JP2549633B2 - High temperature thermistor - Google Patents

High temperature thermistor

Info

Publication number
JP2549633B2
JP2549633B2 JP61213616A JP21361686A JP2549633B2 JP 2549633 B2 JP2549633 B2 JP 2549633B2 JP 61213616 A JP61213616 A JP 61213616A JP 21361686 A JP21361686 A JP 21361686A JP 2549633 B2 JP2549633 B2 JP 2549633B2
Authority
JP
Japan
Prior art keywords
high temperature
temperature thermistor
thermistor
sheet
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61213616A
Other languages
Japanese (ja)
Other versions
JPS6369203A (en
Inventor
康信 米田
治文 万代
充弘 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP61213616A priority Critical patent/JP2549633B2/en
Publication of JPS6369203A publication Critical patent/JPS6369203A/en
Application granted granted Critical
Publication of JP2549633B2 publication Critical patent/JP2549633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高温サーミスタに関し、殊に〜1000℃付近の
高温において好適に使用される高温サーミスタに関す
る。
TECHNICAL FIELD The present invention relates to a high temperature thermistor, and more particularly to a high temperature thermistor which is preferably used at a high temperature of about 1000 ° C.

従来の技術 サーミスタは電気抵抗の温度依存性を利用したセラミ
ック温度センサであり、温度測定や温度制御に広く利用
されている。サーミスタの実用温度はそれの持つ動作抵
抗や抵抗値の安定性によって決まり、高温サーミスタは
通常300〜1000℃の温度域で使用される。高温サーミス
タ素子はスピネル系、ペロブスカイト系、ジルコニア系
やコランダム系のものなどがあり、従来からその組成を
異にする種々の種類高温サーミスタが開発されている
(例えば、特開昭60−37101号公報)。
2. Description of the Related Art Thermistors are ceramic temperature sensors that utilize the temperature dependence of electrical resistance and are widely used for temperature measurement and temperature control. The operating temperature of a thermistor is determined by the stability of its operating resistance and resistance value, and a high temperature thermistor is usually used in the temperature range of 300 to 1000 ° C. There are various types of high temperature thermistor elements, such as spinel type, perovskite type, zirconia type and corundum type, and various types of high temperature thermistors having different compositions have been developed (for example, JP-A-60-37101). ).

ところで、高温サーミスタは、自動車内燃機関におけ
る排気ガスの温度検出等、比較的大量に生産される装置
等にも使用される為、その時々の材料の入手の容易性等
から、その選択の幅を広げる為に、より多くの種類の高
温サーミスタの開発が望まれていた。
By the way, since the high temperature thermistor is also used in a device produced in a relatively large amount such as detecting the temperature of exhaust gas in an automobile internal combustion engine, the range of choice is limited due to the availability of materials at any given time. In order to expand it, development of more kinds of high temperature thermistors was desired.

本発明は、上記のような背景に鑑みてなされたもので
あり、〜1000℃の高温域においても適当な抵抗値を示
し、かつ抵抗値の経時変化が少ない、熱的及び化学的に
安定な高温サーミスタであり、従来のものとはその組成
を異にする高温サーミスタを提供することを目的として
いる。
The present invention has been made in view of the background as described above, exhibits an appropriate resistance value even in a high temperature range of up to 1000 ° C., and has little resistance change over time, and is thermally and chemically stable. It is a high temperature thermistor, and an object thereof is to provide a high temperature thermistor having a composition different from that of a conventional one.

問題点を解決するための手段 上記目的はSiCとMO(MOはジルコニウム又はイットリ
ウムの金属酸化物)とから成り、一般式 (1−x)SiC+xMO (ここで、0.05≦x≦0.7) で示される組成から成る本発明による高温サーミスタに
より達成される。
Means for Solving Problems The above object is composed of SiC and MO (MO is a metal oxide of zirconium or yttrium) and is represented by the general formula (1-x) SiC + xMO (where 0.05 ≦ x ≦ 0.7) A high temperature thermistor according to the invention consisting of a composition is achieved.

ここで、xが0.05未満ではグリーンシートの焼結性が
悪く、加えて電極となるダングステン(W)、あるいは
モリブデン(Mo)との膨張係数の差が大きいためにグリ
ーンシートとW電極あるいはMo電極との層間剥離が起こ
り、実用に供し難いものとなる。
Here, when x is less than 0.05, the sinterability of the green sheet is poor, and the difference in expansion coefficient between the electrode and dangsten (W) or molybdenum (Mo) is large. Delamination occurs between the two and becomes difficult to put into practical use.

一方、xが0.7を越えると800℃(使用範囲)での高温
サーミスタの抵抗値の経時変化が大きく、実用に供し難
いものとなる。
On the other hand, when x exceeds 0.7, the resistance value of the high temperature thermistor changes with time at 800 ° C. (operating range), and it becomes difficult to put it into practical use.

これに対して、0.05≦x≦0.7である本発明の高温サ
ーミスタによれば、後記の表に示されているようにサー
ミスタ定数が大きく、また高温域における抵抗値の変化
率も1.0%以下と小さく、熱的にも化学的にも安定した
高温サーミスタを得ることができるものである。
On the other hand, according to the high temperature thermistor of the present invention in which 0.05 ≦ x ≦ 0.7, the thermistor constant is large as shown in the table below, and the rate of change in resistance value in the high temperature region is 1.0% or less. It is possible to obtain a high temperature thermistor which is small and is stable both thermally and chemically.

実 施 例 以下に実施例を挙げる。Practical example An example is given below.

SiC、酸化ジルコニウム(ZrO2)、イットリア(Y
2O3)の各々を下記第1表中のAシートの組成となるよ
うに秤量し、これに各々10%の有機バインダを添加し、
混合し、スラリーを作製した。これをドクターブレード
法により厚み100μmのグリーンシートを作製した。こ
のグリーンシートを3cm×4cm角に切断し、その両面にタ
ングステン(W)電極ペーストを塗布し、これをAシー
トとした。一方、Al2O3、ZrO2−Y2O3を主成分とする粉
末に10%有機バインダと溶媒とを混合し、スラリーを作
製し、Aシートと同じくドクターブレード法により厚み
100μmのグリーンシートを作製した。これをBシート
とし、Bシートに電極個数に相当するスルーホールを形
成した。次にAシートの両面をBシートで挟み50℃、30
sec、5t/cm2でAシートの両面をBシートで圧着した。
この圧着シートを各々の電極が中央に位置するように切
断しチップを作った。このチップをチッ素(N2)やアル
ゴン(Ar)や水素(H2)といった中性または還元雰囲気
内において1500〜1700℃で焼成した。焼成後のチップの
両面に3mm×3mm角のPt電極ペーストを塗布し、チップの
スルーホール部にはPt電極ペーストを流し込みこれをチ
ップ内部のW電極と電気的に接続した。次に中性雰囲気
中1100〜1200℃で焼付けした第1表の試料NO.2〜5、7
〜9に示す高温サーミスタ試料を得た。
SiC, zirconium oxide (ZrO 2 ), yttria (Y
2 O 3 ) is weighed so that the composition of the A sheet in Table 1 below is obtained, and 10% of an organic binder is added thereto,
Mix to prepare a slurry. A green sheet having a thickness of 100 μm was produced from this by a doctor blade method. This green sheet was cut into a 3 cm × 4 cm square, and tungsten (W) electrode paste was applied to both sides of the green sheet to obtain an A sheet. On the other hand, a powder containing Al 2 O 3 and ZrO 2 —Y 2 O 3 as main components was mixed with a 10% organic binder and a solvent to prepare a slurry, and the same thickness as the A sheet was measured by the doctor blade method.
A 100 μm green sheet was prepared. This was used as a B sheet, and through holes corresponding to the number of electrodes were formed in the B sheet. Next, sandwich both sides of A sheet with B sheet at 50 ℃, 30
Both sides of the A sheet were crimped with the B sheet at sec, 5 t / cm 2 .
This pressure-bonded sheet was cut so that each electrode was located at the center, and chips were made. The chips were fired at 1500 to 1700 ° C. in a neutral or reducing atmosphere such as nitrogen (N 2 ) or argon (Ar) or hydrogen (H 2 ). A 3 mm × 3 mm square Pt electrode paste was applied to both sides of the chip after firing, and the Pt electrode paste was poured into the through holes of the chip and electrically connected to the W electrode inside the chip. Next, samples No. 2 to 5 and 7 in Table 1 baked at 1100 to 1200 ° C in a neutral atmosphere.
The high temperature thermistor samples shown in FIGS.

上記の如くして得られた各試料のサーミスタ定数、抵
抗値(1800℃)及びエージングテストによる抵抗値の変
化率(1000℃、1000hr)を測定した。その結果は第1表
に示す通りである。
The thermistor constant, the resistance value (1800 ° C.) and the rate of change of the resistance value (1000 ° C., 1000 hr) by the aging test of each sample obtained as described above were measured. The results are shown in Table 1.

なお、第1表中、試料NO.1、6に示す高温サーミスタ
試料は、本実施例の比較例として示したものである。
The high temperature thermistor samples shown as sample Nos. 1 and 6 in Table 1 are shown as comparative examples of this example.

発明の効果 以上の説明及び第1表に示した結果から明らかなよう
に、本発明の高温サーミスタ(試料NO.2〜5、7〜9)
はサーミスタ定数が大きく、かつ1000℃の高温放置にお
いても抵抗値の変化率が1.0%以下とエージング特性に
も優れている共に、抵抗値が高すぎたり、層間剥離が起
こるといった問題が解消され、熱的及び化学的安定性に
優れ、高精度化の要求に適する高温サーミスタであり、
従来の高温サーミスタとは、その組成を異にするもので
ある為、その選択の幅を広げるといった効果がある。
EFFECTS OF THE INVENTION As is clear from the above description and the results shown in Table 1, the high temperature thermistor of the present invention (Sample Nos. 2 to 5, 7 to 9)
Has a large thermistor constant and is excellent in aging characteristics with a rate of change of resistance value of 1.0% or less even when left at a high temperature of 1000 ° C, and the problem that the resistance value is too high and delamination occurs is solved, It is a high temperature thermistor that has excellent thermal and chemical stability and is suitable for high precision requirements.
Since the composition is different from that of the conventional high temperature thermistor, it has an effect of broadening the range of selection.

フロントページの続き (56)参考文献 特開 昭60−37101(JP,A)Continuation of front page (56) References JP-A-60-37101 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】SiCとMO(MOはジルコニウム又はイットリ
ウムの金属酸化物)とから成り、一般式 (1−x)SiC+xMO (ここで、0.05≦x≦0.7) で示される組成からなることを特徴とする高温サーミス
タ。
1. A composition comprising SiC and MO (MO is a metal oxide of zirconium or yttrium) and having a composition represented by the general formula (1-x) SiC + xMO (where 0.05 ≦ x ≦ 0.7). High temperature thermistor.
JP61213616A 1986-09-10 1986-09-10 High temperature thermistor Expired - Fee Related JP2549633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61213616A JP2549633B2 (en) 1986-09-10 1986-09-10 High temperature thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61213616A JP2549633B2 (en) 1986-09-10 1986-09-10 High temperature thermistor

Publications (2)

Publication Number Publication Date
JPS6369203A JPS6369203A (en) 1988-03-29
JP2549633B2 true JP2549633B2 (en) 1996-10-30

Family

ID=16642123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61213616A Expired - Fee Related JP2549633B2 (en) 1986-09-10 1986-09-10 High temperature thermistor

Country Status (1)

Country Link
JP (1) JP2549633B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037101A (en) * 1983-08-08 1985-02-26 株式会社日立製作所 High temperature thermistor

Also Published As

Publication number Publication date
JPS6369203A (en) 1988-03-29

Similar Documents

Publication Publication Date Title
JPH03276510A (en) Porcelain dielectric for temperature compensation
JP2617204B2 (en) Method for producing solid electrolyte
JPH0799102A (en) Porcelain composition for thermistor, and thermistor element
EP0680053B1 (en) A temperature sensor
JP5275261B2 (en) Ceramic material and electronic ceramic component including the ceramic material
JP2575213B2 (en) Thermistor element
JP2549633B2 (en) High temperature thermistor
JP2971200B2 (en) Thermistor
EP0002375A1 (en) Oxygen sensor for use in engine fuel control systems
JPH0729706A (en) High-temperature sensor and manufacture thereof
JPH06325907A (en) Ceramic composition for thermistor
JP2004003998A (en) Zirconia-based sintered material for gas sensors and its manufacturing method, electric resistance adjusting method, and gas sensor element
JPH01291151A (en) Oxygen sensor
JP2002190402A (en) Thermistor element and its manufacturing method
JP3362644B2 (en) Thermistor element, method of manufacturing the same, and temperature sensor using thermistor element
JP2904007B2 (en) Temperature sensor
JP3393261B2 (en) Porcelain composition for thermistor
JPH0562806A (en) Thermistor and manufacturing method
JP2003089576A (en) Zirconia sintered compact, and oxygen sensor
JP2603994B2 (en) Method for producing zirconia sintered body element
JPH0390851A (en) Oxygen sensor with heater and production thereof
JPH0555006A (en) Thermistor and its manufacture
JPH0543161B2 (en)
JP2529547B2 (en) Gas detector
JPH07297010A (en) Temperature sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees