JP2552128B2 - High-purity purification method for clay minerals - Google Patents

High-purity purification method for clay minerals

Info

Publication number
JP2552128B2
JP2552128B2 JP62061326A JP6132687A JP2552128B2 JP 2552128 B2 JP2552128 B2 JP 2552128B2 JP 62061326 A JP62061326 A JP 62061326A JP 6132687 A JP6132687 A JP 6132687A JP 2552128 B2 JP2552128 B2 JP 2552128B2
Authority
JP
Japan
Prior art keywords
clay
mineral
minerals
suspension
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62061326A
Other languages
Japanese (ja)
Other versions
JPS63230550A (en
Inventor
昭治 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP62061326A priority Critical patent/JP2552128B2/en
Publication of JPS63230550A publication Critical patent/JPS63230550A/en
Application granted granted Critical
Publication of JP2552128B2 publication Critical patent/JP2552128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,粘土原鉱石から粘土原料を高純度に精製す
るとともに有用金属鉱物を回収する方法に関する。
TECHNICAL FIELD The present invention relates to a method of purifying a clay raw material from a clay ore to a high purity and recovering a useful metal mineral.

(従来の技術) 絹雲母,カオリン,ロウ石などの粘土鉱物を含有する
粘土原鉱石中には,しばしば硫化鉄鉱,硫砒鉄鉱,閃亜
鉛鉱,硫化モリブデン鉱などの硫化鉱物が存在する。こ
れらの硫化鉱物を除去して粘土鉱物を回収する方法とし
て,多油,泡沫式などの浮遊選鉱法があり,また油抽出
法が提案されている。
(Prior Art) Clay raw ores containing clay minerals such as sericite, kaolin, and wax stones often contain sulfide minerals such as iron sulfide ore, arsenopyrite, sphalerite, and molybdenum sulfide. As a method of recovering clay minerals by removing these sulfide minerals, there are flotation methods such as multi-oil and foam methods, and oil extraction methods have been proposed.

(発明が解決しようとする問題点) しかし浮遊選鉱法により除去できる硫化鉱物は10μm
を超えるものである。これ以下の硫化鉱物微粒子は粘土
粒分中から除去できないので,化学的に硫化鉱物を溶解
して除去する必要があった。
(Problems to be solved by the invention) However, the sulfide mineral that can be removed by the flotation method is 10 μm
More than. Fine particles of sulfide less than this cannot be removed from the clay particles, so it was necessary to chemically remove the sulfide minerals.

また,油抽出法は,微細な金属鉱物の分離方法として
提案されているが,分離のための条件の調整が明らかで
なく,粘土粒分中の超微細な鉱物を分離するためには未
だ実用化されていない。
The oil extraction method has been proposed as a method for separating fine metal minerals, but the adjustment of the conditions for separation is not clear, and it is still practical to separate ultrafine minerals in clay particles. It has not been converted.

本発明は,このような従来の技術の問題点を解決した
粘土鉱物の高純度精製方法を提供することを目的とす
る。
It is an object of the present invention to provide a high-purity purification method for clay minerals that solves the problems of the conventional techniques.

(問題点を解決するための手段) 本発明によれば粘土原鉱石から粘土鉱物を回収する方
法において,粘土鉱物に固着している超微細な硫化鉱物
を,還元剤として作用する物質及びキレート化合物形成
能を有する物質により該粘土鉱物を前処理し,疎水媒体
及び親水媒体とともに多段振盪フラッシング処理し該粘
土鉱物と該超微細な硫化鉱物とを分離することを特徴と
する粘土鉱物の高純度精製方法により上記目的が達成さ
れる。
(Means for Solving Problems) According to the present invention, in a method for recovering a clay mineral from a raw clay ore, a substance and a chelate compound that act as a reducing agent by using ultrafine sulfide minerals fixed to the clay mineral High-purity purification of clay minerals, characterized in that the clay minerals are pretreated with a substance capable of forming, and are subjected to multistage shaking flushing treatment with a hydrophobic medium and a hydrophilic medium to separate the clay minerals from the ultrafine sulfide minerals. The method achieves the above objectives.

ここでフラッシング処理とは,親水媒体分散系の固体
粒子を界面活性剤で疎水化して疎水媒体分散系へ移行さ
せる処理をいう。
Here, the flushing process is a process in which solid particles in a hydrophilic medium dispersion system are hydrophobized with a surfactant and transferred to a hydrophobic medium dispersion system.

(好適な実施の態様) 本発明の粘土鉱物の高純度精製方法は,粘土鉱物に固
着している超微細な硫化鉱物を,還元剤として作用する
物質及びキレート化合物形成能を有する物質により該粘
土鉱物を前処理して離脱又は離脱し易い状態にし,疎水
媒体及び親水媒体とともに多段振盪フラッシング処理し
該粘土鉱物と該超微細な硫化鉱物とを分離することを特
徴とする。
(Preferred Embodiment) A method for highly purifying clay minerals according to the present invention is a method for purifying ultrafine sulfide minerals fixed to clay minerals by using a substance acting as a reducing agent and a substance capable of forming a chelate compound. It is characterized in that the mineral is pretreated so as to be released or easily released, and the clay mineral and the ultrafine sulfide mineral are separated by multistage shaking flushing treatment with a hydrophobic medium and a hydrophilic medium.

粘土鉱物に固着している超微細な不純物を粘土鉱物か
ら離脱させるには,還元剤として作用する物質及びキレ
ート化合物形成能を有する物質を用いる。
In order to separate ultrafine impurities adhering to the clay mineral from the clay mineral, a substance acting as a reducing agent and a substance capable of forming a chelate compound are used.

還元剤として作用する物質としては,粘土鉱物と超微
細な硫化鉱物とを結びつけている例えば水酸化第二鉄な
どの第二鉄化合物などの酸化生成物を還元させることが
できるものであれば良く,ハイドロサルファイトなどの
還元剤を用いることは好ましい。
The substance that acts as a reducing agent may be any substance that can reduce an oxidation product such as a ferric compound such as ferric hydroxide that links a clay mineral and an ultrafine sulfide mineral. , It is preferable to use a reducing agent such as hydrosulfite.

キレート化合物形成能を有する物質として,EDTAなど
のポリアミノカルボン酸類,クエン酸ナトリウムなどの
オキシカルボン酸類等のキレート剤によることは好まし
い。
As the substance having the ability to form a chelate compound, it is preferable to use a chelating agent such as polyaminocarboxylic acids such as EDTA and oxycarboxylic acids such as sodium citrate.

離脱した超微細な硫化鉱物と粘土鉱物との分離は,疎
水媒体及び親水媒体とともに多段振盪フラッシング処理
することによる。
Separation of the separated ultrafine sulfide minerals and clay minerals is carried out by multistage shaking flushing treatment with a hydrophobic medium and a hydrophilic medium.

ここで用いられる疎水媒体は特に限定されず,灯油を
主成分とする鉱油等も用いることができる。
The hydrophobic medium used here is not particularly limited, and mineral oil containing kerosene as a main component can also be used.

疎水媒体及び親水媒体とともに多段振盪フラッシング
処理するための手段は,疎水媒体中へ超微細な硫化鉱物
を効率よく取り込むことができる装置及び条件を用い,
例えば第2図に示されたフラッシング装置を所定の条件
で用いることは好ましい。
The means for performing the multi-stage shaking flushing treatment with the hydrophobic medium and the hydrophilic medium uses an apparatus and conditions capable of efficiently incorporating ultrafine sulfide minerals into the hydrophobic medium,
For example, it is preferable to use the flushing device shown in FIG. 2 under predetermined conditions.

第2図のフラッシング装置は,上下方向に立てて用い
られることが好ましく,装置上部の粘土懸濁液入口22か
ら流入する粘土懸濁液は,装置下部の精製粘土懸濁液出
口28から水相として流出し,装置下部の疎水媒体入口27
から流入する疎水媒体は,装置上部の硫化鉱物含有疎水
媒体懸濁液出口23から油相として流出するという向流式
である。
The flushing device shown in FIG. 2 is preferably used upright, and the clay suspension flowing in from the clay suspension inlet 22 in the upper part of the device is the aqueous phase from the refined clay suspension outlet 28 in the lower part of the device. As a hydrophobic medium inlet at the bottom of the device 27
The hydrophobic medium flowing in from is a countercurrent type in which it flows out as an oil phase from the sulfide mineral-containing hydrophobic medium suspension outlet 23 at the upper part of the apparatus.

また第2図のフラッシング装置は,図示されているよ
うに,往復回転する駆動軸25に交互に設けられた六板タ
ービン翼29と多孔(貫通孔)を有する円筒型翼26,及び
邪魔板24により強力な振盪が多段にわたって行なわれ,
装置上部から流入した粘土懸濁液は,装置下部に向い振
盪を繰り返し粘土粒子はしだいに精製される。この多段
振盪の繰返によって疎水媒体系に硫化鉱物成分が効率よ
く捕集される。
Further, as shown in the drawing, the flushing device of FIG. 2 includes a six-plate turbine blade 29 alternately provided on a reciprocating drive shaft 25, a cylindrical blade 26 having perforations (through holes), and a baffle plate 24. Powerful shaking is performed in multiple stages,
The clay suspension flowing in from the upper part of the device is shaken toward the lower part of the device and the clay particles are gradually refined. By repeating this multi-step shaking, the sulfide mineral component is efficiently collected in the hydrophobic medium system.

以下本発明の粘土鉱物の高純度精製方法を第1図の本
発明の方法のフローシートに基づいて説明するが,本発
明はこれのみに限定されるものではない。
Hereinafter, the high-purity purification method of the clay mineral of the present invention will be described based on the flow sheet of the method of the present invention of FIG. 1, but the present invention is not limited thereto.

前記フローシートの分級工程においては,水ガラス,
ポリリン酸ナトリウムなどを用いて分散させた粘土懸濁
液を公知の連続式あるいは回分式の分級装置によって所
定の粒度でカットする。
In the classification process of the flow sheet, water glass,
The clay suspension dispersed with sodium polyphosphate or the like is cut to a predetermined particle size by a known continuous or batch classifier.

条件調整工程においては,粘土懸濁液の固体濃度,pH,
酸化還元電位,電解質濃度など分離に必要な条件を整
え,分離助剤を加える。固体濃度は粘土によって異な
り,カオリンでは約10%,絹雲母では数%が好ましい。
pHと酸化還元電位は粘土粒子表面に付着している硫化鉱
物の酸化生成物を溶解し,かつ硫化鉱物と粘土粒子が分
散しやすい範囲でpH7〜4.5で−1000mV以下(白金電極−
塩化銀電極)が好ましい。pHがこれより高くなると硫化
鉱物の分離効率が低下する傾向が大きくなり,またこれ
により低くなると粘土の凝集が著しくなる。電解質濃度
は1000μs/cm以下が好ましい。分離助剤として酸化生成
物の溶解と溶解イオンのキレート化にハイドロサルファ
イトなどの還元剤とクエン酸ナトリウムなどのキレート
剤を適量用いる。キレート剤はまた酸性側における粘土
の分散を助ける。さらに分離助剤として油滴の大きさの
調整,硫化鉱物粒子表面の疎水化を助けるために界面活
性剤をごく少量用いる。pHの調整には硝酸を除く鉱酸及
びカセイソーダ,水ガラス溶液などが用いられる。
In the condition adjustment process, the solid concentration, pH,
Adjust the conditions necessary for separation such as redox potential and electrolyte concentration, and add a separation aid. The solid concentration differs depending on the clay, and is preferably about 10% for kaolin and several% for sericite.
The pH and redox potential are −1000 mV or less at a pH of 7 to 4.5 (platinum electrode-within the range where the sulfide mineral oxidation products adhering to the clay particle surface are dissolved and the sulfide mineral and clay particles are easily dispersed
Silver chloride electrodes) are preferred. If the pH is higher than this, the separation efficiency of sulfide minerals tends to decrease, and if it becomes lower, the agglomeration of clay becomes remarkable. The electrolyte concentration is preferably 1000 μs / cm or less. As a separation aid, an appropriate amount of a reducing agent such as hydrosulfite and a chelating agent such as sodium citrate are used for dissolution of the oxidation product and chelation of dissolved ions. Chelating agents also help disperse the clay on the acidic side. In addition, a very small amount of a surfactant is used as a separation aid to control the size of oil droplets and to make the surface of sulfide mineral particles hydrophobic. Mineral acids other than nitric acid, caustic soda, and water glass solutions are used to adjust the pH.

フラッシング工程では,条件調整した粘土懸濁液と油
をそれぞれ定量ポンプで第2図の多段振盪が可能な向流
式フラッシング装置に流送し,粘土懸濁液と硫化鉱物の
油懸濁液に分離される。油は灯油を主成分とする鉱油に
油/水分離助剤としてメチルイソブチルケトンを混合し
ており,混合量は鉱油100容積部に対してメチルイソブ
チルケトン数%から10%容積部が好ましい。また粘土懸
濁液と油の混合比は粘土懸濁液100容積部に対して油は
数%から10%容積部が好ましい。分離された粘土懸濁液
は酸その他の凝集剤を加えて濃集させ,加圧炉過,減圧
炉過あるいはスプレードライヤなど公知の装置を用いて
回収される。油懸濁液は加圧炉過または減圧炉過など公
知の装置を用いて固/液分離し,有用な硫化鉱物は回収
され,油は再使用される。
In the flushing process, the conditioned clay suspension and oil were sent to the countercurrent flushing device capable of multi-stage shaking shown in Fig. 2 by the metering pumps, respectively, to obtain the clay suspension and the oil suspension of sulfide minerals. To be separated. The oil is a mixture of mineral oil containing kerosene as a main component and methyl isobutyl ketone as an oil / water separation aid. The mixing amount is preferably from 10% by volume of methyl isobutyl ketone to 100 parts by volume of mineral oil. The mixing ratio of the clay suspension and the oil is preferably several% to 10% by volume of oil with respect to 100 parts by volume of the clay suspension. The separated clay suspension is concentrated by adding an acid or other coagulant, and is recovered using a known apparatus such as a pressure furnace, a pressure furnace or a spray dryer. The oil suspension is subjected to solid / liquid separation using a known apparatus such as a pressure furnace or a vacuum furnace, and useful sulfide minerals are recovered, and the oil is reused.

フラッシング装置は,油と粘土懸濁液を混合して制御
された大きさに分散された油滴中へ硫化鉱物粒子を取り
込み,ひき続き油滴を合一させて油懸濁液と粘土懸濁液
とを効率よく分離する機構により構成され,材質は容易
に水素を発生しないものが好ましい。
The flushing device mixes oil and clay suspension to incorporate sulfide mineral particles into oil droplets dispersed in a controlled size, and subsequently combine the oil droplets to combine oil suspension and clay suspension. It is preferable that the material is composed of a mechanism that efficiently separates the liquid, and that the material does not easily generate hydrogen.

これらの条件を満たすものとして新規に開発された第
2図の多段振盪処理を可能ならしめる向流式フラッシン
グ装置があり,その翼の往復回転は,粘土鉱物から硫化
鉱物を分離するに十分強力な振盪衝撃を生ずるものとす
る。さらに詳細に説明すると,垂直の円筒形本体に油お
よび粘土懸濁液それぞれの流入口,油懸濁液および粘土
懸濁液それぞれの流出口,油滴の分散と合一を促進する
3板タービンと嶋崎製作所式円筒型翼を多段式に取り付
けた回転軸を有し,本体上部に回転軸を往復回転させる
駆動機構を,本体外部に油/水界面の高さを調節する液
面調節機構をそれぞれ設置している。さらに各羽根の間
には邪魔板が設置され互いの流れの偏流を防止してい
る。
There is a counterflow type flushing device newly developed to satisfy these conditions, which enables the multistage shaking treatment of Fig. 2, and the reciprocating rotation of its blade is sufficiently powerful to separate sulfide minerals from clay minerals. Shaking shock shall occur. More specifically, a vertical cylindrical body has an inlet for oil and clay suspension, an outlet for oil suspension and clay suspension, and a three-plate turbine that facilitates dispersion and coalescence of oil droplets. And Shimazaki Seisakusho Co., Ltd. has a rotary shaft with multi-stage mounting, a drive mechanism for reciprocating the rotary shaft at the top of the main body, and a liquid level adjustment mechanism for adjusting the height of the oil / water interface outside the main body. Each is installed. Further, baffle plates are installed between the blades to prevent uneven flow of each other.

次に実施例により本発明をさらに詳細に説明する。 Next, the present invention will be described in more detail with reference to Examples.

(実施例) 実施例1 田子倉鉱山産絹雲母原鉱石を水中に投じ,メッシュを
用いて粗い尾鉱部分を除いた60メッシュ以下の粘土懸濁
液に水ガラスを加えて分散させ,連続高速遠心型分級装
置に通して所定の粒度にカットした粘土懸濁液500
(絹雲母濃度5wt%)を給鉱懸濁液とする。この給鉱懸
濁液を第1表に示す薬品添加によって条件調整し,30分
後に同表に示した条件で油とともにフラッシング装置に
通す。フラッシング装置は,入力回転数が450rpmで対応
した往復回転周期で操作する。
(Example) Example 1 A sericite original ore from the Tagokura mine was thrown into water, water glass was added to a clay suspension of 60 mesh or less from which coarse tailings were removed using a mesh to disperse, and continuous high-speed centrifugation was performed. Clay suspension 500 cut into a specified particle size through a mold classifier
(Seric mica concentration 5 wt%) is used as a feed suspension. The feed suspension is conditioned by adding the chemicals shown in Table 1, and after 30 minutes, it is passed through a flushing device together with oil under the conditions shown in the same table. The flushing device operates at a reciprocating rotation cycle corresponding to an input speed of 450 rpm.

第 1 表 クエン酸ナトリウム 50g オレイン酸ナトリウム(0.5%溶液) 20ml エロフロート208(0.5%溶液) 20ml ハイドロサルファイト 50g 塩酸 pHが5になる量 その後,水洗いし,プレスにかけ,乾燥等を行ない絹
雲母を得た。フラッシング装置を一回通した段階で粘土
中の主要な不純物である亜鉛成分が給鉱懸濁液からとり
除かれ,分析の結果絹雲母に残留する亜鉛は147ppmであ
った。
Table 1 Sodium citrate 50g Sodium oleate (0.5% solution) 20ml Erofloat 208 (0.5% solution) 20ml Hydrosulfite 50g Hydrochloric acid pH 5 amount After that, wash with water, press and dry sericite Got After passing through the flushing device once, the zinc component, which is the main impurity in clay, was removed from the feed suspension, and as a result of analysis, the amount of zinc remaining in sericite was 147 ppm.

実施例2及び比較例 田子倉鉱山産絹雲母原鉱石を実施例1と同様の方法で
高純度精製した絹雲母中に残留する亜鉛,鉛及びヒ素の
濃度を第2表に示す。
Example 2 and Comparative Example Table 2 shows the concentrations of zinc, lead and arsenic remaining in the sericite obtained by purifying the sericite raw ore from the Tagokura Mine in the same manner as in Example 1 with high purity.

また,第2表には比較例として,従来の浮遊選鉱法に
よる結果もあわせて示す。
Table 2 also shows the results of the conventional flotation method as a comparative example.

(発明の効果) 本発明の方法は,実施例からも明らかなように超微細
な硫化鉱物を除去することができるので,従来の浮遊選
鉱法に比して粘土鉱物を高純度に精製することができ
る。
(Effects of the Invention) Since the method of the present invention can remove ultrafine sulfide minerals as is clear from the examples, it is possible to purify clay minerals to a higher purity than in conventional flotation methods. You can

本発明の方法により従来の浮遊選鉱を主とした選鉱法
では原理的または経済的に困難であったために未利用の
ままになっている低品位粘土資源およびその中に含まれ
る粉状有価鉱石,また現在浮遊選鉱の尾鉱として廃棄さ
れている多くの粘土その他の非金属鉱物や有価金属鉱物
が活用できることになる。例えば我国の黒鉱鉱山の選鉱
尾鉱中の膨大な量の粘土は資源として活用できるばかり
でなく,粘土を除去した粗粒分は抗内充填料として使用
可能となり,さらに廃さいダム問題の解決にもつながっ
ている。
By the method of the present invention, a low-grade clay resource which remains unutilized because it was difficult in principle or economically by the conventional beneficiation method mainly on flotation, and valuable powdered ore contained therein, In addition, many clay and other non-metal minerals and valuable metal minerals that are currently discarded as tailings for flotation can be utilized. For example, not only the huge amount of clay in the tailing tailings of the Kuroko mine in Japan can be utilized as a resource, but also the coarse particles from which clay has been removed can be used as an anti-internal filler, which further solves the waste dam problem. It is also connected to.

また本発明の方法あ粘土鉱物−硫化鉱物系以外の有価
鉱物の回収および不純物除去にも応用できる。
The method of the present invention can also be applied to recovery of valuable minerals other than clay mineral-sulfide minerals and removal of impurities.

また例えば粘土が厳密な分級により石英粒子を混入し
ないで分離できる田子倉鉱山産絹雲母の場合は,含有す
る閃亜鉛鉱を主成分とする硫化鉱物を除去した絹雲母
が,従来の絹雲母の用途のほかに固体潤滑剤,潤滑性皮
膜など新しい機能をもつ用途に適用できる。
For example, in the case of sericite from the Tagokura mine, which can be separated by strict classification without inclusion of quartz particles, the sericite from which the sulphide mineral containing sphalerite as a main component is removed is used for conventional sericite. Besides, it can be applied to applications with new functions such as solid lubricants and lubricity coatings.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の方法の一実施態様を示すフローシー
ト, 第2図は本発明の方法に用いることができるフラッシン
グ装置を示す図, 第3図は前記フラッシング装置の多孔(貫通孔)を有す
る円筒型翼の断面図, 第4図は前記多孔(貫通孔)を有する円筒型翼の平面
図, 第5図は前記フラッシング装置の六板タービン翼の断面
図, 第6図は前記六板タービン翼の平面図, 第7図は本発明の方法の一実施態様のプロセスフローの
一部を示す図である。 21……往復回転駆動部、2……粘土懸濁液入口 23……硫化鉱物含有疎水媒体懸濁液出口 24……邪魔板、25……駆動軸 26……多孔を有する円筒型翼 27……疎水媒体入口 28……精製粘土懸濁液出口 29……六板タービン翼、31,41……貫通孔 71……灯油タンク 72……メチルイソブチルケトンタンク 73,73′,75,75′,79,82……弁 74……混合油及びタンク、76,83……ポンプ 77……硫化鉱物油懸濁液及びタンク 78……フラッシング装置、80……液面調整タンク 81……精製粘土懸濁液及びタンク 84……粘土懸濁液及びタンク 85……条件調整タンク
FIG. 1 is a flow sheet showing one embodiment of the method of the present invention, FIG. 2 is a view showing a flushing device that can be used in the method of the present invention, and FIG. 3 is a view showing pores (through holes) of the flushing device. 4 is a plan view of the cylindrical blade having the perforations (through holes), FIG. 5 is a sectional view of the six-plate turbine blade of the flushing device, and FIG. 6 is the six-plate. FIG. 7 is a plan view of a turbine blade, and FIG. 7 is a view showing a part of a process flow of one embodiment of the method of the present invention. 21 ...... Reciprocating rotary drive part, 2 ...... Clay suspension inlet 23 ...... Hydrophobic medium suspension outlet containing sulfide mineral 24 ...... Baffle plate, 25 ...... Drive shaft 26 ...... Cylindrical blade 27 with porosity 27 ...... … Hydrophobic medium inlet 28 …… Refined clay suspension outlet 29 …… Six-plate turbine blades, 31,41 …… Through-hole 71 …… Kerosene tank 72 …… Methyl isobutyl ketone tank 73, 73 ′, 75, 75 ′, 79,82 …… Valve 74 …… Mixed oil and tank, 76,83 …… Pump 77 …… Sulfide mineral oil suspension and tank 78 …… Flushing device, 80 …… Level adjusting tank 81 …… Refined clay suspension Suspension and tank 84 …… Clay suspension and tank 85 …… Condition adjusting tank

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】粘土原鉱石からから粘土鉱物を回収する方
法において,粘土鉱物に固着している超微細な硫化鉱物
を,還元剤として作用する物質及びキレート化合物形成
能を有する物質により該粘土鉱物を前処理し,疎水媒体
及び親水媒体とともに多段振盪フラッシング処理し該粘
土鉱物と該超微細な硫化鉱物とを分離することを特徴と
する粘土鉱物の高純度精製方法。
1. A method for recovering a clay mineral from a raw clay ore, wherein the ultrafine sulfide mineral adhered to the clay mineral is treated with a substance acting as a reducing agent and a substance capable of forming a chelate compound. A high-purity method for purifying clay minerals, which comprises pre-treating the clay mineral and precipitating the clay mineral with a hydrophobic medium and a hydrophilic medium to separate the clay mineral from the ultrafine sulfide mineral.
JP62061326A 1987-03-18 1987-03-18 High-purity purification method for clay minerals Expired - Fee Related JP2552128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62061326A JP2552128B2 (en) 1987-03-18 1987-03-18 High-purity purification method for clay minerals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62061326A JP2552128B2 (en) 1987-03-18 1987-03-18 High-purity purification method for clay minerals

Publications (2)

Publication Number Publication Date
JPS63230550A JPS63230550A (en) 1988-09-27
JP2552128B2 true JP2552128B2 (en) 1996-11-06

Family

ID=13167903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62061326A Expired - Fee Related JP2552128B2 (en) 1987-03-18 1987-03-18 High-purity purification method for clay minerals

Country Status (1)

Country Link
JP (1) JP2552128B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780377A (en) * 1993-09-02 1998-07-14 Toto Ltd. Light-transmissive ceramics and method of manufacturing same
GB9604927D0 (en) * 1996-03-08 1996-05-08 Allied Colloids Ltd Activation of swelling clays and processes of using the activated clays

Also Published As

Publication number Publication date
JPS63230550A (en) 1988-09-27

Similar Documents

Publication Publication Date Title
JP5088724B2 (en) Method for treating fine powder containing calcium component and lead component
MX2012009361A (en) Sulfide flotation aid.
US2553444A (en) Preparation of pure metallic carbides
CA2476283C (en) Metal recovery process
JP2552128B2 (en) High-purity purification method for clay minerals
JP4112401B2 (en) Recovery method of sulfur from leaching residue by atmospheric pressure method
JP5441506B2 (en) Method for concentrating precious metals in refining raw materials containing dental powders by flotation
CA3036626C (en) Method for recovering precious metal
JP4478637B2 (en) Copper converter dust treatment method
JP6430330B2 (en) Beneficiation method
CN114350945B (en) Separation and recovery method for three-phase matters of wet smelting molybdenum back extraction of uranium molybdenum ore
CN113573817B (en) Method and process unit for removing silicon-based compounds from leachate and use thereof
RU2352401C2 (en) Method of flotation extraction of sulphide concentrate from sulphide -oxidised copper ore
CN101292051B (en) Method and apparatus for the recovery of refractory mineral ores
RU2099146C1 (en) Method of recovering useful minerals from ore slimes
KR101420404B1 (en) Recovering and separating diamond, sapphire powder from used cutting materials
JP6999109B2 (en) Mineral processing method
JP2021130064A (en) Beneficiation method
JP3937273B2 (en) Method for treating slurry containing colloidal silica
US956381A (en) Process of treating ores.
JP3816217B2 (en) Treatment method for zinc leaching residue
JP7206150B2 (en) Method for removing SiO2 from slurry containing silver and SiO2 and method for purifying silver
RU2604279C1 (en) Method of processing sulphide oxidised copper ores with copper and silver extraction
US20240084416A1 (en) Recovery of metal from leach processing
JP2011036817A (en) Filtration method of slurry containing colloidal silica

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees