JP5441506B2 - Method for concentrating precious metals in refining raw materials containing dental powders by flotation - Google Patents

Method for concentrating precious metals in refining raw materials containing dental powders by flotation Download PDF

Info

Publication number
JP5441506B2
JP5441506B2 JP2009139185A JP2009139185A JP5441506B2 JP 5441506 B2 JP5441506 B2 JP 5441506B2 JP 2009139185 A JP2009139185 A JP 2009139185A JP 2009139185 A JP2009139185 A JP 2009139185A JP 5441506 B2 JP5441506 B2 JP 5441506B2
Authority
JP
Japan
Prior art keywords
xanthate
sodium
flotation
sulfuric acid
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009139185A
Other languages
Japanese (ja)
Other versions
JP2010285639A (en
Inventor
榮一 葛野
國彦 ▲高▼橋
敦 佐々木
久義 梅田
弘誓 末松
Original Assignee
横浜金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜金属株式会社 filed Critical 横浜金属株式会社
Priority to JP2009139185A priority Critical patent/JP5441506B2/en
Publication of JP2010285639A publication Critical patent/JP2010285639A/en
Application granted granted Critical
Publication of JP5441506B2 publication Critical patent/JP5441506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、歯科材研磨粉を含む精錬原料中の貴金属を濃縮する方法に関するものである。   The present invention relates to a method for concentrating noble metals in a refining raw material containing dental material polishing powder.

金(Au)に代表される貴金属は、その崇高で美しい光沢のために、古代より装飾品として広く用いられてきた。近年では、装飾品としての利用の他に、貴金属の持つ物理的・化学的および機械的特性が応用され、電気・電子分野などの工業製品としての需要が増大している。
一方、貴金属の多くは、産出地が特定の国に偏在し、その生産量も少ない。我が国には、採掘可能な鉱山は殆ど無く、国際事情による貴金属の安定供給に懸念がある。このように希少な貴金属は、資源の有効活用の観点からも、リサイクルが重要である。
天然資源の乏しい我が国では、国内の様々な産業から発生する貴金属含有スクラップから貴金属を回収する対策が進められている。この貴金属含有スクラップは、国内に膨大な量が未利用の状態で滞留していると推算されており、従って、適切な処理によって、これらのスクラップから貴金属を効率良く回収することが必要となっている。
貴金属含有スクラップは、大別すると主に3種類に分類され、指輪や金貨などを扱う業界を発生元とする「宝飾材系」、電子・電子通信業界などから発生する「工業材系」および歯科医療関係から発生する「歯科材系」がある。
Precious metals represented by gold (Au) have been widely used as ornaments since ancient times due to their sublime and beautiful luster. In recent years, in addition to use as a decorative product, the physical, chemical, and mechanical properties of precious metals have been applied, and demand for industrial products in the electrical and electronic fields is increasing.
On the other hand, many precious metals are distributed unevenly in specific countries, and their production is small. In Japan, there are few mines that can be mined, and there is concern about the stable supply of precious metals due to international circumstances. Recycling such rare precious metals is important from the viewpoint of effective use of resources.
In Japan, where natural resources are scarce, measures are being taken to recover precious metals from scraps containing precious metals generated from various industries in the country. It is estimated that this precious metal-containing scrap remains in an unused state in the country, and therefore it is necessary to efficiently recover precious metal from these scraps by appropriate treatment. Yes.
Precious metal-containing scrap is roughly classified into three types: “jewelry materials” originating from the industry that handles rings and gold coins, “industrial materials” originating from the electronics and electronic communications industries, and dental There is a “dental material system” that arises from medical care.

歯科診療室や歯科技工室から排出される「歯科材系」スクラップのうち、歯科材の研磨加工の際に発生する歯科材研磨粉からの貴金属の回収を図る時、これを湿式精錬法で処理する場合、一般的には、まず硝酸を用いて銀(Ag)とパラジウム(Pd)を溶解し、残留したAuとPdを王水で溶解したのち、還元処理により、Au、Ag、Pdを分別回収する。一方、乾式精錬法の場合は、通常、銅製錬工程に銅原料と混合して投入し、最終的に銅電解のアノードスライム中に貴金属を濃縮させて回収する。
しかし、湿式精錬法による処理において、原料(歯科材研磨粉)中の貴金属含有率が低い場合(特に、Au含有率が0.5%以下など)、目標とする貴金属の量を確保するには、硝酸あるいは塩酸などの薬品を多量に使用して、多量の原料を処理しなくてはならない。これに伴って、処理時間、発生する廃棄物(排ガスや廃液など)、その他浸出処理に掛かるエネルギー(燃料や電気など)も増加してしまう(非特許文献1)。また、銅製錬を利用する乾式精錬法においても同様に、低品位原料が増加すると、精製効率の低下が生じて回収コストが上昇してしまう為、投入原料はできるだけ高品位である方が望ましい。
そこで、湿式または乾式処理の前の段階において、歯科材研磨粉から貴金属を選択的に分離し、スクラップ中の貴金属を濃縮することができれば、処理量が減少し、効率化が可能となる。特に、湿式精錬法においては、使用する酸溶液と発生する酸性廃液量が減量され、貴金属回収コストの大幅な削減と、地球環境に与える負荷を効果的に低減させることができると考えられる。
Among the “dental materials” scrap discharged from the dental clinic and dental laboratory, when the precious metal is recovered from the dental material polishing powder generated during the polishing process of the dental material, this is processed by the wet refining method. In general, first, silver (Ag) and palladium (Pd) are dissolved using nitric acid, the remaining Au and Pd are dissolved in aqua regia, and then Au, Ag, and Pd are separated by reduction treatment. to recover. On the other hand, in the case of the dry refining method, usually, the copper raw material is mixed with the copper raw material and finally added, and finally the noble metal is concentrated and recovered in the copper electrolysis anode slime.
However, if the precious metal content in the raw material (dental abrasive powder) is low (especially, the Au content is 0.5% or less) in the processing by the hydrometallurgical process, in order to ensure the target amount of precious metal A large amount of chemicals such as nitric acid or hydrochloric acid must be used to treat a large amount of raw materials. Along with this, the processing time, generated waste (exhaust gas, waste liquid, etc.), and other energy (fuel, electricity, etc.) for the leaching process also increase (Non-patent Document 1). Similarly, in the dry refining method using copper smelting, if the low-grade raw material is increased, the purification efficiency is lowered and the recovery cost is increased. Therefore, it is desirable that the input raw material is as high as possible.
Therefore, if the precious metal can be selectively separated from the dental material polishing powder and the precious metal in the scrap can be concentrated in the stage before the wet or dry processing, the amount of processing can be reduced and the efficiency can be improved. In particular, in the wet refining method, it is considered that the acid solution to be used and the amount of the generated acidic waste liquid are reduced, so that the precious metal recovery cost can be significantly reduced and the load on the global environment can be effectively reduced.

中澤 廣・佐藤敏人・及川 克・影澤和宏(1993):資源と素材,Vol.109,No.11,p.879−884Satoshi Nakazawa, Toshito Sato, Katsu Oikawa, Kazuhiro Kagezawa (1993): Resources and Materials, Vol. 109, no. 11, p. 879-884

本発明は、歯科材研磨粉から貴金属を選択的に分離し、精錬原料中の貴金属を濃縮して高品位化させることにより、貴金属の回収効率化を図ることを課題とする。   An object of the present invention is to improve the recovery efficiency of precious metals by selectively separating precious metals from dental material polishing powder and concentrating the precious metals in the refining raw material to improve the quality.

本発明は、歯科材研磨粉を含む精錬原料中のAu、Pd及びAgからなる群より選ばれる1種以上の貴金属を濃縮する方法であって、
(A)歯科材研磨粉を750℃以上で焙焼する工程、
(B)工程(A)で得られた焙焼物を粉砕し、これに水及び希硫酸を混合して、pH1〜4に調整した硫酸酸性のスラリーを得る工程、及び
(C)工程(B)で得られたスラリーに硫化剤、ザンセート系捕収剤及び起泡剤を加えて、浮遊選鉱を行い、前記貴金属を含む浮遊産物(フロス)を回収して沈降産物(テーリング)と分離させる工程
を含むことを特徴とする前記濃縮方法を提供する。
The present invention is a method of concentrating one or more precious metals selected from the group consisting of Au, Pd and Ag in a refining raw material containing dental material polishing powder,
(A) A step of roasting dental material polishing powder at 750 ° C. or higher,
(B) A step of pulverizing the roasted product obtained in step (A), mixing water and dilute sulfuric acid to obtain a sulfuric acid slurry adjusted to pH 1 to 4, and (C) step (B). Adding a sulfiding agent, a xanthate-based collector and a foaming agent to the slurry obtained in Step 1, and performing a flotation process to collect a floating product (floss) containing the noble metal and separate it from a sedimented product (tailing). And providing the concentration method.

本発明によれば、歯科材研磨粉から貴金属を選択的に分別して回収することができる。回収物は、貴金属を高品位に含む良質の精錬原料として、湿式および乾式精錬工程に用いることができ、その結果、処理量が減容し、効率化が可能となる。特に、湿式精錬法においては、使用する酸溶液と発生する酸性廃液量が減量され、貴金属回収コストの大幅な削減と、地球環境に与える負荷を効果的に低減させることができる。   According to the present invention, precious metals can be selectively separated and recovered from dental material polishing powder. The recovered material can be used in a wet and dry refining process as a high-quality refining raw material containing precious metals in high quality. As a result, the amount of processing is reduced, and the efficiency can be increased. In particular, in the wet refining method, the acid solution to be used and the amount of the generated acidic waste liquid are reduced, so that the precious metal recovery cost can be significantly reduced and the load on the global environment can be effectively reduced.

本発明の一態様のフロー図を示す。FIG. 6 illustrates a flow diagram of one embodiment of the present invention.

本発明の、歯科材研磨粉を含む精錬原料中のAu、Pd及びAgからなる群より選ばれる1種以上の貴金属を濃縮する方法は、
(A)歯科材研磨粉を750℃以上で焙焼する工程、
(B)工程(A)で得られた焙焼物を粉砕し、これに水及び希硫酸を混合して、pH1〜4に調整した硫酸酸性のスラリーを得る工程、及び
(C)工程(B)で得られたスラリーに硫化剤、ザンセート系捕収剤及び起泡剤を加えて、浮遊選鉱を行い、前記貴金属を含む浮遊産物(フロス)を回収して沈降産物(テーリング)と分離させる工程
を含む。
The method of concentrating one or more precious metals selected from the group consisting of Au, Pd, and Ag in a refining raw material containing dental material polishing powder of the present invention,
(A) A step of roasting dental material polishing powder at 750 ° C. or higher,
(B) A step of pulverizing the roasted product obtained in step (A), mixing water and dilute sulfuric acid to obtain a sulfuric acid slurry adjusted to pH 1 to 4, and (C) step (B). Adding a sulfiding agent, a xanthate-based collector and a foaming agent to the slurry obtained in Step 1, and performing a flotation process to collect a floating product (floss) containing the noble metal and separate it from a sedimented product (tailing). Including.

工程(A)において、歯科材研磨粉を750℃以上、好ましくは750〜850℃で焙焼する。この工程により、歯科研磨材粉中に含まれる樹脂などの有機系成分を熱分解させて除去する。焙焼物は、次工程で粉砕し易いように、例えば、目開きが300〜500μm、好ましくは425μm程度の篩で粒度調整することが好ましい。   In the step (A), the dental material polishing powder is roasted at 750 ° C. or higher, preferably 750 to 850 ° C. By this step, organic components such as resin contained in the dental abrasive powder are thermally decomposed and removed. It is preferable to adjust the particle size of the roasted product with a sieve having an opening of 300 to 500 μm, preferably about 425 μm so that it can be easily pulverized in the next step.

工程(B)において、工程(A)で得られた焙焼物を粉砕する。粉砕の程度は、好ましくは目開きが300μm、より好ましくは250μmの篩を通ることができる程度である。例えば、石川式ライカイ機を用いる場合には、試料30gに対し粉砕時間は10分程度で充分である。
得られた粉末と、水及び希硫酸を混合して硫酸酸性のスラリーを調製する。硫酸酸性のスラリーのpHは1〜4、好ましくは2〜3である。pHがこのような範囲であれば、設備耐久性の低下の問題がなく、また浮遊選鉱(以下、「浮選」と記す)の際の、フロス(浮遊産物)の、酸化カルシウムの浮上による汚染を防止することができる。
硫酸酸性のスラリーのパルプ濃度は、5〜30%(硫酸酸性溶液1リットルに対し、粉末が50〜300g)、好ましくは10〜20%(硫酸酸性溶液1リットルに対し、粉末が100〜200g)である。パルプ濃度がこのような範囲であれば、浮選に直接関与しない余剰液量が滞留して処理の効率が低下することもなく、またフロス(浮遊産物)とテーリング(沈降産物)の分離性能が良好である。
In the step (B), the roasted product obtained in the step (A) is pulverized. The degree of pulverization is such that the mesh can pass through a sieve having an opening of 300 μm, more preferably 250 μm. For example, when using an Ishikawa-type reika machine, a pulverization time of about 10 minutes is sufficient for 30 g of the sample.
The obtained powder, water and dilute sulfuric acid are mixed to prepare a sulfuric acid slurry. The pH of the sulfuric acid slurry is 1 to 4, preferably 2 to 3. If the pH is in such a range, there is no problem of deterioration in equipment durability, and flotation (floating product) contamination by flotation of calcium oxide during flotation (hereinafter referred to as “flotation”). Can be prevented.
The pulp concentration of the sulfuric acid slurry is 5 to 30% (50 to 300 g of powder with respect to 1 liter of sulfuric acid solution), preferably 10 to 20% (100 to 200 g of powder with respect to 1 liter of sulfuric acid solution). It is. If the pulp concentration is in such a range, the excess liquid amount that does not directly participate in flotation will not stay and the processing efficiency will not decrease, and the separation performance of floss (floating product) and tailing (sedimentation product) will be improved. It is good.

工程(B)で得られた硫酸酸性のスラリーに硫化剤、ザンセート系捕収剤及び起泡剤を加えて、浮選を行い、貴金属を浮遊産物(フロス)として浮上回収し、その他の不純物を沈降産物(テーリング)として分離させる。
硫化剤の例としては、水硫化ソーダ(NaSH)、硫化ソーダ(Na2S)及び硫化水素ガス(H2S)などが挙げられる。硫化剤の添加量は、通常、硫酸酸性のスラリー1リットルに対し50〜1,000mgであり、好ましくは100〜500mgである。
ザンセート系捕収剤の例としては、カリウムエチルザンセート、ナトリウムエチルザンセート、カリウムアミルザンセート、ナトリウムイソプロピルザンセート、ナトリウムイソブチルザンセート及びカリウムイソブチルザンセートなどが挙げられる。中でも、ナトリウムイソプロピルザンセートが本発明において好ましく用いられる。ザンセート系捕収剤の添加量は、使用するザンセート系捕収剤の種類によっても異なるが、通常、硫酸酸性のスラリー1リットルに対し50〜1,000mg、より好ましくは100〜500mgである。ザンセート系捕収剤の添加量がこのような範囲であれば、貴金属を浮遊産物(フロス)として充分に浮上回収することができ、薬剤コストの観点からも経済的である。
起泡剤の例としては、メチルイソブチルカルビノール(MIBC)及びパイン油などが挙げられる。起泡剤の添加量は、使用する起泡剤の種類によっても異なるが、通常、硫酸酸性のスラリー1リットルに対し1〜100mgであり、より好ましくは5〜50mgである。
本発明の一態様のフロー図を図1に示す。
Add sulfurizing agent, xanthate collector and foaming agent to sulfuric acid slurry obtained in step (B), perform flotation, float and collect precious metal as floating product (floss), other impurities Separate as a sedimented product (tailing).
Examples of the sulfiding agent include sodium hydrosulfide (NaSH), sodium sulfide (Na 2 S), hydrogen sulfide gas (H 2 S), and the like. The addition amount of the sulfurizing agent is usually 50 to 1,000 mg, preferably 100 to 500 mg, per 1 liter of sulfuric acid acidic slurry.
Examples of the xanthate collector include potassium ethyl xanthate, sodium ethyl xanthate, potassium amyl xanthate, sodium isopropyl xanthate, sodium isobutyl xanthate and potassium isobutyl xanthate. Of these, sodium isopropyl xanthate is preferably used in the present invention. The addition amount of the xanthate-based collector varies depending on the type of xanthate-based collector used, but is usually 50 to 1,000 mg, more preferably 100 to 500 mg, per 1 liter of sulfuric acid slurry. If the added amount of the xanthate collector is within such a range, the precious metal can be sufficiently levitated and recovered as a floating product (floss), which is economical from the viewpoint of drug cost.
Examples of foaming agents include methyl isobutyl carbinol (MIBC) and pine oil. The addition amount of the foaming agent varies depending on the type of foaming agent used, but is usually 1 to 100 mg, more preferably 5 to 50 mg, per liter of sulfuric acid slurry.
A flow chart of one embodiment of the present invention is shown in FIG.

1.試料
この実施例で用いた歯科材研磨粉に含まれるAu、Pd及びAgの含有量(質量%)を表1に示す。
1. Sample Table 1 shows the contents (% by mass) of Au, Pd, and Ag contained in the dental material polishing powder used in this example.

Figure 0005441506
Figure 0005441506

750℃で90分間焙焼した後、試料30gを石川式ライカイ機で10分間粉砕したもの(目開き250μmの篩を通過した粉末)を浮選実験に用いた。   After roasting at 750 ° C. for 90 minutes, 30 g of a sample pulverized with an Ishikawa-type lykai machine for 10 minutes (powder that passed through a sieve having an opening of 250 μm) was used in the flotation experiment.

2.試薬
浮選助剤(硫化剤)として水硫化ソーダ(NaHS・nH2O,純度70%)、ザンセート系捕収剤としてナトリウムイソプロピルザンセート(C47OS2Na,SIPX)、起泡剤としてメチルイソブチルカルビノール(MIBC)を用いた。試薬はいずれも市販品であり、NaHSとSIPXはイオン交換水で希釈して両方とも0.1質量%の水溶液を調製して使用した。
2. Reagents Sodium hydrosulfide (NaHS · nH 2 O, purity 70%) as flotation aid (sulfurizing agent), sodium isopropyl xanthate (C 4 H 7 OS 2 Na, SIPX), foaming agent as xanthate collector Methyl isobutyl carbinol (MIBC) was used. Reagents are all commercially available products, and NaHS and SIPX were both diluted with ion-exchanged water to prepare a 0.1% by mass aqueous solution.

3.接触角(コンタクトアングル)測定
接触角測定装置(協和界面科学社製,CA−D型)を用いて、平板状の歯科鋳造用金銀パラジウム合金(金12質量%程度、銀48質量%程度、パラジウム20質量%程度)への気泡の接触角を測定した。透明セルに所定の水溶液を満たし、そこに表面が下向きになるよう平板を浸漬した。そして、シリンジによって下方から気泡を付着させ、その接触角を読み取った。
3. Contact angle measurement Contact angle measuring device (Kyowa Interface Science Co., Ltd., CA-D type) is used to form a plate-like gold-silver-palladium alloy for dental casting (about 12% by weight gold, about 48% by weight silver, palladium The contact angle of bubbles to about 20% by mass was measured. A transparent cell was filled with a predetermined aqueous solution, and a flat plate was immersed in the transparent cell so that the surface faced downward. And the bubble was made to adhere from the downward direction with the syringe, and the contact angle was read.

4.浮選実験
実験装置には、セル容量250mlのMS型浮選機を用いた。セルに試料(歯科材研磨粉)10g及びpH調整された所定の酸性溶液を投入して、パルプ濃度5%(10g/200ml)とした。セル内の溶液は、撹拌羽根によって撹拌され、これに0.1%NaHS水溶液を10ml添加し(スラリー1リットルに対し、約50mg)、10分後0.1%SIPX水溶液を10mlです。添加した。
その後、MIBCを2滴添加した(スラリー1リットルに対し、約2mg)後、空気をセル下部から吹き込み、上部に浮いてくるフロス(浮遊産物)を15分間回収した。なお浮選中、適宜、0.1%SIPX水溶液を5mlずつ2回添加した(SIPX総添加量:スラリー1リットルに対し、約100mg)。
浮選実験終了後、回収されたフロスとテーリング(沈降産物)は濾過、乾燥した後、秤量した。秤量した産物を王水溶解し、誘導結合プラズマ発光分光分析装置(ICP−AES,島津ICPS−8100型)によりAu、Ag及びPdの含有成分の濃度を測定し、品位、回収率を求めた。
4). Flotation experiment An MS type flotation machine with a cell capacity of 250 ml was used as an experimental apparatus. A sample (dental material polishing powder) 10 g and a predetermined pH-adjusted acidic solution were added to the cell to obtain a pulp concentration of 5% (10 g / 200 ml). The solution in the cell is stirred by a stirring blade, and 10 ml of 0.1% NaHS aqueous solution is added to this (about 50 mg per 1 liter of slurry). After 10 minutes, 10 ml of 0.1% SIPX aqueous solution is added. Added.
Thereafter, 2 drops of MIBC were added (about 2 mg per 1 liter of slurry), air was blown from the lower part of the cell, and floss (floating product) floating on the upper part was collected for 15 minutes. During flotation, 5 ml of 0.1% SIPX aqueous solution was appropriately added twice (each SIPX total addition amount: about 100 mg per 1 liter of slurry).
After completion of the flotation experiment, the recovered floss and tailing (precipitation product) were filtered, dried and weighed. The weighed product was dissolved in aqua regia, and the concentrations of the components containing Au, Ag and Pd were measured with an inductively coupled plasma emission spectrometer (ICP-AES, Shimadzu ICPS-8100 type) to determine the quality and recovery rate.

5.液性が気泡−試験片(合金)間の接触角に及ぼす影響
浮選の際、気泡に有価金属が付着するのは、金属表面の性質、即ち表面エネルギー、表面張力による。これは所謂「濡れやすさ」の度合いであり、この濡れやすさは、接触角を測定して判断することができる(伊藤公吉偏(1987):非鉄冶金学(上),秋田大学 鉱山学部 通信教育講座)。表2に、塩酸及び硫酸酸性溶液中での気泡と平板(歯科鋳造用金銀パラジウム合金)との接触角の測定結果を示す。
5. Effect of liquidity on contact angle between bubble and test piece (alloy) It is due to the nature of the metal surface, that is, surface energy and surface tension, that the valuable metal adheres to the bubble during flotation. This is the degree of so-called “easy to wet”, and this wettability can be judged by measuring the contact angle (Kityoshi Ito (1987): Nonferrous metallurgy (top), Akita University Faculty of Mining Correspondence course). Table 2 shows the measurement results of the contact angle between the bubbles and the flat plate (gold-silver-palladium alloy for dental casting) in hydrochloric acid and sulfuric acid acidic solutions.

Figure 0005441506
Figure 0005441506

塩酸酸性と硫酸酸性溶液の条件で比較した場合、pH4の条件では、塩酸酸性及び硫酸酸性の液性による接触角の差は見られなかったが、pH2及び3では、硫酸酸性溶液を用いた条件の方が接触角が大きく、平板(Au−Ag−Pd合金)表面が、より疎水性であることが分かった。
なお、歯科材研磨粉には、カルシウムが酸化カルシウム等として含有しているため、硫酸酸性溶液を用いる方が、酸化カルシウムの溶解を抑え、酸の消費を少なくすることができると考えられる。また、事前の予備実験によると、4.00を超えるpHで浮選を行うと、フロス(浮遊産物)が酸化カルシウムの浮上により汚染され易くなることが分かった。
When compared with the conditions of hydrochloric acid acid and sulfuric acid acid solution, no difference in the contact angle due to the acidity of hydrochloric acid acid and sulfuric acid acid was observed under the condition of pH 4, but the pH 2 and 3 were the conditions using the sulfuric acid acid solution. It was found that the contact angle was larger and the surface of the flat plate (Au—Ag—Pd alloy) was more hydrophobic.
In addition, since dental material powder contains calcium as calcium oxide or the like, it is considered that the use of an acidic sulfuric acid solution can suppress dissolution of calcium oxide and reduce acid consumption. Further, according to a preliminary experiment, it was found that when flotation was performed at a pH exceeding 4.00, floss (floating product) was easily contaminated by the floating of calcium oxide.

6.浮選による精錬原料中の貴金属の濃縮
表3に、浮選による精錬原料中の貴金属の濃縮結果を示す。なお、溶液のpHは、浮選前が2.14であり、浮選後が2.66であった。
本条件で浮選を行った結果、Au、Pd及びAgはフロス中に回収され、浮選前に比べそれぞれ約26倍、約23倍及び約18倍に濃縮された。また、実収率は、Auが92.53%であり、Pdが84.28%であり、Agが64.72%であり、歯科研磨粉からAu、Pd及びAgを選択的に分離回収することができた。
回収されたフロスの貴金属品位は、Au:2.956質量%、Pd:3.746質量%、Ag:4.225質量%であり、特にAu品位は0.5質量%以上になり、酸溶解法による回収が充分可能である。また、浮選前の試料(歯科研磨粉)10gに対し、回収されたフロスが0.36gであることから、酸溶解法における貴金属の回収・精製において処理量を1/10以下に減量でき、硝酸及び王水の消費量も大幅に削減できるものと考えられる。
6). Concentration of precious metals in refining raw materials by flotation Table 3 shows the concentration results of precious metals in refining raw materials by flotation. The pH of the solution was 2.14 before flotation and 2.66 after flotation.
As a result of flotation under these conditions, Au, Pd, and Ag were recovered in the froth and concentrated about 26 times, about 23 times, and about 18 times, respectively, before flotation. The actual yield is 92.53% for Au, 84.28% for Pd, and 64.72% for Ag, and selectively separates and recovers Au, Pd and Ag from dental polishing powder. I was able to.
The recovered floss precious metal grades are: Au: 2.956% by mass, Pd: 3.746% by mass, Ag: 4.225% by mass. Recovery by law is sufficiently possible. Moreover, since the recovered floss is 0.36 g with respect to 10 g of the sample before flotation (dental polishing powder), the amount of treatment can be reduced to 1/10 or less in the recovery and purification of precious metals in the acid dissolution method, It is thought that the consumption of nitric acid and aqua regia can be greatly reduced.

Figure 0005441506
Figure 0005441506

Claims (5)

歯科材研磨粉から、Au、Pd及びAgからなる群より選ばれる1種以上の貴金属濃縮された精錬原料を生成する方法であって、
(A)歯科材研磨粉を750℃以上で焙焼する工程、
(B)工程(A)で得られた焙焼物を粉砕し、これに水及び希硫酸を混合して、pH1〜4に調整した硫酸酸性のスラリーを得る工程、及び
(C)工程(B)で得られたスラリーに硫化剤、ザンセート系捕収剤及び起泡剤を加えて、浮遊選鉱を行い、前記貴金属を含む浮遊産物(フロス)を回収して沈降産物(テーリング)と分離させる工程
を含むことを特徴とする前記生成方法。
A method for producing a refining raw material in which one or more kinds of noble metals selected from the group consisting of Au, Pd and Ag are concentrated from a dental material polishing powder,
(A) A step of roasting dental material polishing powder at 750 ° C. or higher,
(B) A step of pulverizing the roasted product obtained in step (A), mixing water and dilute sulfuric acid to obtain a sulfuric acid slurry adjusted to pH 1 to 4, and (C) step (B). Adding a sulfiding agent, a xanthate-based collector and a foaming agent to the slurry obtained in Step 1, and performing a flotation process to collect a floating product (floss) containing the noble metal and separate it from a sedimented product (tailing). The generating method comprising:
硫化剤が水硫化ソーダ(NaSH)、硫化ソーダ(Na2S)及び硫化水素ガス(H2S)からなる群より選ばれる、請求項1記載の生成方法。 The production method according to claim 1, wherein the sulfiding agent is selected from the group consisting of sodium hydrosulfide (NaSH), sodium sulfide (Na 2 S), and hydrogen sulfide gas (H 2 S). ザンセート系捕収剤がカリウムエチルザンセート、ナトリウムエチルザンセート、カリウムアミルザンセート、ナトリウムイソプロピルザンセート、ナトリウムイソブチルザンセート及びカリウムイソブチルザンセートからなる群より選ばれる、請求項1又は2記載の生成方法。   The production according to claim 1 or 2, wherein the xanthate-based collector is selected from the group consisting of potassium ethyl xanthate, sodium ethyl xanthate, potassium amyl xanthate, sodium isopropyl xanthate, sodium isobutyl xanthate and potassium isobutyl xanthate. Method. ザンセート系捕収剤がナトリウムイソプロピルザンセートである、請求項1〜3のいずれか1項記載の生成方法。   The production method according to any one of claims 1 to 3, wherein the xanthate-based collection agent is sodium isopropyl xanthate. 起泡剤がメチルイソブチルカルビノール(MIBC)及びパイン油からなる群より選ばれる、請求項1〜4のいずれか1項記載の生成方法。   The production method according to claim 1, wherein the foaming agent is selected from the group consisting of methyl isobutyl carbinol (MIBC) and pine oil.
JP2009139185A 2009-06-10 2009-06-10 Method for concentrating precious metals in refining raw materials containing dental powders by flotation Active JP5441506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009139185A JP5441506B2 (en) 2009-06-10 2009-06-10 Method for concentrating precious metals in refining raw materials containing dental powders by flotation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009139185A JP5441506B2 (en) 2009-06-10 2009-06-10 Method for concentrating precious metals in refining raw materials containing dental powders by flotation

Publications (2)

Publication Number Publication Date
JP2010285639A JP2010285639A (en) 2010-12-24
JP5441506B2 true JP5441506B2 (en) 2014-03-12

Family

ID=43541562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009139185A Active JP5441506B2 (en) 2009-06-10 2009-06-10 Method for concentrating precious metals in refining raw materials containing dental powders by flotation

Country Status (1)

Country Link
JP (1) JP5441506B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104212973A (en) * 2014-09-09 2014-12-17 崔理博 Method for extracting silver from silver chloride recovered from silver-contained waste water
CN111330751A (en) * 2018-12-19 2020-06-26 有研工程技术研究院有限公司 Combined process for recovering antimony, lead and gold from multi-metal tailings

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103657867B (en) * 2013-12-03 2016-02-17 安徽朝山新材料股份有限公司 A kind of flotation agent and preparation method thereof selecting gold from Copper sulfide ore containing gold
AU2021277602B2 (en) * 2020-12-10 2023-02-02 Nouryon Chemicals International B.V. MySx/ZSH mixture as sulfidizing agent
AU2023245851A1 (en) * 2022-03-28 2024-09-19 Mitsubishi Materials Corporation Cobalt and nickel recovery method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762454A (en) * 1993-08-23 1995-03-07 Mitsubishi Materials Corp Recovering method of silver concentrate high in silver content
JP2005002376A (en) * 2003-06-10 2005-01-06 Sumitomo Metal Mining Co Ltd Method of separating ruthenium in aqueous solution
JP2009057588A (en) * 2007-08-30 2009-03-19 Kobe Steel Ltd Method for recovering metal from metal-containing substance, and apparatus for recovering metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104212973A (en) * 2014-09-09 2014-12-17 崔理博 Method for extracting silver from silver chloride recovered from silver-contained waste water
CN111330751A (en) * 2018-12-19 2020-06-26 有研工程技术研究院有限公司 Combined process for recovering antimony, lead and gold from multi-metal tailings
CN111330751B (en) * 2018-12-19 2021-11-19 有研资源环境技术研究院(北京)有限公司 Combined process for recovering antimony, lead and gold from multi-metal tailings

Also Published As

Publication number Publication date
JP2010285639A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
AU2012297534B2 (en) Process of leaching precious metals
Barnwal et al. Recycling of discarded mobile printed circuit boards for extraction of gold and copper
CHEN et al. Effect of mineral processing wastewater on flotation of sulfide minerals
JP5441506B2 (en) Method for concentrating precious metals in refining raw materials containing dental powders by flotation
CN1098142A (en) With the Wet-process metallurgy method of thiosulphate lixiviant by recovery precious metal useful component in the precious metal ore
CN101376924B (en) Method for recycling gold from refractory gold concentrate
CN102459659A (en) Method for processing precious metal source materials
CN103572322B (en) Method for recycling gold and copper from copper-containing oxidization gold ores
Ivanik Flotation extraction of elemental sulfur from gold-bearing cakes
CN102974451A (en) Method for improving recovery rate of copper nickel associated precious metals
CN107744884A (en) A kind of method of cyanide gold-leaching tailings flotation recycling gold
CN102373337A (en) Process for processing complex gold ore containing copper and arsenic
Dehghanpoor et al. Extraction of copper and gold from anode slime of Sarcheshmeh Copper Complex
JP2015214731A (en) Gold recovery method
Yang et al. Selective pre-leaching of tellurium from telluride-type gold concentrate
US20090071881A1 (en) Method for Production of Bulk Concentrate for Extracting Precious Metals
CN103276221A (en) Method for recovering copper from copper flotation system liquids of tailings after cyaniding gold extraction
RU2370316C1 (en) Method for arranging pulp for flotation of magnetic fraction from concentrates of sulphide copper-nickel ores containing ferromagnetic minerals of iron and precious metals
CN102974467B (en) Beneficiation reagent and of separating and recycling precious metal from cooper anode mud using method thereof
Abrantes et al. Electro-oxidation as a pre-treatment for gold recovery
CN105330064B (en) Zn-containing cyanide barren solution processing method
CN115261635B (en) Comprehensive recycling method for high-grade multi-element gold concentrate
EP3055437B1 (en) Hydrometallurgy process for the recovery of materials from electronic boards
RU2540236C2 (en) Processing of high-carbon gold-bearing rock
RU2009146950A (en) METHOD FOR EXTRACTION OF METALS FROM GOLD-CONTAINING SULFIDE-OXIDIZED COPPER ORES

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131217

R150 Certificate of patent or registration of utility model

Ref document number: 5441506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250