JP2553560B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP2553560B2
JP2553560B2 JP62156837A JP15683787A JP2553560B2 JP 2553560 B2 JP2553560 B2 JP 2553560B2 JP 62156837 A JP62156837 A JP 62156837A JP 15683787 A JP15683787 A JP 15683787A JP 2553560 B2 JP2553560 B2 JP 2553560B2
Authority
JP
Japan
Prior art keywords
battery
aqueous electrolyte
positive electrode
negative electrode
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62156837A
Other languages
Japanese (ja)
Other versions
JPS642258A (en
JPH012258A (en
Inventor
信夫 江田
秀 越名
彰克 守田
幸雄 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62156837A priority Critical patent/JP2553560B2/en
Publication of JPS642258A publication Critical patent/JPS642258A/en
Publication of JPH012258A publication Critical patent/JPH012258A/en
Application granted granted Critical
Publication of JP2553560B2 publication Critical patent/JP2553560B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解液二次電池、とくにポリアニリン
正極と、リチウムイオンをドープ・脱ドープするか、あ
るいは吸蔵・放出してなるカーボン負極を備えた電池に
係るものである。
Description: TECHNICAL FIELD The present invention comprises a non-aqueous electrolyte secondary battery, particularly a polyaniline positive electrode, and a carbon negative electrode formed by doping or dedoping lithium ions, or by occluding and releasing lithium ions. It relates to a battery.

従来の技術 従来、この種の非水電解液電池は高電圧・高エネルギ
ー密度などの特長から民生用電子機器の電源に広く用い
られている。最近では、この電池を二次電池化しようと
する試みが盛んである。高エネルギー密度のためには1
つの高容量密度が必要となるがそのためには正極活物質
には無機化合物が適している。一方、最近ではポリアセ
チレン,ポリアニリンやポリピロールなどの導電性高分
子を正極活物質に用いようとする全く新しい動きがある
が、本質的に容量が小さい難点がある。これら導電性高
分子を用いた、いわゆるプラスチック電池は例えば正極
材料として用いるときは、充電には電解液中のアニオン
種がドープされるものであり、これとともに正極自体の
導電性が向上していく。一方、放電ではドープされたア
ニオン種が脱ドープされて電解液中へ溶出していくとと
もに正極自体の導電性が低下し、絶縁体へと変化してい
くものである。つまり、充電時には電解液中のアニオ
ン,カチオン種が正,負極へドープされ、放電時にはそ
れぞれのアニオン,カチオン種が再び電解液中へ溶出す
るという機構からなる。
2. Description of the Related Art Conventionally, this type of non-aqueous electrolyte battery has been widely used as a power source for consumer electronic devices because of its features such as high voltage and high energy density. Recently, many attempts have been made to convert this battery into a secondary battery. 1 for high energy density
Inorganic compounds are suitable for the positive electrode active material for that purpose, which requires two high capacity densities. On the other hand, recently, there is a completely new movement to use a conductive polymer such as polyacetylene, polyaniline or polypyrrole as a positive electrode active material, but there is a problem that the capacity is essentially small. When a so-called plastic battery using these conductive polymers is used as, for example, a positive electrode material, the anion species in the electrolytic solution are doped for charging, and the conductivity of the positive electrode itself is improved. . On the other hand, in the discharge, the doped anion species are dedoped and eluted into the electrolytic solution, and the conductivity of the positive electrode itself is reduced, so that it changes into an insulator. That is, the mechanism is such that during charging, the anion and cation species in the electrolytic solution are doped into the positive and negative electrodes, and during discharging, the respective anion and cation species are eluted into the electrolytic solution again.

発明が解決しようとする問題点 これらプラスチック電池の難点の1つは上記に述べた
ように容量が小さい点があるが、少なくとも負極にリチ
ウム金属を用いると電池内容積の点から容量の多少の増
加は可能となる。しかしこの電池形は容量は無機化合物
を正極に用いた場合のせいぜい1/3〜1/2程度にしかなら
ないので、実際の用途はかなり制限され、例えばICメモ
リーのバックアップ用電源などの分野に限定される。上
記メモリーのバックアップ用電源として要求される特性
の1つに0V長期過放電回復性があり、これは放電により
電池電圧が0Vになって長期間、例えば半年乃至1年間放
置された後でも充電で容量が元の特性まで戻るというこ
とが要求される。しかし、一般に無機化合物を正極に用
いた場合には放電により負極からのリチウムイオンが無
機化合物の結晶構造中へ挿入していくために0V過放電な
どの深い放電では上記の結晶構造が過剰のリチウムイオ
ンにより破壊されてしまい、再充電・放電が不可能とな
る。一方、プラスチック電池の場合でもポリアセチレ
ン,ポリパラフェニレン,ポリチオフェンなどでも0Vな
どの深い放電ではアニオンの脱ドープの後にリチウムイ
オンの挿入反応がひき続きおこり、これにともないポリ
マー主鎖の切断がおこるので再充方電は難しい。
Problems to be Solved by the Invention One of the drawbacks of these plastic batteries is that they have a small capacity as described above. However, if lithium metal is used for at least the negative electrode, the capacity will increase somewhat from the viewpoint of the battery internal volume. Will be possible. However, this battery type has a capacity of about 1/3 to 1/2 at most when an inorganic compound is used for the positive electrode, so the actual application is considerably limited, and it is limited to the field such as a power supply for backup of IC memory. To be done. One of the characteristics required as a backup power supply for the above memory is 0V long-term over-discharge recovery, which means that the battery voltage becomes 0V due to discharge and can be charged even after being left for a long time, for example, half a year to one year. It is required that the capacity returns to its original characteristics. However, in general, when an inorganic compound is used for the positive electrode, lithium ions from the negative electrode are inserted into the crystal structure of the inorganic compound due to discharge, and therefore the above-mentioned crystal structure is excessive in a deep discharge such as 0 V overdischarge. It will be destroyed by the ions, making recharge / discharge impossible. On the other hand, even in the case of plastic batteries, even with polyacetylene, polyparaphenylene, polythiophene, etc., at deep discharges such as 0 V, lithium ion insertion reaction continues after deionization of anions, and the main chain of the polymer is cleaved. Charging is difficult.

しかし、ポリピロールやポリアニリンの場合には上記
の深い放電を行ってもリチウムイオンの挿入反応はおこ
らないとされている。つまり、これらのポリピロールや
ポリアニリンを正極活物質として用いた電池は0V長期過
放電回復性ひいてはメモリーバックアップ電源には非常
に有望なものであるといえる。しかし、実際にポリアニ
リンを正極とし、大きな面積をもつ金属リチウムを対極
としてポリアニリン正極面積基準で60μA/cm2乃至0.6μ
A/cm2の電流密度で放電を行うと、0.2〜0.25Vの電位領
域においてLiの挿入反応と考えられる大きな容量をもつ
放電領域がみられ、その後の充放電がうまくいかないこ
とが分った。つまり、実際のメモリーバックアップ電流
領域である1μA乃至100μA(本実施例では正、負極
とも同一面積であり0.6乃至60μA/cm2の電流密度)では
ポリアニリンを正極活物質とし、金属リチウムを負極と
する電池はメモリーバックアップ用の電源としては不適
であるということができる。
However, in the case of polypyrrole or polyaniline, it is said that the lithium ion insertion reaction does not occur even if the deep discharge is performed. In other words, it can be said that the battery using these polypyrrole and polyaniline as the positive electrode active material is very promising for 0V long-term over-discharge recovery property and eventually for the memory backup power supply. However, using polyaniline as the positive electrode and metallic lithium with a large area as the counter electrode, the polyaniline positive electrode area standard is 60 μA / cm 2 to 0.6 μ.
When the discharge was carried out at a current density of A / cm 2, a discharge region with a large capacity, which is considered to be an insertion reaction of Li, was observed in the potential region of 0.2 to 0.25V, and it was found that the subsequent charge / discharge was not successful. That is, in the actual memory backup current region of 1 μA to 100 μA (in this embodiment, the positive and negative electrodes have the same area and the current density is 0.6 to 60 μA / cm 2 ), polyaniline is used as the positive electrode active material and metallic lithium is used as the negative electrode. It can be said that the battery is not suitable as a power source for memory backup.

問題点を解決するための手段 しかし、メモリーバックアップ用電池の材料としてポ
リピロールは言うまでもなく、ポリアニリンについては
リチウムイオンが吸蔵もしくはドープされた負極の電位
がリチウム金属に対して0.26Vより貴な電位をもつ負極
を用いることにより、この問題は解決できる。
Means for Solving Problems However, not to mention polypyrrole as a material for a battery for memory backup, with respect to polyaniline, the potential of the negative electrode in which lithium ions are occluded or doped has a potential nobler than 0.26 V with respect to lithium metal. This problem can be solved by using a negative electrode.

作用 負極の電位が基準値としての金属リチウムに対して0.
26Vより貴な材料を用いれば、上記のようなリチウムイ
オンの正極への挿入反応を回避することが出来、0V長期
過放電を行ってもそのあとの充放電に何ら問題がないこ
ととなる。
Action The negative electrode potential is 0 with respect to metallic lithium as a reference value.
If a material nobler than 26 V is used, the above insertion reaction of lithium ions into the positive electrode can be avoided, and even if 0 V long-term overdischarge is performed, there is no problem in the subsequent charge and discharge.

実 施 例 以下、図面とともに本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below with reference to the drawings.

第1図は組立て直後のコイン形非水電解液二次電池を
示す。図において1は耐食性ステンレス製のケース、2
は同材質の封口板、3は封口板の内面にスポット溶接し
たステンレス製ネット集電体、4は人造黒鉛材で人造黒
鉛粉末と六フッ化ポリプロピレン樹脂を95重量部:5重量
部で混合したものの50mgを直径15mm,厚さ0.15mmのディ
スク状に成形しており、これを3の集電体に圧着一体化
している。5は金属リチウムで直径15mm,厚さ39μm(1
4mAh),34μm(12mAh),32μm(11.7mAh),25μm(9
mAh)のディスク状のものであり、4を人造黒鉛材に圧
着されている。6はポリロピレン製のセパレータであ
る。7はホウフッ酸浴から電解重合で合成したポリアニ
リン粉末95重量部に六フッ化ポリプロピレン樹脂5重量
部を混合し、この混合合剤の68mg(金属リチウムを対極
として3.6Vから1.0Vまで放電したときの容量:4.5mAh)
を直径15mm,厚さ0.7mmに成型したものである。8はケー
ス内面にスポット溶接したチタニウム製の集電体であ
り、7の正極は電池組立て時に8の集電体上に載置して
なる。電解液は炭酸プロピレンとジメトキシエタンの等
容積混合溶媒にホウフッ化リチウムを2.5モル/の濃
度に溶解したものを用いた。上記電解液の所定量を正極
上に注液後、9のポリプロピレン製ガスケットとともに
カシメて封口した。また、比較のために4の人造黒鉛材
を無くし、5の金属リチウムの厚さを0.19mm(69mAh)
にした同じ構成の電池を試作した。表1に実施例の電池
の内容を示す。これらの電池は直径20mm,総高1.6mmであ
る。
FIG. 1 shows a coin type non-aqueous electrolyte secondary battery immediately after assembly. In the figure, 1 is a case made of corrosion-resistant stainless steel, 2
Is a sealing plate made of the same material, 3 is a stainless steel net collector spot-welded to the inner surface of the sealing plate, 4 is an artificial graphite material, and artificial graphite powder and hexafluoropolypropylene resin are mixed at 95 parts by weight: 5 parts by weight 50 mg of this is molded into a disk shape with a diameter of 15 mm and a thickness of 0.15 mm, and this is pressure-bonded to the current collector of 3. 5 is metallic lithium with a diameter of 15 mm and a thickness of 39 μm (1
4mAh), 34μm (12mAh), 32μm (11.7mAh), 25μm (9
(mAh) disk-shaped, with 4 bonded to an artificial graphite material. 6 is a separator made of polypropylene. 7 was mixed with 95 parts by weight of polyaniline powder synthesized by electrolytic polymerization from a borohydrofluoric acid bath and 5 parts by weight of hexafluoropolypropylene resin, and 68 mg of this mixture (when discharged from 3.6 V to 1.0 V using metallic lithium as a counter electrode) Capacity: 4.5mAh)
Is molded into a diameter of 15 mm and a thickness of 0.7 mm. Reference numeral 8 is a titanium current collector spot-welded to the inner surface of the case, and the positive electrode 7 is placed on the current collector 8 during battery assembly. As the electrolytic solution, a solution obtained by dissolving lithium borofluoride in a concentration of 2.5 mol / in a mixed solvent of equal volume of propylene carbonate and dimethoxyethane was used. After pouring a predetermined amount of the electrolytic solution on the positive electrode, it was caulked and sealed together with the polypropylene gasket of 9. For comparison, the artificial graphite material of 4 was removed and the thickness of metallic lithium of 5 was 0.19 mm (69 mAh).
A battery having the same structure as the above was prototyped. Table 1 shows the contents of the batteries of the examples. These batteries have a diameter of 20 mm and a total height of 1.6 mm.

これらの電池は二次電池のためいずれも正極容量規制
にしている。
Since these batteries are secondary batteries, the positive electrode capacity is regulated.

表1でそれぞれの電池の負極の電位は、電池組立て後
60℃の温度にて3日間エージングして5の金属リチウム
が4の人造黒鉛材に吸蔵された後、電池の一部を開口し
別のリチウム金属基準極に対して測定したものである。
In Table 1, the negative electrode potential of each battery is shown after battery assembly.
After aging at a temperature of 60 ° C. for 3 days, metallic lithium 5 was occluded in the artificial graphite material 4 and a part of the battery was opened and measured with respect to another lithium metal reference electrode.

第2図は上記A〜Eの電池をICメモリのバックアップ
仕様の1つである50μAの電流で20℃にて200時間放電
したときの電圧と容量の関係を示したものであり、第3
図は電池を充電は3.6Vの定電圧を100時間印加し、次に5
0μAの電流で200時間放電したときの正規の放電容量と
サイクル数の関係を示したものである。
FIG. 2 shows the relationship between the voltage and the capacity when the batteries A to E were discharged at 20 ° C. for 200 hours at a current of 50 μA, which is one of the backup specifications of IC memory.
The figure shows that the battery is charged by applying a constant voltage of 3.6 V for 100 hours, then 5
It shows the relationship between the regular discharge capacity and the number of cycles when discharged for 200 hours at a current of 0 μA.

第2図から金属リチウムを負極に用いてなる電池A,人
造黒鉛材に金属リチウムを吸蔵させてなる電池B〜Eに
おいて、充填した金属リチウム量が多くなるにつれて放
電電圧は高くなり好ましいが、電池A〜Cは電池電圧が
0.1〜約0.23Vにリチウムイオンのポリアニリン正極中へ
の挿入反応と考えられる大きな電圧平坦部がみられる。
一方、電池D,Eは所定の容量がつきると電池は0Vにな
り、上記電池A〜Cでみられたリチウムイオンの挿入反
応はない。
From FIG. 2, in the battery A using metallic lithium as the negative electrode and the batteries B to E in which metallic lithium is occluded in the artificial graphite material, the discharge voltage becomes higher as the amount of metallic lithium charged is increased, which is preferable. Battery voltage of A to C
A large voltage plateau, which is considered to be an insertion reaction of lithium ions into the polyaniline positive electrode, is seen at 0.1 to about 0.23V.
On the other hand, when the batteries D and E have a predetermined capacity, the batteries become 0 V, and there is no lithium ion insertion reaction seen in the batteries A to C.

これに起因すると考えられるのが、第3図であり充放
電サイクルに伴なう容量劣化は電池A〜Cが著しく、電
池D,Eでは容量劣化がみられない。即ち、ポリアニリン
を正極材料として用いる電池では、負極に用いる材料
は、金属リチウム電極に対して20℃にて0.26V以上の電
位を有する、より安全には製造時のバラツキや高温での
特性を考慮すると0.3V以上の電位を有するものを用いれ
ば、上記のような不都合を解決しうるものである。
It is considered that this is due to this, and the capacity deterioration accompanying the charge / discharge cycle is remarkable in the batteries A to C, and the capacity deterioration is not seen in the batteries D and E. That is, in the battery using polyaniline as the positive electrode material, the material used for the negative electrode has a potential of 0.26 V or more at 20 ° C. with respect to the metal lithium electrode, and more safely, consideration should be given to variations during manufacturing and characteristics at high temperatures. Then, by using one having a potential of 0.3 V or more, the above-mentioned inconvenience can be solved.

発明の効果 以上のように、本発明によれば、ポリアニリンを正極
材料に用いる非水電解液電池系において、リチウムイオ
ンを吸蔵・放出もしくはドープ・脱ドープしてなる負極
は、リチウムイオンを吸蔵もしくはドープした際の電位
が金属リチウム電極に対して20℃にて0.26V以上の電位
をもつ負極を用いることにより、メモリーバックアップ
用に最適な電源な提供することができるという効果が得
られる。
As described above, according to the present invention, in the non-aqueous electrolyte battery system using polyaniline as the positive electrode material, the negative electrode formed by occluding / desorbing or doping / dedoping lithium ions stores or absorbs lithium ions. By using a negative electrode having a potential of 0.26 V or more at 20 ° C. with respect to a metal lithium electrode when doped, it is possible to provide an effect that an optimal power source for memory backup can be provided.

実施例では負極材料に人造黒鉛粉末を用いたが、天然
黒鉛はもちろん他の結晶性があまり高くないところのカ
ーボンブラック類でもよい。
Although artificial graphite powder was used as the negative electrode material in the examples, natural graphite and other carbon blacks having a low crystallinity may be used.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例におけるコイン形電池の断面
図、第2図は上記電池の放電特性を示す図、第3図は上
記電池の充放電サイクルにともなう容量特性を示す図で
ある。 1……ケース、2……封口板、4……人造黒鉛材、5…
…リチウム、7……ポリアニリン正極。
FIG. 1 is a sectional view of a coin battery according to an embodiment of the present invention, FIG. 2 is a diagram showing discharge characteristics of the battery, and FIG. 3 is a diagram showing capacity characteristics of the battery with charge / discharge cycles. 1 ... Case, 2 ... Sealing plate, 4 ... Artificial graphite material, 5 ...
… Lithium, 7 …… Polyaniline positive electrode.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポリアニリン正極と、非水電解液と、リチ
ウムイオンを吸蔵・放出もしくはドープ・脱ドープしう
るカーボン負極からなる電池において、リチウムイオン
が吸蔵もしくはドープされた負極は金属リチウムに対し
て20℃で0.26V以上の電位を有することを特徴とする非
水電解液二次電池。
1. A battery comprising a polyaniline positive electrode, a non-aqueous electrolyte, and a carbon negative electrode capable of occluding / desorbing or doping / dedoping lithium ions, wherein the negative electrode occluded or doped with lithium ions is metallic lithium. A non-aqueous electrolyte secondary battery having a potential of 0.26 V or more at 20 ° C.
【請求項2】上記カーボン負極材は、人造黒鉛、天然黒
鉛、結晶性の高くないカーボン・ブラック類のうちの少
なくとも1種類である特許請求の範囲第1項記載の非水
電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the carbon negative electrode material is at least one of artificial graphite, natural graphite, and carbon blacks having low crystallinity. .
JP62156837A 1987-06-24 1987-06-24 Non-aqueous electrolyte secondary battery Expired - Fee Related JP2553560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62156837A JP2553560B2 (en) 1987-06-24 1987-06-24 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62156837A JP2553560B2 (en) 1987-06-24 1987-06-24 Non-aqueous electrolyte secondary battery

Publications (3)

Publication Number Publication Date
JPS642258A JPS642258A (en) 1989-01-06
JPH012258A JPH012258A (en) 1989-01-06
JP2553560B2 true JP2553560B2 (en) 1996-11-13

Family

ID=15636451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62156837A Expired - Fee Related JP2553560B2 (en) 1987-06-24 1987-06-24 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2553560B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0292664U (en) * 1989-01-10 1990-07-23
US6553263B1 (en) 1999-07-30 2003-04-22 Advanced Bionics Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
US6596439B1 (en) 2000-04-26 2003-07-22 Quallion Llc Lithium ion battery capable of being discharged to zero volts
US9142989B2 (en) 2012-09-07 2015-09-22 Greatbatch Ltd. Method of minimizing interruptions to implantable medical device recharging
US9225190B2 (en) 2012-09-07 2015-12-29 Manufacturers And Traders Trust Company Implant current controlled battery charging based on temperature
US9209634B2 (en) 2012-09-07 2015-12-08 Greatbatch Ltd. Method of improving battery recharge efficiency by statistical analysis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102166A (en) * 1986-10-20 1988-05-07 Mitsubishi Gas Chem Co Inc Secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102166A (en) * 1986-10-20 1988-05-07 Mitsubishi Gas Chem Co Inc Secondary battery

Also Published As

Publication number Publication date
JPS642258A (en) 1989-01-06

Similar Documents

Publication Publication Date Title
US5436093A (en) Method for fabricating carbon/lithium-ion electrode for rechargeable lithium cell
CA1296766C (en) Secondary battery
JPH0567468A (en) Electrochemical secondary battery
US5496663A (en) Lithium ion battery with lithium vanadium pentoxide positive electrode
JPH05151995A (en) Nonaqueous electrolyte secondary battery
JP2553560B2 (en) Non-aqueous electrolyte secondary battery
JP2887632B2 (en) Non-aqueous electrolyte secondary battery
JPH012258A (en) Non-aqueous electrolyte secondary battery
JPH0364989B2 (en)
JPS638588B2 (en)
JP2839627B2 (en) Rechargeable battery
JPS58163188A (en) Organic electrolyte secondary cell
JP3262647B2 (en) Method for producing positive electrode active material for polymer solid electrolyte lithium battery
JPS62272472A (en) Nonaqueous solvent secondary battery
JPH01260767A (en) Secondary battery
JP3081981B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPS61281458A (en) Nonaqueous electrolyte secondary battery
JP2571095B2 (en) Rechargeable battery
JPS62290069A (en) Organic electrolyte secondary battery
JP2579058B2 (en) Non-aqueous electrolyte secondary battery
JPS63143759A (en) Rechargeable electrochemical battery
JP2801684B2 (en) Non-aqueous electrolyte secondary battery
JPS59132576A (en) Lithium secondary battery
JP2638849B2 (en) Non-aqueous electrolyte secondary battery
Van Schalkwijk Lithium rechargeable batteries

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees