flowsheet with an intermediate pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/32Processes or apparatus using separation by rectification using a side column fed by a stream from the high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/42Separating low boiling, i.e. more volatile components from nitrogen, e.g. He, H2, Ne
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原料空気より混入する
水素等低沸点成分の含有量を低減した高純度窒素を採取
する空気液化分離方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air liquefaction separation method for collecting high-purity nitrogen having a reduced content of low boiling point components such as hydrogen mixed in from raw material air.

【0002】[0002]

【従来の技術】工業的に窒素を製造する方法として、空
気を原料としてこれを液化し、その組成分を精留塔を用
いてその沸点差によって分離するいわゆる空気液化分離
方法が採用されている。
2. Description of the Related Art As a method for industrially producing nitrogen, a so-called air liquefaction separation method has been adopted in which air is used as a raw material and is liquefied, and its composition is separated by a boiling point difference using a rectification column. .

【0003】従来の空気液化分離方法を単式精留塔と複
式精留塔に分けて説明する。単式精留塔の場合は、例え
ば図7に示す如く、塵埃,炭酸ガス及び水分を除去され
た圧縮精製原料空気が径路1を通って単式精留塔2の下
部に導入され、単式精留塔2内で上部より精留板3を流
下する還流液によって精留され、単式精留塔2上部に窒
素ガスを、底部に酸素に富んだ液化空気を夫々生成す
る。
The conventional air liquefaction separation method will be described separately for a single type rectification column and a double type rectification column. In the case of a single-column rectification column, for example, as shown in FIG. 7, compressed and purified raw material air from which dust, carbon dioxide gas and water have been removed is introduced into the lower part of the single-column rectification column 2 through a path 1 to The gas is rectified by the reflux liquid flowing down the rectification plate 3 from the upper part in 2 to produce nitrogen gas in the upper part of the single-column rectification column 2 and liquefied air rich in oxygen in the bottom part.

【0004】生成された前記窒素ガスは、単式精留塔2
上部から径路4を通ってその一部が製品窒素ガスとして
導出され、残部が径路5を通って単式精留塔2直上に区
画された凝縮蒸発器6に導入され、単式精留塔2底部か
ら径路7を通って凝縮蒸発器6に導入される液化空気と
熱交換して液化窒素となり、径路8を通って単式精留塔
2の上部に導入されて還流液となる。
The produced nitrogen gas is used in the single-column rectification column 2
A part of it is discharged as product nitrogen gas from the upper part through the path 4, and the rest is introduced into the condenser / evaporator 6 partitioned directly above the single-column rectification column 2 through the path 5 and from the bottom of the single-column rectification column 2. Liquefied air is heat-exchanged with the liquefied air introduced into the condenser / evaporator 6 through the path 7 to be liquefied nitrogen, and introduced into the upper part of the single-column rectification column 2 through the path 8 to be a reflux liquid.

【0005】複式精留塔の場合は、例えば図8に示す如
く、単式精留塔2の場合と略同様に径路10から複式精
留塔の下部塔11に導入された原料空気が還流液との間
で精留され、下部塔11上部に窒素ガスを、下部塔11
底部に液化空気を夫々生成する。下部塔11上部に生成
した前記窒素ガスは、径路12を通って主凝縮蒸発器1
3に入り、液化酸素等と熱交換して液化窒素となり、一
部は径路14を通って下部塔11上部に還流液として戻
されると共に、残部は径路15を通り過冷器16及び膨
張弁17を通って膨張降圧し、上部塔18頂部に導入さ
れて還流液となる。
In the case of the double rectification column, for example, as shown in FIG. 8, the raw material air introduced from the path 10 to the lower column 11 of the double rectification column is used as the reflux liquid in the same manner as in the case of the single rectification column 2. Between the lower tower 11 and the upper part of the lower tower 11 with nitrogen gas.
Liquefied air is generated at the bottom. The nitrogen gas generated in the upper part of the lower tower 11 passes through the path 12 and the main condenser evaporator 1
3, it exchanges heat with liquefied oxygen and the like to become liquefied nitrogen, part of which is returned to the upper part of the lower column 11 as reflux liquid through the path 14, and the rest passes through the path 15 and the subcooler 16 and the expansion valve 17 It is expanded and depressurized through and is introduced into the top of the upper tower 18 to form a reflux liquid.

【0006】一方、下部塔11下部からは原料空気の一
部が径路19を通って膨張タービン20で膨張されて上
部塔18の中部に導入され、この空気および上部塔18
下部に導入される主凝縮蒸発器13からの蒸発ガス(図
示せず)と、下部塔11底部から径路21,過冷器22
及び膨張弁23を経て上部塔18の中上部に導入される
液化空気および前記還流液の間で本精留が行なわれ、上
部塔18上部に窒素ガスが生成される。この窒素ガス
は、径路24を通って製品窒素ガスとして導出され、上
部塔18底部からは径路25を通って酸素ガスまたは液
化酸素が導出される。
On the other hand, part of the raw material air from the lower part of the lower tower 11 is expanded by the expansion turbine 20 through the path 19 and introduced into the middle part of the upper tower 18, and this air and the upper tower 18 are supplied.
Evaporated gas (not shown) from the main condenser evaporator 13 introduced into the lower part, the path 21 from the bottom part of the lower tower 11 and the supercooler 22
And the main rectification is performed between the liquefied air and the reflux liquid introduced into the upper part of the upper tower 18 through the expansion valve 23, and nitrogen gas is generated in the upper part of the upper tower 18. This nitrogen gas is discharged as product nitrogen gas through the path 24, and oxygen gas or liquefied oxygen is discharged from the bottom of the upper tower 18 through the path 25.

【0007】[0007]

【発明が解決しようとする課題】しかし、このようにし
て生成される製品窒素ガス中には、原料空気の中に微量
に含まれていた水素等の低沸点成分が濃縮されて含まれ
る。即ち、製品窒素ガス中には、一般に2〜10ppm
の水素,8〜20ppmのヘリウム,40〜100pp
mのネオンが含有されている。そして、これらの成分
は、たとえ微量であっても半導体工業等の超高純度の窒
素ガスを要求している分野においては、その製品に及ぼ
す影響が大きく改善が要求されていた。
However, the product nitrogen gas thus produced contains a low-boiling-point component such as hydrogen, which was contained in a trace amount in the raw material air, in a concentrated manner. That is, in product nitrogen gas, generally 2 to 10 ppm
Hydrogen, 8-20ppm helium, 40-100pp
m neon is contained. In the fields requiring ultra-high purity nitrogen gas such as the semiconductor industry, even if the amount of these components is very small, their effects on the products are greatly required to be improved.

【0008】本発明の目的は、上記の点に鑑みなされた
もので、製品窒素中の水素等の低沸点成分を効率よく簡
単かつ廉価に低減除去する空気液化分離方法を提供する
ことにある。
An object of the present invention is to provide an air liquefaction separation method, which has been made in view of the above points, and which efficiently and easily removes low boiling point components such as hydrogen in product nitrogen at low cost.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、高純度窒素を採取する空気液化分離方法
において、主精留塔に補助精留塔を付設し、該補助精留
塔の下部に主精留塔よりの窒素ガスをその量を調節しつ
つ導入して上昇ガスとし、主精留塔より導出した液化窒
素または窒素ガスを液化して前記補助精留塔にその量を
調節しつつ導入して還流液とし、該還流液と前記上昇ガ
スとで精留を行なわせ、該補助精留塔頂部より水素等低
沸点成分の含有量の多くなった窒素ガスを排窒素ガスと
して排出すると共に、該補助精留塔底部より水素等低沸
点成分の含有量1ppm以下の高純度液化窒素を製品と
して採取することを特徴とするものである。
In order to achieve the above-mentioned object, the present invention provides an auxiliary rectification column attached to the main rectification column in an air liquefaction separation method for collecting high-purity nitrogen. Nitrogen gas from the main rectification column was introduced into the lower part of the column while adjusting the amount to be an ascending gas, and liquefied nitrogen or nitrogen gas derived from the main rectification column was liquefied and its amount was added to the auxiliary rectification column . To
Introduced while adjusting the reflux liquid, the reflux liquid and the rising gas
Scan and in to perform the rectification, and exhaust nitrogen gas much since the nitrogen gas content of the hydrogen and low-boiling components from the auxiliary rectification column top
Thereby to discharge, it is intended to, and collecting the content 1ppm or less of high purity liquid nitrogen, such as hydrogen, low-boiling components from the auxiliary rectification column bottom as a product.

【0010】[0010]

【作 用】本発明は、以上のように、補助精留塔の上昇
ガスとなる窒素ガスおよび補助精留塔の還流液となる液
化窒素の量を、補助精留塔へのそれぞれの導入径路に設
けた弁で調節しつつ、補助精留塔頂部から水素等低沸点
成分の含有量の多くなった窒素ガスを排窒素ガスとして
排出することにより、補助精留塔底部から水素等低沸点
成分の含有量1ppm以下の高純度液化窒素を製品とし
て採取することができる。
[Operation] As described above, the present invention is intended to raise the auxiliary rectification tower.
Nitrogen gas as gas and liquid as reflux liquid of auxiliary rectification column
Set the amount of nitrogen oxide in each introduction path to the auxiliary rectification column.
Low boiling point such as hydrogen from the top of the auxiliary rectification column while adjusting with a digit valve
Nitrogen gas with a high content of components is used as exhaust nitrogen gas
By discharging, the low boiling point of hydrogen etc. from the bottom of the auxiliary rectification column
High-purity liquefied nitrogen with a content of 1ppm or less as a product
Can be collected.

【0011】[0011]

【実施例】以下本発明の実施例について図面に基づいて
説明する。なお、図7および図8と同一構成要素につい
ては、同符号を付してその詳細な説明は省略する。
Embodiments of the present invention will be described below with reference to the drawings. The same components as those in FIGS. 7 and 8 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0012】図1は、本発明を単式精留塔に適用した第
1実施例を示すもので、主精留塔である単式精留塔2に
補助精留塔30を設けた場合である。単式精留塔2上部
より導出した窒素ガスの一部を、径路31の調節弁32
でその量を調節しつつ前記補助精留塔30の下部に導入
して上昇ガスとし、単式精留塔2上部の残りの窒素ガス
を径路5を介して凝縮蒸発器6の凝縮側に導入し、径路
7から凝縮蒸発器6に導入された液化空気および補助精
留塔30の底部から径路33を通って凝縮蒸発器6の蒸
発側に導入された液化窒素により液化し、径路8に導出
した液化窒素の一部を分岐して径路34の膨張弁35で
膨張降圧し、前記補助精留塔30の上部に還流液とし
て、その量を調節しつつ導入し精留を行なわせる。
FIG. 1 shows a first embodiment in which the present invention is applied to a single-column rectification column, in which a single-column rectification column 2 which is a main rectification column is provided with an auxiliary rectification column 30. A part of the nitrogen gas led out from the upper part of the single-column rectification column 2 is fed to a control valve 32 of a path 31
While adjusting the amount thereof, the gas is introduced into the lower part of the auxiliary rectification column 30 to form an ascending gas, and the remaining nitrogen gas in the upper part of the single-column rectification column 2 is introduced into the condensation side of the condensation evaporator 6 via the path 5. Liquefied air introduced from the path 7 into the condensation evaporator 6 and liquefied nitrogen introduced from the bottom of the auxiliary rectification column 30 into the evaporation side of the condensation evaporator 6 through the path 33 and liquefied, and led out into the path 8. A part of the liquefied nitrogen is branched, expanded and reduced in pressure by an expansion valve 35 of a path 34, and is introduced into the upper part of the auxiliary rectification column 30 as a reflux liquid while controlling its amount to carry out rectification.

【0013】そして、補助精留塔30頂部より水素等低
沸点成分の含有量の多くなった窒素ガスを、径路36の
調節弁37で濃度を制御しながら排窒素ガスとして排出
し、一方、補助精留塔30底部より水素等低沸点成分の
含有量1ppm以下の高純度液化窒素を径路38より製
品として採取すると共に、この高純度液化窒素の一部を
前記径路33を通して凝縮蒸発器6の蒸発側に導入して
気化させ、径路39から水素等低沸点成分の含有量1p
pm以下の高純度窒素ガスを導出する。また、径路8で
一部を分岐した液化窒素の残部は、径路40により単式
精留塔2の上部に還流液として戻される。
Then, the nitrogen gas having a large content of low boiling point components such as hydrogen is discharged from the top of the auxiliary rectification column 30 as exhaust nitrogen gas while the concentration is controlled by the control valve 37 of the path 36.
And, on the other hand, condenses the content 1ppm or less of high purity liquid nitrogen, such as hydrogen, low-boiling components from the auxiliary rectification column 30 bottom together taken from path 38 as a product, a portion of this high purity liquid nitrogen through the path 33 It is introduced into the evaporation side of the evaporator 6 to be vaporized, and the content of low boiling point components such as hydrogen is 1 p from the path 39.
High-purity nitrogen gas of pm or less is derived . The remaining part of the liquefied nitrogen, which is partially branched in the path 8, is returned to the upper portion of the single-column rectification column 2 as a reflux liquid by the path 40.

【0014】このように、単精留塔2に補助精留塔3
0を付設し、補助精留塔30の下部に上昇ガスとして導
入される窒素ガスおよび補助精留塔30の上部に還流液
として導入される液化窒素の量を、径路31の調節弁3
2と径路34の膨張弁35とで調節して精留することに
より、補助精留塔30底部より水素等低沸点成分の含有
量1ppm以下の高純度液化窒素を製品として採取する
ことができる。即ち、補助精留塔30の上部における水
素等低沸点成分の濃縮の程度は、調節弁32,膨張弁3
5により調節される径路31,34の窒素量に支配さ
れ、径路33,38より導出される液化窒素中の水素等
低沸点成分の量も、調節弁32,膨張弁35,調節弁3
7等の調節により1ppm以下にすることができる。
[0014] In this way, auxiliary to the single-type rectification column 2 fractionator 3
0 is attached, and the amount of nitrogen gas introduced as a rising gas to the lower part of the auxiliary rectification column 30 and the amount of liquefied nitrogen introduced to the upper part of the auxiliary rectification column 30 as a reflux liquid are controlled by the control valve 3 of the path 31.
2 and the expansion valve 35 in the path 34 are used for rectification to collect high-purity liquefied nitrogen containing 1 ppm or less of a low boiling point component such as hydrogen as a product from the bottom of the auxiliary rectification column 30. That is, the degree of concentration of low boiling point components such as hydrogen in the upper portion of the auxiliary rectification column 30 is controlled by the control valve 32 and the expansion valve 3.
The amount of low boiling point components such as hydrogen in the liquefied nitrogen derived from the paths 33 and 38 is also controlled by the amount of nitrogen in the paths 31 and 34 adjusted by the control valve 32, the expansion valve 35, and the control valve 3.
Ru can be 1ppm or less by adjusting the 7 or the like.

【0015】また、この水素等低沸点成分の含有量1p
pm以下の高純度液化窒素の一部を凝縮蒸発器6で気化
させることにより、水素等低沸点成分の含有量1ppm
以下の高純度窒素ガスも製品として得られる。
The content of this low boiling point component such as hydrogen is 1 p
By vaporizing a part of high-purity liquefied nitrogen of pm or less in the condensation evaporator 6, the content of low boiling point components such as hydrogen is 1 ppm.
The following high-purity nitrogen gas is also obtained as a product .

【0016】図2は第2実施例を示すもので、主精留塔
である複式精留塔の上部塔18の上方に補助精留塔40
を設けた場合である。上部塔18頂部より径路24を通
って導出される製品窒素ガスの一部を、径路41の調節
弁42でその量を調節しつつ前記補助精留塔40の下部
に導入して上昇ガスとし、複式精留塔の前記下部塔11
(図8図示)頂部より導出した液化窒素または下部塔1
1上部より導出した窒素ガスを主凝縮蒸発器13に導入
して液化窒素としたものを径路15の膨張弁17を介し
て膨張降圧し、還流液として前記補助精留塔40上部に
導入して精留を行なわせる。
FIG. 2 shows a second embodiment of the main rectification column.
Above the auxiliary rectification column 40 of double column of the upper tower 18 is
Is provided. Part of the product nitrogen gas discharged from the top of the upper tower 18 through the path 24 is introduced into the lower portion of the auxiliary rectification tower 40 while adjusting the amount thereof by the control valve 42 of the path 41, and is used as the rising gas, The lower tower 11 of the double rectification tower
(See Figure 8) Liquefied nitrogen drawn from the top or lower tower 1
1 Nitrogen gas derived from the upper part is introduced into the main condenser evaporator 13 and made into liquefied nitrogen, which is expanded and reduced in pressure through an expansion valve 17 of a path 15 and introduced as a reflux liquid into the upper part of the auxiliary rectification column 40. Make rectification.

【0017】そして、該補助精留塔40頂部より水素等
低沸点成分の含有量の多くなった窒素ガスを、径路43
の調節弁44で濃度を制御しながら排窒素ガスとして排
し、一方、該補助精留塔40底部より水素等低沸点成
分の含有量1ppm以下の高純度液化窒素を径路45を
通して製品として採取する。また、この高純度液化窒素
の一部を径路46を通して、上部塔18頂部に還流液と
して導入する。
Then, the nitrogen gas containing a large amount of low-boiling components such as hydrogen from the top of the auxiliary rectification column 40 is passed through the path 43.
While controlling the concentration regulating valve 44 of exhaust as the exhaust nitrogen gas
Out and, on the other hand, collecting the content 1ppm or less of high purity liquid nitrogen, such as hydrogen, low-boiling components from the auxiliary rectification column 40 bottom as a product through the path 45. Further, a part of this high-purity liquefied nitrogen is introduced as a reflux liquid to the top of the upper tower 18 through the path 46.

【0018】このように、主凝縮蒸発器13で生じた低
沸点成分を多く含む液化窒素を上部塔18に導入する前
に補助精留塔40に導入して予備的に精留することによ
り、径路45より得られる高純度液化窒素中の水素等低
沸点成分を1ppm以下にすることができる。この濃度
の調節は、前記調節弁42、膨張弁17で補助精留塔4
0に導入する窒素ガスや液化窒素の量を調節することお
よび調節弁44で径路43より導出する排窒素ガスの量
を調節することにより行なうことができる。
As described above, by introducing the liquefied nitrogen containing a large amount of low boiling point components generated in the main condenser evaporator 13 into the auxiliary rectification column 40 and preliminarily rectifying it before introducing it into the upper column 18. The low boiling point component such as hydrogen in the high-purity liquefied nitrogen obtained from the path 45 can be reduced to 1 ppm or less. The concentration is adjusted by using the control valve 42 and the expansion valve 17 in the auxiliary rectification column 4
This can be done by adjusting the amounts of nitrogen gas and liquefied nitrogen introduced to 0 and adjusting the amount of exhaust nitrogen gas discharged from the path 43 by the control valve 44.

【0019】また、水素等低沸点成分の含有量1ppm
以下の高純度液化窒素の一部を、径路46を通して上部
塔18頂部に還流液として導入し、上部塔18上部に上
昇してくる窒素ガスとの間で精留を行わせることによ
り、上部塔18上部から径路24を介して低沸点成分の
含有量の少ない高純度窒素ガスを取出すこともできる。
The content of low boiling point components such as hydrogen is 1 ppm
A part of the high-purity liquefied nitrogen described below is introduced as a reflux liquid to the top of the upper tower 18 through the path 46, and rectification is performed with the nitrogen gas rising to the upper part of the upper tower 18, whereby the upper tower is It is also possible to take out high-purity nitrogen gas having a low content of low-boiling components from the upper part of 18 via the path 24.

【0020】図3は本発明の第3実施例を示すもので、
複式精留塔の上部塔18の圧力より少し高い圧力状態中
に補助精留塔50を設けた場合である。複式精留塔の下
部塔11頂部より導出した窒素ガスの一部を、径路51
の調節弁52でその量を調節しつつ補助精留塔50の下
部に導入して上昇ガスとし、下部塔11頂部より導出し
た窒素ガスの残部を径路12を介して主凝縮蒸発器13
で液化酸素等により液化し、この液化窒素の一部を径路
15の過冷器16で冷却した後膨張弁17で膨張降圧さ
せ、低沸点成分が濃縮されたフラッシュガスを含む液化
窒素として前記補助精留塔50頂部に還流液として導入
し精留を行なわせる。
FIG. 3 shows a third embodiment of the present invention.
This is a case where the auxiliary rectification column 50 is provided in a pressure state slightly higher than the pressure of the upper column 18 of the double rectification column. A part of the nitrogen gas derived from the top of the lower column 11 of the double-column rectification column
The amount of the nitrogen gas is introduced into the lower part of the auxiliary rectification column 50 as an ascending gas while the amount is adjusted by the control valve 52 of the above, and the balance of the nitrogen gas derived from the top of the lower part column 11 is passed through the path 12 to the main condenser evaporator 13
Is liquefied by liquefied oxygen, etc., and a part of this liquefied nitrogen is cooled in the subcooler 16 of the path 15 and then expanded and reduced in pressure by the expansion valve 17 to serve as liquefied nitrogen containing flash gas in which low-boiling components are concentrated. It is introduced as a reflux liquid at the top of the rectification column 50 to carry out rectification.

【0021】そして、補助精留塔50頂部より水素等低
沸点成分の含有量の多くなった前記フラッシュガスを含
む窒素ガスを、径路53の調節弁54で水素等低沸点成
分の濃度を制御して排窒素ガスとして排出すると共に、
該補助精留塔50底部より水素等低沸点成分の含有量1
ppm以下の高純度液化窒素を径路55より製品として
採取する。また、この高純度液化窒素の一部を径路56
の弁57でその量を調節して複式精留塔の上部塔18頂
部に還流液として導入し、上部塔18内を上昇する窒素
ガスとさらに精留を行なわせることにより、上部塔18
頂部より径路24を通して水素等低沸点成分の含有量の
少ない高純度窒素ガスを取出すことができる。
The nitrogen gas containing the flash gas, which has a higher content of low boiling point components such as hydrogen, is supplied from the top of the auxiliary rectification column 50, and the concentration of the low boiling point components such as hydrogen is controlled by the control valve 54 in the path 53. Exhausted as exhaust nitrogen gas ,
Content of low boiling point components such as hydrogen from the bottom of the auxiliary rectification column 50 1
High purity liquefied nitrogen of less than ppm as a product from path 55
Collect . Further, a part of this high-purity liquefied nitrogen is passed through
The amount thereof is adjusted by a valve 57 of the upper column 18 of the double rectification column to be introduced as a reflux liquid at the top of the upper column 18, and nitrogen gas rising in the upper column 18 is further rectified.
High-purity nitrogen gas having a low content of low boiling point components such as hydrogen can be taken out from the top through the path 24.

【0022】なお、径路55,57より導出する液化窒
素中の水素等低沸点成分の含有量が1ppm以下になる
ように膨脹弁17,調節弁52を調節して、径路15,
51の窒素量を制御する。この場合、膨脹弁17、調節
弁52は手動であり、調節弁54はこれに伴う系内の圧
力を検出して作動する自動圧力調節弁である。
The expansion valve 17 and the control valve 52 are adjusted so that the content of low boiling point components such as hydrogen in the liquefied nitrogen discharged from the paths 55 and 57 is 1 ppm or less, and the paths 15 and 57 are adjusted.
Control the nitrogen content of 51. In this case, the expansion valve 17 and the control valve 52 are manual, and the control valve 54 is an automatic pressure control valve that operates by detecting the pressure in the system accompanying this.

【0023】また、一体型の複式精留塔で直管型の主凝
縮蒸発器を使用の場合は、下部塔頂部に溜った液化窒素
の一部を前記補助精留塔50頂部に還流液として導入す
る。
When the straight tube type main condenser evaporator is used in the integrated double rectification column, a part of the liquefied nitrogen accumulated at the top of the lower column is used as a reflux liquid at the top of the auxiliary rectification column 50. Introduce.

【0024】図4は本発明の第4実施例を示すもので、
複式精留塔の下部塔11の圧力より少し低い圧力状態中
に補助精留塔60を設けた場合である。図3で説明した
第3実施例と同様に、補助精留塔60の下部に下部塔1
1頂部より導出した窒素ガスの一部を、径路61の調節
弁62でその量を調節しつつ導入して上昇ガスとし、残
りの窒素ガスを径路12,主凝縮蒸発器13を介して液
化窒素とし、その一部を径路15の調節弁63を介して
前記補助精留塔60上部へ還流液として導入し精留を行
なわせる。
FIG. 4 shows a fourth embodiment of the present invention.
This is a case where the auxiliary rectification column 60 is provided in a pressure state slightly lower than the pressure of the lower column 11 of the double rectification column. Similar to the third embodiment described with reference to FIG. 3, the lower tower 1 is provided at the bottom of the auxiliary rectification tower 60.
1 A part of the nitrogen gas derived from the top is introduced as a rising gas by adjusting the amount thereof with a control valve 62 of a path 61, and the remaining nitrogen gas is liquefied nitrogen via a path 12 and a main condenser evaporator 13. Then, a part thereof is introduced as a reflux liquid into the upper part of the auxiliary rectification column 60 through the control valve 63 of the path 15 to carry out rectification.

【0025】そして、補助精留塔60頂部より水素等低
沸点成分の濃度を制御する調節弁64を設けた径路65
を通して水素等低沸点成分の含有量の多い窒素ガスを
窒素ガスとして排出すると共に、補助精留塔60底部よ
り水素等低沸点成分の含有量1ppm以下の高純度液化
窒素を径路66から製品として採取する。また、この高
純度液化窒素の一部を経路67に分岐して過冷器16及
び膨張弁17を通して過冷及び膨張降圧し、上部塔18
頂部に還流液として導入し、該上部塔18内を上昇する
窒素ガスとさらに精留を行なわせ、上部塔18頂部より
径路24を通して水素等低沸点成分の含有量の少ない高
純度窒素ガスを取出すことができる
A path 65 provided with a control valve 64 for controlling the concentration of low boiling point components such as hydrogen from the top of the auxiliary rectification column 60.
Through which nitrogen gas with a high content of low boiling point components such as hydrogen is discharged.
While being discharged as nitrogen gas , high-purity liquefied nitrogen containing 1 ppm or less of a low boiling point component such as hydrogen is collected from the bottom of the auxiliary rectification column 60 as a product from the path 66. In addition, a part of this high-purity liquefied nitrogen is branched to a path 67, supercooled and expanded and reduced in pressure through a subcooler 16 and an expansion valve 17, and an upper tower 18
A high-purity nitrogen gas having a low content of low boiling point components such as hydrogen is taken out from the top of the upper tower 18 through a path 24 by introducing it as a reflux liquid into the top, and further rectifying the nitrogen gas rising in the upper tower 18. You can

【0026】なお、径路66より導出する液化窒素中の
水素等低沸点成分の含有量が1ppm以下になるよう
に、調節弁62,63を調節して径路15,61の窒素
量を制御する。
The control valves 62 and 63 are adjusted so that the content of the low boiling point component such as hydrogen in the liquefied nitrogen discharged from the path 66 is 1 ppm or less, and the amount of nitrogen in the paths 15 and 61 is controlled.

【0027】また、一体型の複式精留塔で直管型の主凝
縮蒸発器を使用の場合は、この実施例の場合にも、下部
塔11頂部に溜った液化窒素の一部を補助精留塔60頂
部に還流液として導入する。
Further, in the case of using the straight tube type main condenser evaporator in the integrated type double rectification column, also in the case of this embodiment, a part of the liquefied nitrogen accumulated at the top of the lower column 11 is supplemented and rectified. It is introduced as a reflux liquid at the top of the distillation column 60.

【0028】次に、図8に示す従来方法の場合と、図3
に示す本発明の第3実施例について、その各部位の流量
及び水素濃度を表1及び表2に示す。なお、表1の部位
(a〜p)を図5に、表2の部位(f′〜o′)を図6
に示す。
Next, in the case of the conventional method shown in FIG.
For the third embodiment of the present invention shown in, showing the flow rate and the hydrogen concentration of the respective parts in Tables 1 and 2. The parts (a to p) of Table 1 are shown in FIG. 5, and the parts (f 'to o') of Table 2 are shown in FIG.
Shown in

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】この計算結果から明らかなように、190
00Nm/hの原料空気を導入して1500Nm
hの製品窒素ガスを取出す場合、従来は、10.2pp
mの水素成分が製品窒素ガス中に含有されていたもの
が、本第3実施例では、補助精留塔の操作圧力を1.5
ata,2.0ataにし、理論段数を夫々1.5段,
2段したとき、夫々0.2ppmにまで低減除去するこ
とができる。
As is clear from this calculation result, 190
Introducing raw material air of 00 Nm 3 / h to 1500 Nm 3 /
When taking out product nitrogen gas of h, it is 10.2pp in the past.
Although the hydrogen component of m was contained in the product nitrogen gas, in the third embodiment, the operating pressure of the auxiliary rectification column was 1.5.
atta and 2.0 at the theoretical plate numbers of 1.5 and
When the two-stage, Ru can be reduced removed to a respectively 0.2ppm.

【0032】なお、理論段数は理想塔のもので、実際の
塔では、気液接触の不完全や飛沫同伴などが生じ、理想
塔よりも多数の段数を必要とする。
The theoretical number of plates is that of an ideal column. In an actual column, incomplete gas-liquid contact and entrainment of droplets occur, and thus a larger number of plates is required than the ideal column.

【0033】[0033]

【発明の効果】本発明は以上説明した如く、主精留塔に
補助精留塔を付設し、該補助精留塔の下部に主精留塔よ
りの窒素ガスをその量を調節しつつ導入して上昇ガスと
し、主精留塔より導出した液化窒素または窒素ガスを液
化して前記補助精留塔にその量を調節しつつ導入して還
流液とし、該還流液と前記上昇ガスとで精留を行なわ
せ、該補助精留塔頂部より水素等低沸点成分の含有量の
多くなった窒素ガスを排窒素ガスとして排出すると共
に、該補助精留塔底部より水素等低沸点成分の含有量1
ppm以下の高純度液化窒素を製品として採取するの
で、水素等の低沸点成分を効率よく簡単かつ廉価に低減
することができ、高純度液化窒素を容易に製造すること
ができる。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, an auxiliary rectification column is attached to the main rectification column, and nitrogen gas from the main rectification column is introduced into the lower part of the auxiliary rectification column while controlling the amount thereof. As a rising gas, liquefied liquefied nitrogen or nitrogen gas derived from the main rectification column is liquefied and introduced into the auxiliary rectification column while adjusting its amount to form a reflux liquid, and the reflux liquid and the rising gas are combined. Rectification is performed, and nitrogen gas having a high content of low boiling point components such as hydrogen is discharged from the top of the auxiliary rectification column as exhaust nitrogen gas , and at the same time, hydrogen is discharged from the bottom of the auxiliary rectification column. Content of low boiling point component such as 1
High-purity liquefied nitrogen of less than ppm is collected as a product, so low boiling point components such as hydrogen can be efficiently and easily reduced at low cost.
And can easily produce high-purity liquefied nitrogen.
Can be.

【0034】また、補助精留塔底部より導出した水素等
低沸点成分の含有量1ppm以下の高純度液化窒素の一
部を凝縮蒸発器を経て気化して水素等低沸点成分の含有
量1ppm以下の高純度窒素ガスとして導出することに
より、製品高純度窒素ガスを採取する場合、気化に際し
て放出される寒冷をほぼ完全に回収し得、かつ蒸発器を
別途設ける必要がなく、しかも、半導体工業用の高純度
窒素ガスとすることができる。なお、このように低沸点
成分を除去した窒素を製造するために補助精留塔を設け
ることは特に既設のプラント等に好適に採用することが
できる。
Further, a portion of high-purity liquefied nitrogen having a low boiling point component such as hydrogen content of 1 ppm or less, which is derived from the bottom of the auxiliary rectification column, is vaporized through a condensation evaporator and the content of low boiling point component gas such as hydrogen is 1 ppm or less. When the product high-purity nitrogen gas is collected by deriving it as high-purity nitrogen gas, it is possible to almost completely recover the cold emitted during vaporization, and it is not necessary to install an evaporator separately High purity nitrogen gas can be used. In addition, the provision of the auxiliary rectification column for producing nitrogen from which the low-boiling point component has been removed in this way can be suitably adopted particularly in an existing plant or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を単式精留塔に適用した第1実施例を説
明するための系統図。
FIG. 1 is a system diagram for explaining a first embodiment in which the present invention is applied to a single-column rectification column.

【図2】本発明を複式精留塔の上部塔に適用した第2実
施例を説明するための系統図。
FIG. 2 is a system diagram for explaining a second embodiment in which the present invention is applied to an upper column of a double rectification column.

【図3】本発明を複式精留塔の上部塔圧力状態の径路に
適用した第3実施例を説明するための系統図。
FIG. 3 is a system diagram for explaining a third embodiment in which the present invention is applied to the path of the double column rectification column in the upper column pressure state.

【図4】本発明を複式精留塔の下部塔圧力状態の径路に
適用した第4実施例を説明するための系統図。
FIG. 4 is a system diagram for explaining a fourth embodiment in which the present invention is applied to the path of the lower column pressure state of the double rectification column.

【図5】表1における水素濃度および流量を示した各部
位を示す従来の複式精留塔の系統図。
FIG. 5 is a systematic diagram of a conventional double-column rectification column showing each part showing hydrogen concentration and flow rate in Table 1.

【図6】表2における水素濃度及び流量を示した各部位
を示す図3の一部拡大系統図。
FIG. 6 is a partially enlarged system diagram of FIG. 3 showing each portion showing hydrogen concentration and flow rate in Table 2.

【図7】単式精留塔による従来の空気液化分離方法を説
明するための系統図。
FIG. 7 is a system diagram for explaining a conventional air liquefaction separation method using a single-column rectification tower.

【図8】複式精留塔による従来の空気液化分離方法を説
明するための系統図。
FIG. 8 is a system diagram for explaining a conventional air liquefaction separation method using a double rectification column.

【符号の説明】[Explanation of symbols]

2…単式精留塔 6…凝縮蒸発器 11…下部塔 13…主凝縮蒸発器 16,22…過冷器 17,23,35…膨張弁 18…上部塔 20…膨張タービン 30,40,50,60…補助精留塔 32,37,42,44,52,54,57,62,6
3,64…調節弁
2 ... Single rectification tower 6 ... Condensing evaporator 11 ... Lower tower 13 ... Main condensing evaporator 16, 22 ... Supercooler 17, 23, 35 ... Expansion valve 18 ... Upper tower 20 ... Expansion turbine 30, 40, 50, 60 ... Auxiliary rectification column 32, 37, 42, 44, 52, 54, 57, 62, 6
3,64 ... Control valve

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高純度窒素を採取する空気液化分離方法
において、主精留塔に補助精留塔を付設し、該補助精留
塔の下部に主精留塔よりの窒素ガスをその量を調節しつ
つ導入して上昇ガスとし、主精留塔より導出した液化窒
素または窒素ガスを液化して前記補助精留塔にその量を
調節しつつ導入して還流液とし、該還流液と前記上昇ガ
スとで精留を行なわせ、該補助精留塔頂部より水素等低
沸点成分の含有量の多くなった窒素ガスを排窒素ガスと
して排出すると共に、該補助精留塔底部より水素等低沸
点成分の含有量1ppm以下の高純度液化窒素を製品と
して採取することを特徴とする空気液化分離方法。
1. An air liquefaction separation method for collecting high-purity nitrogen, wherein an auxiliary rectification column is attached to the main rectification column, and the amount of nitrogen gas from the main rectification column is set below the auxiliary rectification column. The gas is introduced while adjusting it to form an ascending gas, and liquefied nitrogen or nitrogen gas derived from the main rectification column is liquefied and its amount is fed to the auxiliary rectification column.
Introduced while adjusting the reflux liquid, the reflux liquid and the rising gas
Scan and in to perform the rectification, and exhaust nitrogen gas much since the nitrogen gas content of the hydrogen and low-boiling components from the auxiliary rectification column top
And discharge it from the bottom of the auxiliary rectification column to obtain high-purity liquefied nitrogen containing 1 ppm or less of low boiling point components such as hydrogen as a product.
Cryogenic air separation method which is characterized in that to collect.
JP4170577A 1992-06-29 1992-06-29 Air liquefaction separation method Expired - Lifetime JP2553989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4170577A JP2553989B2 (en) 1992-06-29 1992-06-29 Air liquefaction separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4170577A JP2553989B2 (en) 1992-06-29 1992-06-29 Air liquefaction separation method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP25180083A Division JPS60142184A (en) 1983-12-28 1983-12-28 Method of liquefying and separating air

Publications (2)

Publication Number Publication Date
JPH05180559A JPH05180559A (en) 1993-07-23
JP2553989B2 true JP2553989B2 (en) 1996-11-13

Family

ID=15907420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4170577A Expired - Lifetime JP2553989B2 (en) 1992-06-29 1992-06-29 Air liquefaction separation method

Country Status (1)

Country Link
JP (1) JP2553989B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241754A (en) * 1975-09-29 1977-03-31 Aisin Seiki Co Ltd Clutch construction
JPS5644577A (en) * 1979-09-19 1981-04-23 Hitachi Ltd Method of sampling pressurized nitrogen for air separator

Also Published As

Publication number Publication date
JPH05180559A (en) 1993-07-23

Similar Documents

Publication Publication Date Title
KR100291684B1 (en) How to separate air
JP4331460B2 (en) Method and apparatus for producing krypton and / or xenon by low temperature air separation
US5582035A (en) Air separation
US4670031A (en) Increased argon recovery from air distillation
US20220325952A1 (en) Method and apparatus for producing product nitrogen gas and product argon
US4464191A (en) Cryogenic gas separation with liquid exchanging columns
JPH102664A (en) Low temperature distillating method for air flow of compressed raw material for manufacturing oxygen products of low purity and high purity
PL183332B1 (en) Method of and system for separating air
AU706680B2 (en) Air separation
JP2007064617A (en) Method of manufacturing krypton and/or xenon by cryogenic air separation
US5715706A (en) Air separation
KR100289109B1 (en) Air boiling cryogenic rectification system with staged feed air condensation
EP0206493A1 (en) Separation of argon from a gas mixture
JPH05288464A (en) Method and device for cryogenic rectification for producing nitrogen and ultra high purity oxygen
JP2553989B2 (en) Air liquefaction separation method
US4530708A (en) Air separation method and apparatus therefor
US6314757B1 (en) Cryogenic rectification system for processing atmospheric fluids
KR19990082696A (en) Cryogenic rectification system with serial liquid air feed
JP4782077B2 (en) Air separation method and apparatus
JPS60142183A (en) Method of liquefying and separating air
JPH09257365A (en) Low temperature fractionating system by stepwise condensation of feed air
JPH0526114B2 (en)
JP3082092B2 (en) Oxygen purification method and apparatus
JP2001165564A (en) Low-temperature air separation method and device
EP0639746A1 (en) Air separation

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term