JP2548980B2 - 基礎杭の性能・品質の判断、設計方法及び地盤の性能計測装置 - Google Patents

基礎杭の性能・品質の判断、設計方法及び地盤の性能計測装置

Info

Publication number
JP2548980B2
JP2548980B2 JP63334698A JP33469888A JP2548980B2 JP 2548980 B2 JP2548980 B2 JP 2548980B2 JP 63334698 A JP63334698 A JP 63334698A JP 33469888 A JP33469888 A JP 33469888A JP 2548980 B2 JP2548980 B2 JP 2548980B2
Authority
JP
Japan
Prior art keywords
ground
pile
displacement
force
piles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63334698A
Other languages
English (en)
Other versions
JPH02178416A (ja
Inventor
貞男 薮内
金吾 浅山
義隆 細川
仁志 小椋
出 大黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIOTOTSUPU KK
Original Assignee
JIOTOTSUPU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIOTOTSUPU KK filed Critical JIOTOTSUPU KK
Priority to JP63334698A priority Critical patent/JP2548980B2/ja
Priority to US07/457,206 priority patent/US5099696A/en
Priority to EP89124126A priority patent/EP0376340B1/en
Priority to EP98105115A priority patent/EP0849405A1/en
Priority to DE68929108T priority patent/DE68929108D1/de
Priority to CN 89109615 priority patent/CN1043763A/zh
Priority to CA002006945A priority patent/CA2006945A1/en
Publication of JPH02178416A publication Critical patent/JPH02178416A/ja
Priority to US07/591,534 priority patent/US5127270A/en
Application granted granted Critical
Publication of JP2548980B2 publication Critical patent/JP2548980B2/ja
Priority to US08/756,836 priority patent/US5908268A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、基礎杭の性能・品質の判断、設計方法及び
この方法に使用する地盤の性能計測装置に関する。
[従来の技術と発明が解決しようとする課題] 場所打ち杭工法には、アースドリル工法、ベノト工
法、リバース工法等があるが、いずれの工法でも、掘孔
機で所定地盤を所定の径で、所定の深さまで掘孔し、掘
孔機を地上に引き上げた後、孔内にトレミー管を吊り下
ろして孔底のスライム等を除去し、芯材鉄筋籠を孔内先
端部まで吊り下ろし、トレミー管を地上に引き上げなが
ら孔内に生コンクリートを打設する。コンクリートが硬
化すれば場所打ち杭が造成され、また、上記鉄筋籠に代
わり、掘孔内に根固め液等充填後コンクリート杭など既
製杭を挿入設置すれば、既製杭を用いた基礎杭が造成さ
れるが、下記の問題があった。
一般に、構造物を支える基礎杭の支持力は、場所打ち
杭であれ、既製杭を用いる基礎杭であれ下記のように設
計し定められる。
通常、所定地盤上に構築される構造物の大きさ形状等
が定まると、それを支える基礎杭に働く鉛直荷重、地震
時や強風時の水平力、曲げモーメントが定まる。一方、
所定地盤の地質調査が行われ、上記荷重、力に耐える基
礎杭が検討され、基礎杭の種類(場所打ち杭、既製
杭)、杭径、長さ(深度)及び施工方法と設計支持力が
定められる。この場合、構築される構造物の種類によ
り、構造物の構築後の許容沈下量、許容水平移動量、即
ち設計変位も考慮され、上記基礎杭及び施工方法の種類
が検討される。
しかし、上記基礎杭の支持力、変位は、杭が打設され
る地盤の土質性状により大きく変化し、所定地盤内に杭
を打設し、杭に実際に荷重を載荷(載荷試験)しなけれ
ば分からない。この載荷試験は、構造物を構築する工期
から見ても多くの日数を要し、また打設する基礎杭全て
に行うことは工期、経費からみても到底不可能で、特に
場所打ち杭等は一本当りの支持力が大きいため、その載
荷試験には多大の経費を要する。
そのため現状では、施工地盤におけるN値等の地質調
査資料をもととして、過去に行われた載荷試験データを
解析して得られた経験式により、基礎杭の支持力、変位
を推定して基礎杭を設計する間接方法で行われている。
ところが、この間接方法では、場所打ち杭造成時、即
ち、アースドリル等による掘孔時に、掘孔機の孔内での
上下動等により孔壁を崩壊させたり、或いは、孔底の先
端地盤を乱したり緩めたりして地盤の耐力を低下させ、
その結果杭の支持力を低下させ、設計どおりの場所打ち
杭を造成できない等、期待どおりの基礎杭を造成できな
い欠点があった。
また、地質調査そのものが、経費、時間の制約より、
基礎杭を打設する広大な施工敷地(土質が変化する)に
対し数箇所程度で、大半の基礎杭の支持力については、
上記土質データを施工敷地全域に適用して求める極めて
不確実、危険な方法で行われており、また、経験式にも
次の欠点がある。
一般に載荷試験は、第26図に示すように、実際地盤に
打設した基礎杭の頭部に、降伏荷重Py(杭若しくは地盤
が弾塑性域から塑性域へ変移する)、極限荷重Pu(杭若
しくは地盤が破壊する)まで載荷して行われるが、設計
支持力としてそのときの変位も考慮して、現状では、1/
2Pyもしくは1/3Puのいずれか小さい方の値を採用する、
即ち、過大な安全率をとる不経済な方法で行われてい
る。
また、経験式は上記のようないくつかの載荷試験結果
(データ)を解析して求められ、第27図に示すものは、
実際載荷試験により得られた杭支持力(データ)を横軸
に、それぞれの載荷試験地盤における地質調査資料をも
ととして、経験式より算出した杭支持力を縦軸にとり、
いくつかのデータをポイントしたものである。
経験式: Pa=1/n(αAp+β1Af1+β2Af2) Pu=(αAp+β1Af1+β2Af2) n=安全率 この場合、載荷試験により得られた杭支持力と、経験
式より算出した杭支持力とが一致すれば同図に示す45度
斜線(Pu)上に位置するが、実際は経験式そのものが上
記データを分析して得たものであるから、線上に位置す
るものは少ない。Pu線上より上部にポイントするデータ
群は、経験式より算出した杭支持力が実際載荷試験より
得られた杭支持力より大きいと算出するものであるか
ら、この経験式より設計支持力を定めれば、極めて危険
であることを示しており、上記とは逆に、Pu線上より下
部にポイントするデータ群は、経験式より定めた設計支
持力が安全に過ぎ、不経済であることを示しており、更
にそのうえに安全率をとれば、過剰安全とも言える。
以上、地質調査等の資料を用いて経験式により基礎杭
1本当りの設計支持力が定まると、上部構造物荷重を基
礎杭に伝達するフーチング(基礎ベース)への基礎杭の
割り付け、配置が行われるが、この場合にも、基礎杭1
本毎の実際支持力が不明確であるために下記の問題があ
る。
一般に、一構造物を支える基礎杭の設計支持力は一定
値(例えばPa=100ton/本)と定められる。次に各フー
チングへの割り付けが行われるが、構造物の形状、高さ
等の変化により、各フーチングでの基礎ベースにかかる
基礎荷重が異なり、例えば、フーチングF1での基礎荷重
を420tonとし、フーチングF2での基礎荷重を180tonとす
ると、各フーチングへの基礎杭の割り付けは下記のよう
に行われる。
F1 420/100=4.2 →基礎杭 5本 F2 180/100=1.8 →基礎杭 2本 従って、F1、F2フーチングでの1本当りの基礎杭にか
かる荷重は、 F1 420/5=84 ton/本 F2 180/2=90 ton/本 とそれぞれ異なり、結果、安全率も変わり、更に杭の支
える荷重に差があるから、フーチングにより沈下、変位
も異なり、極めて不経済、危険な方法で設計支持力が定
められている。
以上、現状では、構造物を設計し、基礎荷重、沈
下量、変位を定め、地質調査を行い、調査資料を元
として経験式により杭の支持力(杭径、杭長)、杭数、
施工法を定めているが、元々、杭1本毎の支持力が不明
なものを推定して行う、この作業の進め方は極めて危険
な方法であり、また危険を避けるため安全率も大きくな
り不経済な方法とも言える。
以上、場所打ち杭等基礎杭の設計支持力を、上記のよ
うに、極めて不経済、不確実、危険な方法でしか定め得
ないのは、施工する多数の杭の実際の杭支持力が、施工
地盤或は施工の差により大きくバラツクためであり、ま
た、杭の支持力性能が施工時に確認出来ないためであ
り、本発明はこれを解決しようとするものである。
[課題を解決するための手段] 本発明の基礎杭の判断、設計方法は、外周部に水平押
圧装置を設け下部に下圧装置を設けた地盤の性能計測装
置を、基礎杭を造成する掘削孔内に設置し、水平押圧装
置により孔壁地盤を押圧して孔壁地盤に変位を与えて、
孔壁地盤の水平抵抗力と水平変位とを計測し、また、水
平押圧装置により孔壁地盤を押圧して孔壁地盤に変位を
与えて、変位を与えた状態で,水平押圧装置を軸方向に
移動させるか又は周方向に回転移動させて、周面摩擦力
と移動量(変位)とを計測し、更に、下圧装置により先
端地盤(孔底地盤)を押圧して、押圧した力と先端地盤
の変位とを計測し、前記の計測により得られた計測値
を、設計支持力と設計変位、及び、杭と土に関する各種
理論式及び/又は各国や各種の規準が予め記憶されてい
る杭支持力解析演算装置に入力し、分析、解析して蓄積
し、施工しながら杭の支持力及び/又は変位などの性能
・品質を判断し、更にそれらの解析資料を蓄積して後続
の杭の設計を行い、順次施工、設計を繰り返し行うこと
を特徴とするものである。(請求項1) 請求項1の基礎杭の判断、設計方法において、施工し
ながら土と杭の性能を分析、解析して、現に施工してい
る杭が設計値に適合する杭であると判断することもでき
る。(請求項2) また、請求項1の基礎杭の判断、設計方法において、
施工しながら土と杭の性能を分析、解析して、施工地盤
に適合した杭の設計を行うようにしてもよい。(請求項
3) さらに、請求項1〜3の基礎杭の判断、設計方法にお
いて、施工しながら土と杭の性能を分析、解析して、杭
の性能・品質の保証を、その都度、保証提供装置により
アウトプットし提供するようにしてもよい。(請求項
4) そして、上記基礎杭の性能・品質の判断、設計方法に
は、本体装置より、外周に拡張して掘孔内孔壁地盤に変
位を与える水平押圧装置と、下方に突出して掘孔内先端
地盤に変位を与える下圧装置とよりなる基礎杭の地盤の
性能計測装置を使用することができる。(請求項5) [作用] 請求項1の基礎杭の判断、設計方法においては、基礎
杭を造成する掘孔内に支持力計測装置を設置し、孔内地
盤に変位を与え、変位を与えた力と変位を計測し、特
に、地盤の水平抵抗力と水平変位、周面摩擦力と移動量
(変位)、更に孔底地盤では、先端地盤の抵抗力と変位
を杭1本毎に併せて計測し、それらの計測値等の情報
を、予め設計支持力や設計変位、或は、杭と土に関する
各種理論式などが記憶されている杭支持力解析演算装置
に入力し、分析、解析するものであるから、造成される
基礎杭1本毎の実際の杭支持力及び変位が、施工しなが
ら解析、判断される。また、このような解析判定の結
果、杭の支持力性能、即ち、鉛直支持力と変位、水平支
持力と変位などそれぞれの値が個別に任意の深度ごとに
把握確認される。この場合、掘削孔内地盤を押圧して変
位を与えるものであるから、押圧を繰り返すごとに、変
位が小さくなり、支持力の大きい基礎杭をできる。特
に、水平押圧装置で孔壁地盤を押圧して地盤に変位を与
え、変位を与えた状態で水平押圧装置を軸方向に垂直移
動、もしくは、水平に回転移動させて周面摩擦力と移動
量(変位)を計測するものであり、周面摩擦力と変位の
計測を行うことで、杭全体の鉛直支持力や許容変位など
の分析、解析、判定が可能となる。また、この基礎杭の
判断、設計方法においては、分析、解析した解析資料を
蓄積して後続の杭の設計を行い、順次施工、設計を繰り
返し行うものである。
請求項2の基礎杭の判断、設計方法においては、施工
しながら土と杭の性能を分析、解析して、現に施工して
いる杭が設計値に適合する杭と判断する事ができ、予
め、構造物荷重、構造物に働く外力、地質調査などより
検討して定められた設計値どうりの基礎杭を造成するこ
とができる。また、前記の計測、解析の結果、杭支持力
及び変位等が満足しない場合でも、設計で定めた設計値
を変えることなく、杭長、杭径、杭材、配筋等のみを変
更して設計値に適合する杭を造成することもできる。
請求項3の基礎杭の判断、設計方法においては、施工
しながら土と杭の性能を分析、解析して、施工地盤に適
合した杭の設計を行うようにしたものであり、掘孔内地
盤に変位を与え、変位を与えた力と変位を計測、分析
し、各種理論式等により分析、解析、演算して、施工地
盤性能に最適で、且つ、安全な基礎杭を設計することが
できる。
請求項4の基礎杭の判断、設計方法においては、施工
しながら土と杭の性能を分析、解析して、杭の性能・品
質の保証を提供するようにしたものであり、打設する全
ての杭について、杭の性能の明確なデータを提供し、基
礎杭全てが安全で適切な品質であることを、その都度、
施工現場で直ちに保証する事ができる。
また、請求項5の性能計測装置Sは、水平押圧装置
が、本体装置より外周に拡張して掘孔内孔壁地盤に変位
を与え、下圧装置が、下方に突出して掘孔内先端地盤に
変位を与えるものであり、簡単な構成の装置で、掘孔内
のいかなる深度の孔壁地盤にも押圧して変位を与えるこ
とができ、先端地盤に変位を与える場合にも、孔壁地盤
を押圧して得られる摩擦力を反力として、先端地盤を押
圧するものである。
[実施例] はじめに、第1図〜第12図を用いて本発明の実施例に
係る地盤の性能計測装置を説明する。
第1図〜第3図は、地盤の性能計測装置Sの実施例を
示すものであって、ケーシング1は、全長が掘孔径と略
同径である。或は、先端部のみ同径とし、それより上部
を細く形成してもよい。
符号Sは、ケーシング先端部に設けた地盤の性能計測
装置を示す。この地盤の性能計測装置Sは、孔壁地盤を
押圧する水平押圧装置S1と先端地盤を押圧する下圧装置
S2より構成されている。
水平押圧装置S1は、地盤の性能計測装置Sの外周部に
複数個に分割(4分割)された2重管構造で形成され、
分割された箱型の押圧フレーム5が、水平シリンダー3
作動により分割された室内のガイド板6をガイドとして
水平方向に出没する。しかも、水平シリンダー3の基部
が固定されているスライド板6aは、上下移動可能にガイ
ド板6に支持されている。フレームの前面、押圧面7は
ケーシングと略同径の円弧状に形成され、複数個の押圧
面7で略円形を形成する。また、水平シリンダー3は水
平押圧装置S1の上下方向に数段設けられている。ただ
し、押圧フレーム5の外面は造成される場所打ち杭外周
面と同様に粗面に形成してもよい。
下圧装置S2は、水平押圧装置S1の内管部分に上下にス
ライドするように、下圧盤13を構成する上部円筒体13a
部分が嵌込まれ、下圧装置室内には1〜複数個の垂直シ
リンダー4が垂直方向に設けられ、その下部に下圧盤13
が連設され、垂直シリンダー4の作動により下圧盤13が
上下に昇降する。尚、下圧盤13の下圧面の外径は掘孔径
と略同径とする。
符号9は、給排水パイプを示す。このパイプ9を使用
すれば、掘孔内にケーシング1及び地盤の性能計測装置
Sを吊り下げ設置する場合、孔内泥水を排出したり、給
水したり、必要な場合には、第4図(d)に示すように
パイプ9を介して掘孔内先端地盤に先端根固め用生コン
クリートを打設充填することもできる。尚、先端部には
自動で開閉する弁が設けられる。パイプ9に代えてホー
スを使用してもよく、パイプ9を設けない場合もある。
符号29は、地盤の性能計測装置Sに設けられた軸移動
シリンダーを示す。この軸移動シリンダー29は、押圧フ
レーム5を本体部より上下軸方向にスライドして移動さ
せる。即ち、水平押圧装置S1部の押圧フレーム5を水平
方向に張り出し、孔壁地盤を押圧した状態で上記軸移動
シリンダー29を作動させると、押圧フレーム5が上下に
移動し、孔壁地盤の摩擦抵抗が計測できることとなる。
尚、上記摩擦抵抗を計測する場合、軸移動シリンダー29
に代わり、ケーシング1の本体上部を地上のパワージャ
ッキ等と連結して上下に移動させて摩擦抵抗を計測して
もよく、また、ケーシング1の上部を地上に設置したケ
ーシングドライバー等回転或は回動装置に連結し、ケー
シング1に回転力を与えて円周方向に移動させて摩擦抵
抗を計測してもよい。
油圧制御装置20は、マニホールド22、電磁弁23等で構
成され、油圧ポンプ21と水平シリンダー3、垂直シリン
ダー4及び軸移動シリンダー29との間に設けられる。こ
の油圧制御装置20は、地上のポンプ21の近辺に設置する
ことができるが、この場合には、マニホールド22より各
シリンダーまで複数本のホースまたは管が配設される。
また、この油圧制御装置20を地盤の性能計測装置Sの近
辺に設置すれば、ポンプ21とマニホールド22との間の長
い距離が往復2本のメインホース或は管のみとなり装置
が簡単となる。マニホールド22より各シリンダーまでの
短い距離は、それぞれ複数本のホースまたは管が配設さ
れる。
符号24a、24b、24cは、それぞれ上記水平シリンダー
3、垂直シリンダー4、軸移動シリンダー29に送られる
油(流体)の圧力を測定するための圧力計もしくは圧力
センサーを示す。これらは、地上に設置するか、或は、
地盤の性能計測装置S内に設置するが、それぞれの圧力
センサーによる計測値は電気信号に変換して後に説明す
る杭支持力解析演算装置Kに送信する。
位置センサー26aは、上記水平シリンダー3の伸縮作
動により、本体地盤の性能計測装置Sより外周に張り出
して、即ち、水平方向に張り出して、孔壁地盤を押圧す
る押圧フレーム5の移動量、即ち、孔壁地盤の変位量を
計測するものである。この位置センサー26aは、周方向
複数個に分割された押圧フレーム5のそれぞれの移動量
が計測できるように複数個設けられ、また、後記するよ
うに、押圧部分が軸方向複数段ある場合にもそれぞれに
設けられる。
位置センサー26bは、上記垂直シリンダー4の伸縮作
動により、地盤の性能計測装置S本体より下方向に突出
して孔底の先端地盤を加圧する下圧盤13の移動量、即
ち、先端地盤の変位量を計測するものである。
位置センサー26cは、上記軸移動シリンダー29の伸縮
作動により、地盤の性能計測装置Sの押圧フレーム5の
上下の移動量、即ち、地盤の性能計測装置S本体よりの
移動量を計測するものである。この位置センサー26c
も、周方向複数個に分割された押圧フレーム5のそれぞ
れの移動量が計測できるように、複数個設ける。これら
の位置センサー26a,26b,26cとしては、例えば、作動ト
ランス形、リニアゲージ形、歪ゲージ形等の変位計を採
用することができる。
変位計27は、先端に地盤の性能計測装置Sを取り付け
たケーシング1の上下の移動量を、地上で計測する。即
ち、地上不動点28よりケーシング1の管の軸方向移動量
を計測する。これは、押圧フレーム5の上下の移動量を
計測する目的と、孔壁地盤を押圧しながら先端地盤を押
圧する場合、ケーシング1、即ち、地盤の性能計測装置
Sの上方への移動がないかどうかを計測するものである
(孔壁押圧部分が滑る場合)。
杭支持力解析演算装置Kは、上記装置で計測入力され
た孔壁地盤、先端地盤のデータ、地盤情報を蓄積、解
析、演算して杭の周面支持力、先端支持力、即ち、鉛直
支持力と変位及び水平支持力と変位等を解析判定するマ
イクロコンピューターを内蔵した装置である。この装置
K内には、設計支持力と変位、或は、各種理論式や各国
の各種の規準等(第28図〜第30図に例示する。)が入力
記憶されており、地盤情報を上記理論式や規準式等で解
析演算して、安全で的確な杭支持力性能を判定する。Ka
は杭の性能・品質の保証提供装置で、上記杭支持力解析
演算判定装置Kとは電気的に通信可能に接続され、杭支
持力解析演算判定装置Kにより解析、演算して安全と判
定もしくは判断された杭支持力と変位、つまり、杭の性
能・品質の保証を提供する装置で、打設する基礎杭全て
についての保証を、施工現場で直ちにアウトプットし提
供する。レコーダー、プリンター、モニター等で構成さ
れ、また、杭支持力解析演算判定装置Kと一体的に形成
してもよい。
尚、前記位置センサー26a、26b、26cに代えて、水平
シリンダー3、垂直シリンダー4、軸移動シリンダー29
に送られる油(流体)の量を測定する流量計25a、25b、
25cを設けてもよい。これらの流量計は、マニホールド2
2、電磁弁23の近辺に設けられ、送られた流体の量より
上記各シリンダー3、4、29の伸縮量、即ち押圧部分の
移動量、言い替えれば、地盤の変位量を計測する。
次に、以上に説明した地盤の性能計測装置Sの使用方
法、及び杭支持力等の計測判定について第4図及び第5
図に基づいて説明する。
まず、アースドリル機、ベノト機等の掘孔機で従来工
法のごとく、所定地盤を所定の径で、所定の深さまで掘
孔し掘孔機を地上に引き上げる(第4図(a))。
杭周面支持力と変位の計測(第4図(b)) まず、掘孔B内に地盤の性能計測装置Sが所定深さ位
置になるようにケーシング1を吊り下げ停止する。次に
水平シリンダー3を作動させ、押圧フレーム5を地盤の
性能計測装置Sより外周に拡張し、孔内の周辺地盤即ち
孔壁を押圧して孔壁地盤に変位を与える。上記の孔壁地
盤押圧時に於て、水平シリンダー3による押圧力は圧力
センサー24aで計測される。
次に、水平シリンダー3による押圧力が所定の値とな
った時に軸移動シリンダー29を作動させ、押圧フレーム
5を孔壁地盤を押圧した状態のまま掘孔B内軸方向に移
動させる。軸移動シリンダー29による移動力、即ち油圧
力の反力は、ケーシング1の自重とするか、ケーシング
1の上部を地上の施工機等で固定する。
上記軸移動シリンダー29の押圧力、即ち、移動力は圧
力センサー24cで計測され、更に、押圧フレーム5の軸
方向変位は位置センサー26c等で計測され、地上の杭支
持力解析演算判定装置Kに送信され、地盤データとして
蓄積され解析される。尚、孔壁地盤の押圧、計測は各深
度毎に行うが、地盤の性能計測装置Sの押圧フレーム5
部分が長い場合には、押圧回数が減り、地盤の性能計測
装置Sをケーシング1の全長に設ける場合には、押圧計
測は一回で終わる。杭先端支持力と変位の計測(第4図
(c)) 地盤の性能計測装置Sを掘孔B内孔底に吊り下ろし設
置する。次に、水平シリンダー3を作動させ押圧フレー
ム5を地盤の性能計測装置Sより外周に拡張し、孔内先
端部の周辺地盤を押圧する。次に上記押圧状態のまま
(押圧による摩擦抵抗を反力として)、垂直シリンダー
4を作動させて下圧盤13を、地盤の性能計測装置Sより
下方に突出させて孔内先端地盤を押圧し先端地盤に変位
を与える。
上記垂直シリンダー4の押圧力は圧力センサー24bで
計測され、更に、下圧盤13の軸方向移動量、即ち、先端
地盤の変位は位置センサー26b等で計測され、地上の杭
支持力解析演算判定装置Kに送信され、地盤データとし
て蓄積され解析される。尚、先端地盤の押圧は、後記す
るように、押圧、解放を数回繰り返す場合がある。水平
支持力と変位の計測(第4図(d)) まず、地盤の性能計測装置Sを、主として水平力が働
く地上近辺の掘孔B内に設置する。この場合、孔壁地盤
の押圧方法は、杭周面支持力と変位の計測の場合に孔壁
地盤を押圧した方法と同様で、水平シリンダー3を作動
させ、押圧フレーム5を地盤の性能計測装置Sより外周
に拡張し、孔内の周辺地盤即ち孔壁を押圧し、孔壁地盤
に変位を与える。
上記の孔壁地盤押圧時に於て、水平シリンダー3によ
る押圧力は圧力センサー24aで計測され、押圧フレーム
5の水平方向移動量即ち孔壁地盤の変位は位置センサー
26aで計測され、地上の杭支持力解析演算判定装置Kに
送信され、地盤データとして蓄積され解析される。
以上、杭支持力と変位の押圧、計測、解析が終わり満
足するものと判定されれば、支持力計測装置Sを地上に
引き上げた後、芯材鉄筋籠N及びトレミー管Tを孔内先
端部まで吊り下ろし、孔内に生コンクリートを打設し、
コンクリートが硬化して、設計どおりの場所打ち杭M、
或は、地盤性能に適合した場所打ち杭Mが造成される
(第4図(e)(f))。尚、上記計測判定が終わった
後で、第4図(d)に示すように、ケーシング1内の給
排水パイプ9を介して、掘孔内先端部に根固め用生コン
リートを充填してもよい。
また、上記計測判定が終わった後で、掘孔内に根固め
用、周辺固結用等モルタルなど硬化材を充填し、孔内に
コンクリート杭、鋼管杭等を挿入設置すれば、既製杭を
用いた基礎杭が造成される。
第6図〜第8図は、地盤の性能計測装置Sの他の実施
例を示すものであって、軸移動シリンダー29を設けない
点のみが異なる。この場合、孔壁地盤押圧状態での押圧
フレーム5の軸方向移動は、ケーシング1の本体上部を
地上のパワージャッキ等と連結して上下に移動させて行
うこととなり、また、ケーシング1の上部を地上に設置
したケーシングドライバー等回転或は回動装置に連結
し、ケーシング1に回転力を与えて円周方向に移動させ
てもよい。
第9図及び第10図は、下圧装置S2の他の実施例を示す
ものであって、先端下圧盤13がセンター部分の下圧縮盤
13aとリング状下圧盤13b部分とに分割され、センター部
分の下圧盤13aに前記と同様に垂直シリンダー4が連接
されるとともに、リング状下圧盤13bには垂直シリンダ
ー4bが連接され、それぞれの下圧盤13a、13bが個別に作
動する。
このように下圧盤13を分割する場合には、それぞれの
移動量が計測できるように、各部分に位置センサー26b
を設ける。
本実施例の場合、杭先端支持力と変位の計測に際し、
リング状下圧盤13b部分とセンター部分の下圧盤13aとを
別個に作動させることができ、先端地盤の中心部を押圧
した後(押圧状態のまま、あるいは押圧を解除した後)
周辺部を押圧したり、また、その逆の順序で行ってもよ
く、先端支持地盤の土質或いは硬度により使い分けるこ
とができ、また、上記リング状下圧盤13b部分とセンタ
ー部分の下圧盤13aのいずれか一方で先端地盤を押圧し
ても先端地盤の応力を計測、解析できる。
尚、先端地盤の押圧は、水平シリンダー3で行う周辺
地盤への押圧力、即ち、押圧面7と周辺地盤の摩擦力を
反力として行っており、摩擦力が不足する場合には、水
平押圧装置S1を長くするか或はケーシング全長を複数段
の水平押圧装置S1とする。また、下圧面を周辺部と中心
部に分割してあるのは、上記のように先端地盤の効果的
な押圧を行おうとするもので、周辺地盤の摩擦力が不足
する場合、先端地盤の硬度が高い場合等、上記のように
周辺部、中心部と部分的に順に押圧すると反力も充分に
もち、押圧計測が可能となる。
また、第11図は下圧装置S2の更に他の実施例を示すも
ので、地盤の性能計測装置Sの下面フレームに連結した
円筒部材13e、下圧面13d及び本体フレームと蓋板13fと
で地盤の性能計測装置Sの先端部に密閉状の下圧室13A
を設ける。この場合、下圧面13dをゴム、プラスチッ
ク、薄鉄板等弾性体で形成するか、もしくは、円筒部材
13eを弾性体で形成するものとし、下圧室13Aには送圧ホ
ースが連結され地上より油等を送れば液圧で下圧面13d
が膨出、突出して先端地盤を押圧するように構成したも
のである。この場合、下圧面13dの膨出突出移動量は送
った油の量で計測するか、位置センサーで計測する。
更に、第11図及び第12図には水平押圧装置S1の他の実
施例が示されており、地盤の性能計測装置Sの外周部に
複数個(4分割)に分割された2重管構造の各室5Aを密
閉状に形成し、分割された各室5Aの押圧面7をゴム、プ
ラスチック、薄鉄板等弾性体で形成するか、もしくは、
内外のリング部材を連結するフレーム5aを弾性体で形成
する。各室には送圧ホースが連結され地上より油等を送
れば液圧で押圧面7が膨出、拡張して孔壁地盤を押圧す
るように構成したものである。この場合も、押圧面7の
膨出拡張量は送った油の量で計測するか、位置センサー
で計測する。
次に、上記地盤の性能計測装置Sで掘孔内地盤に変位
を与え、施工しながら土と杭の性能を分析、解析して、
杭の性能・品質の判断、設計を行う方法について、第13
図〜第21図のフロー図に基づき実行順にステップ毎に、
詳細に説明する。
尚、本発明は、施工しながら土と杭の性能を分析、解
析して、設計値に適合する杭と判断する方法(方法A)
と、施工しながら土と杭の性能を分析、解析して、杭の
設計を行う方法(方法B)とを含み、更に、上記で判
断、設計された杭の性能・品質の保証を提供することを
含む。
(1)方法A(第13図〜第16図) 第13図は方法Aのメインフローを示し、第14図〜第16
図はサブフローを示す。
ステップI 構造物荷重、構造物に働く外力等より基礎
ベース毎の荷重が計算され、また、地質調査を行い、杭
基礎の検討が為される。
ステップII その結果、杭の鉛直支持力、水平支持力、
許容変位、安全率等が設計値として設定され、 ステップIII 併せて、杭長、杭径、施工法等が検討さ
れる。
本方法は、ステップIIで設定した設計値に適合する杭
を、施工しながら下記方法で計測、解析、判定及び杭の
性能・品質の保証を提供しようとするものであって、 ステップIV−サブルーチンsub1 杭周面支持力と変位の
計測と、相関関係の解析とデータの蓄積と提供を行う。
詳細には第14図に示すように、 ステップ1 地上近辺の孔内にケーシング1を吊り下ろ
し、地盤の性能計測装置Sが一定深さZn位置になるよう
に停止する。次に水平シリンダー3を作動させ、押圧フ
レーム5を地盤の性能計測装置Sより外周に拡張し、孔
内の周辺地盤即ち孔壁地盤(ΔLm部分)を押圧して孔壁
地盤に些かな変位を与える。上記の孔壁地盤押圧時に於
て、水平シリンダー3による押圧力は圧力センサー24a
により計測され(計測値H1)、水平シリンダー3の伸び
量(変位)、或は押圧フレーム5の水平方向の変位即ち
地盤の変位は、位置センサー26aにより計測される(計
測値X1)。尚、水平シリンダー3の伸び量(変位)は、
流量計25aで計測してもよい。それぞれの計測値H1、X1
は電気的信号に変換されて、地上に設置された杭支持力
解析演算判定装置Kに送信され、H1、X1相関関係データ
として蓄積、提供される。
ステップ2 次に、水平シリンダー3による押圧力を徐
々に増し、 ステップ3 押圧力H1が静止土圧、或は、後に充填され
る生コンクリート上載圧等任意の圧力に相当する値とな
った時に、 ステップ4 軸移動シリンダー29を作動させ、押圧フレ
ーム5を孔壁地盤を押圧した状態のまま、掘孔内軸方向
に移動させる。
ステップ5 上記軸移動シリンダー29の押圧力、即ち、
移動力Fは、圧力センサー24cにより計測され(計測値
F)、シリンダー29の伸び量(変位)、或は押圧フレー
ム5の軸方向の移動量、変位は、位置センサー26cによ
り計測される(計測値S)。尚、シリンダー29の伸び量
(変位)は、流量計25cで計測してもよい。
ステップ6 それぞれの計測値F、Sは上記測定値と同
様に電気的信号に変換されて、地上の杭支持力解析演算
判定装置Kに送信され、第22図に示すように、軸方向移
動力Fと軸方向変位Sとの相関関係のデータとして分析
蓄積される。この場合計測値Fは、水平シリンダー3の
押圧が静止土圧等に相当する時に、軸方向に移動させて
計測したものであるから、計測深度Znの、地盤に於ける
軸方向変位Szn毎の杭周面摩擦力Fznに相当し、周面摩擦
力のピーク値P・Fznも示されている。
ステップ7,7.1 所定の押圧、計測、送信が終わると、
地盤の性能計測装置Sを更に下方のZ(n+1)の位置
に移動させ、上記と同様にΔL(m+1)の押圧、計
測、送信を行い、地盤の性能計測装置Sが孔底に達する
までこれを繰り返す。
ステップ8 孔壁全長Lの押圧、計測、送信が終われ
ば、それぞれのΔLm部分の軸方向移動力F、即ち、周面
摩擦力Fと軸方向変位Sの相関関係データとして蓄積さ
れ、フロー12の杭の鉛直支持力と変位の押圧判定時に併
せて解析される。尚、第22図に於て、Z(n+1)、Z
(n+2)は計測深度Z(n+1)、Z(n+2)に於
ける軸方向変位と杭周面摩擦力との相関関係データを示
している。
また、ステップ6及びステップ8に於て蓄積された周
面摩擦力Fと軸方向変位Sの相関関係データは、施工現
場で直ちにプリンター等でアウトプットし提供する。
ステップV−サブルーチンsub2 次に、杭先端支持力と
変位の計測と、相関関係のデータ蓄積と提供を行う。詳
細には第15図に示すように、 ステップ9 装置が孔底まで達すると、水平シリンダー
3を作動させ、押圧フレーム5を地盤の性能計測装置S
より外周に拡張し、孔内先端部の周辺地盤を押圧する。
次に上記押圧状態のまま、垂直シリンダー4を作動させ
て下圧盤13を下降させ、孔内先端地盤を押圧して先端地
盤に変位を与える。
ステップ10 上記に於て、垂直シリンダー4による押圧
力は圧力センサー24bにより計測され(計測値P1)、垂
直シリンダー4の伸び量(変位)、下圧盤13の軸方向下
向きの変位、即ち、先端地盤の変位は、位置センサー26
bにより計測される(計測値Y1)。尚、垂直シリンダー
4の伸び量(変位)は、流量計25bで計測してもよい。
ステップ11 それぞれの計測値P1、Y1は電気的信号に変
換されて、地上に設置された杭支持力解析演算判定装置
Kに送信され、各計測値は、第23図に示すような、先端
押圧力と変位のP,Y相関関係データとして蓄積、提供さ
れる。
ステップ12 蓄積された先端押圧力と先端変位の相関関
係データは、ステップ8で蓄積された軸方向摩擦力と軸
方向変位の相関関係データと併せて分析され、設計支持
力等の任意の鉛直支持力を先端支持力と周面摩擦力とに
分析し、杭材歪と変位を解析する。尚、分析、解析のデ
ータは、上記相関関係データと共にプリントアウトされ
提供される。
ステップVI 上記、計測分析の結果、解析された鉛直支
持力及び変位の値が、設計値に適合すると判定されれ
ば、設計値に適合するとの判断結果を、施工現場で直ち
にプリントアウトして杭の性能・品質の保証を行い、次
の水平支持力と変位の計測判定に移る。
ステップVI.1 設計値を満足しない場合には、下記のよ
うに再度先端地盤を押圧して変位を与え、上記と同様の
計測解析を行う。垂直シリンダー4の戻り弁(電磁弁)
を開き先端押圧状態を解放する。この場合、先端地盤が
弾塑性体であるため復元しようとし、地盤の復元力はシ
リンダー4の負荷として圧力センサー24bで計測され
(計測値P2)、シリンダー4の縮み量或は下圧盤13の戻
り量、即ち、変位した地盤の戻り量は位置センサー26b
で計測され(計測値Y2)、それぞれの計測値P2、Y2も電
気的信号に変換されて、杭支持力解析演算判定装置Kに
送信される。
ステップV 上記計測値と、再押圧した時の先端押圧力
と変位のデータは、下記のように分析され、蓄積され
る。即ち、相関関係データは第24図のようになる。押圧
時の押圧力−変位は図のL1曲線で、復元力−変位はL2曲
線で示され、設計支持力等任意の鉛直支持力が解析され
たときの先端押圧力をPa、その時の変位をYaとする。ま
た、押圧力を解放したときに地盤が戻り、復元力が0と
なった時の変位がYbで、変位Yaよりも一般に小さく、地
盤が弾塑性体であるため完全に元には戻らない。この状
態(変位0)より再度押圧すると、押圧力−変位は図の
L3曲線となり、先端押圧力がPaの時の変位(Yc-Yb)
は、最初の押圧で地盤が締め固められているため、最初
の変位Yaよりも少なく、更に、押圧−解放を繰り返すと
変位は更に小さくなる。
上記で蓄積された先端押圧力と先端変位の相関関係デ
ータは、ステップ12と同様に、軸方向摩擦力と軸方向変
位の相関関係データと併せて分析されるが、最初の解析
時よりも変位が小さくなっているため、解析された先端
支持力、周面摩擦力及び杭材歪、変位も変わり、解析さ
れた鉛直支持力及び変位の値が、設計値に適合すると判
定され、判断結果及び解析データ等がプリントアウトさ
れ提供される。
ステップVI.2 尚、上記繰り返し押圧で、鉛直支持力と
変位が設計値どおりにならない場合には、設計で定めた
鉛直支持力と変位を満足するように設計変更するものと
し、 ステップVI.3 上記で計測分析解析したデータを用いて
杭径、杭長等の設計変更を行い、 ステップVI.4 或は、杭材、配筋等の変更を行う。
ステップVII−サブルーチンsub3 次に、杭の水平支持
力と変位の計測と、相関関係のデータ蓄積を行う。この
場合、水平力及び曲げモーメントが主として杭上部に作
用するため、掘孔内の地上近辺で行う。詳細には第16図
に示すように、 ステップ13 鉛直支持力と変位の計測判定が終われば、
地盤の性能計測装置Sを引き上げ、地上近辺の孔内の一
定深さZn位置に設置する。次に水平シリンダー3を作動
させ、押圧フレーム5を地盤の性能計測装置Sより外周
に拡張し、孔壁地盤(ΔLm部分)を押圧して孔壁地盤に
些かな変位を与える。
ステップ14 上記押圧時に於て、水平シリンダー3によ
る押圧力は圧力センサー24aにより計測され(計測値H
3)、水平シリンダー3の伸び量(変位)、或は押圧フ
レーム5の水平方向の変位即ち孔壁地盤の変位は、位置
センサー26aにより計測される(計測値X3)。尚、水平
シリンダー3の伸び量(変位)は、流量計25aで計測し
てもよい。それぞれの計測値H3、X3は電気的信号に変換
されて、地上に設置された杭支持力解析演算判定装置K
に送信される。各計測値は、第25図のC1曲線に示すよう
な水平押圧力(抵抗力)と変位H3及びX3との相関関係デ
ータとして蓄積される。
尚、同図に於てXaは、水平押圧力H3が設計水平支持力
等に相当する所定の押圧力Haになった時の孔壁地盤の変
位を示し、また、C2曲線は、上記水平押圧、計測が終わ
り、水平シリンダー3による押圧を解放した時の孔壁地
盤の復元力−変位の相関関係を示し、復元力が0となっ
た時の変位がXbで示されている。
ステップ15 押圧、計測、送信が終わると、地盤の性能
計測装置Sを更に下方のZ(n+1)の位置に吊り下ろ
し、上記と同様にΔL(m+1)の押圧、計測、送信を
行い、地盤の性能計測装置Sが所定の深さ、水平力及び
曲げモーメントが主として作用する孔内地盤の所定の深
さに達するまでこれを繰り返す。
ステップ16 所定の押圧、計測、送信が終わると、それ
ぞれのΔLm部分の押圧力(抵抗力)と変位と杭材歪との
相関関係データとして蓄積されており、 ステップ17 上記相関関係データより水平支持力と変位
が解析される。
尚、ステップ16に於ける相関関係データ、及び、ステ
ップ17の解析データはプリントアウトし提供される。
ステップVIII 上記計測分析の結果、解析された水平支
持力と変位の値が、設計値に適合すると判定されれば、
判定結果を施工現場で直ちにプリントアウトして杭の性
能・品質の保証を提供して、本システムでの押圧判定を
終了するが、 ステップVIII.1 設計値を満足しない場合には、先端地
盤の押圧判定時と同様に、再度孔壁地盤の押圧、計測、
解析を行う。この場合、押圧力−変位は第25図のC3曲線
となり、先端地盤の押圧時と同様で、水平押圧力がHaの
時の孔壁地盤の変位(Xc-Xb)は、最初の押圧時の変位X
aよりも少なく、更に、押圧−解放を繰り返すと変位は
更に小さくなる。
また、押圧力と変位の相関関係データは、ステップ17
と同様に分析されるが、最初の解析時よりも変位が小さ
くなっているため、解析された水平支持力と変位及び杭
材歪も変わり、 ステップVIII 解析された水平支持力及び変位の値が、
設計値に適合すると判定されることとなり、判定、判断
の結果をプリントアウトして杭の性能・品質の保証を行
い、本方法での押圧計測を終了する。
ステップVIII.2 尚、上記繰り返し押圧で、水平支持力
と変位が設計値どおりにならない場合には設計で定めた
水平支持力と変位を満足するように下記設計変更するも
のとし、 ステップVIII.3 上記で計測分析解析したデータを用い
て杭長、杭径等の設計変更を行い、 ステップVIII.4 或は、杭材、配筋等の変更を行う。
尚、上記ステップVIII.3、VIII.4の設計変更では、水平
力等が主として働く杭上部のみを変更する場合がある。
(2)方法B(第17図〜第21図) この方法は方法Aと異なり、施工しながら土と杭の性
能を分析、解析して、地盤に適合した杭の設計を行う方
法であって、第17図はメインフローを示し、第18図〜第
21図はサブフローを示す。
ステップI まず、方法Aと同様に構造物荷重、構造物
に働く外力等より基礎ベース毎の荷重が計算され、地質
調査を行い、杭基礎の検討が為される。
ステップII 併せて、杭長、杭径、施工法等が検討され
る。
ステップIII その結果、推定値として杭の支持力と変
位の仮の設定が為され、 ステップIV 杭長、杭径、杭材、配筋等が定められる。
本方法は、ステップIVで仮に定めた杭長、杭径等の杭
の性能を施工しながら解析し、地盤に適合した杭の設計
を行おうとするものであって、 ステップV−サブルーチンsub1 まず、杭周面支持力と
変位の計測を行い、相関関係の解析とデータの蓄積を行
う(第18図)が、方法Aのステップ1〜8(第14図)と
同様であるので説明は省略する。
ステップVI−サブルーチンsub2a 次に、杭先端支持力
と変位の計測と、相関関係のデータ蓄積を行う。詳細に
は第19図に示すように、 ステップ9 先端地盤を押圧して仮に定めた変位を与え
る。
ステップ10 押圧力、即ち、先端地盤の応力と変位の計
測。
ステップ11 先端押圧力(応力)と変位との相関関係デ
ータ蓄積と提供を行う。
ただし、ステップ9〜11の処理は、方法Aと同様であ
る。
ステップVII−サブルーチンsub2b 杭の鉛直支持力を決
定する。詳細には第20図に示すように、 ステップ12 蓄積された先端押圧力と先端変位の相関関
係データは、ステップ8で蓄積された周面摩擦力と軸方
向変位の相関関係データ、及び、杭材歪と併せて解析さ
れ鉛直支持力と変位の各種計算を行う。この場合、入力
記憶された各種理論式や各国の各種の規準等より計算式
等を選択して解析演算し、杭支持力や変位の許容値や安
全度をチェックする。尚、上記各種計算、演算解析結果
やデータはプリンター等で直ちにアウトプットされ施工
現場で提供される。
ステップ13 上記の結果、安全率が決定され、 ステップ14 また、鉛直変位が、構造物に許される許容
変位よりも小さくなる鉛直支持力、即ち、先端支持力と
周面支持力と、更に、杭長及び杭径と杭材を決定する。
決定された各値は、ステップ13の安全率と共にプリント
アウトして提供され、更に、ステップsub3-19の水平支
持力と変位の解析にデータとして使われる。
ステップVIII−サブルーチンsub3 次に、杭の水平支持
力と変位の計測と解析、及び杭径、杭材、配筋の計算を
行うが、この場合、水平力及び曲げモーメントが主とし
て杭上部に作用する掘孔内の地上近辺で、押圧、計測を
行うことは方法Aと同様である。詳細には第21図に示す
ように、 ステップ15 孔壁地盤ΔLm部分を押圧して変位を与え
る。
ステップ16 押圧力、即ち、孔壁地盤の応力と水平変位
の計測。
ステップ17 押圧力(応力)と変位の相関関係を分析
し、データの蓄積と提供を行う。
ステップ18 水平力及び曲げモーメントが主として作用
する孔内地盤の所定の深度まで、上記を繰り返す。所定
の深度までの押圧、計測、送信が終わると、それぞれの
ΔLm部分の押圧力と変位及び杭材歪との相関関係がデー
タとして蓄積されている。
ステップ19 上記データより水平支持力と変位の解析、
及び杭径、配筋等の計算が為されるが、この場合、ステ
ップ14で定めた鉛直支持力、即ち、先端支持力と周面支
持力、更に、杭長及び杭径等の各値が、データとして使
われる。尚、上記解析を行うのは、基礎杭の地上近辺の
部分には、水平力による曲げモーメントと鉛直荷重(軸
力)が同時に負荷され、杭材の強度が定まる場合、上記
水平力と軸力の相関関係で一定深度の杭材の耐力、変位
が定まるからである。
ステップIX 上記解析計算の結果、水平変位が構造物の
許容変位よりも小さく、且つ、水平支持力が構造物に働
く水平力よりも大きいと判定されれば、 ステップX 杭の許容支持力、変位、杭数、杭長、杭
径、杭材、安全率等が設計設定され、設計設定された各
値は、ステップ19で行った計算、解析データと共に施工
現場で直ちにプリントアウトして提供し、杭の性能・品
質の保証を行う。
ステップX.1 上記設定値などの情報は、次の打設杭の
設計値として伝達し、同様の計測、分析、解析を行い次
の打設杭の設計を行う。
ステップX.1 尚、上記ステップIXで、満足する水平支
持力と変位とにならない場合には、杭径、杭材、配筋を
変更して、ステップVIII、IXと同様の計算、解析、判定
を行い、判定の結果、満足すれば下記ステップXを実行
する。
また、満足しない場合には、ステップVIIで定めた鉛
直支持力を変更して上記と同様の計算、解析、判定を行
う。
ステップX ステップIXを満足する杭の許容支持力、変
位、杭数、杭長、杭径、杭材、安全率等を設計設定す
る。尚、設計設定された各値、計算、解析データ等をプ
リントアウトして提供し、杭の性能・品質の保証を行う
ことは上記と同様である。
[発明の効果] 請求項1の基礎杭の判断、設計方法においては、基礎
杭を造成する掘孔内に支持力計測装置を設置し、孔内地
盤に変位を与え、変位を与えた力と変位を計測し、特
に、任意の深さで地盤の水平抵抗力と水平変位、周面摩
擦力と移動量(変位)、更に孔底地盤では、先端地盤の
抵抗力と変位を杭1本毎に併せて計測し、それらの計測
値等の情報を、予め設計支持力や設計変位、或は、杭と
土に関する各種理論式などが記憶されている杭支持力解
析演算装置に入力し、分析、解析するものであるから、
従来方法のように載荷試験を行わなくても、造成される
基礎杭1本毎の実際の杭支持力及び変位が、施工しなが
ら解析、判断され、その結果、安全で、確実強固な基礎
杭を造成できる。
また、上記解析判定の結果、杭の支持力性能、即ち、
鉛直支持力と変位、水平支持力と変位などそれぞれの値
が個別に把握確認され、試験式のみに頼る従来のものと
比較して、より安全度の高い基礎杭を造成できる。
掘削孔内地盤を押圧して変位を与えるものであるか
ら、図24、図25に示すように押圧を繰り返すごとに、変
位が小さく、支持力の大きい基礎杭を造成することとも
なり、設計値に適合した、あるいは、地盤に適合した基
礎杭を造成できる。
特に、本願発明の水平押圧装置で孔壁地盤を押圧して
地盤に変位を与え、変位を与えた状態で水平押圧装置分
を軸方向に移動、もしくは、回転移動させて周面摩擦力
と移動量(変位)を計測するものであり、周面摩擦力と
変位の計測を行うことで、杭全体の鉛直支持力や許容変
位などの分析、解析、判定が可能となる。
また、この基礎杭の判断、設計方法においては、分
析、解析した解析資料を蓄積して後続の杭の設計を行
い、順次施工、設計を繰り返し行うものであるから、施
工する杭全体について、バランスの良い設計が行え、更
には、杭支持力や変位などについて精度の高い判定や、
安全で経済的な設計が行えるものである。
請求項2の基礎杭の判断、設計方法においては、施工
しながら土と杭の性能を分析、解析して、現に施工して
いる杭が設計値に適合する杭と判断する事ができ、この
場合には、予め、構造物荷重、構造物に働く外力、地質
調査などより検討して定められた設計値どうりの基礎杭
を造成することができ、構造物を支える基礎杭全数を安
全で、バランスのとれた基礎杭に造成することができ
る。
更に、この場合にあっては、計測、解析の結果、杭支
持力及び変位等が満足しない場合でも、設計で定めた設
計値、即ち、杭支持力及び変位等の値を変えることな
く、杭長、杭径、杭材、配筋等のみを変更して設計値に
適合する杭を造成することもできる。
請求項3の基礎杭の判断、設計方法においては、施工
しながら土と杭の性能を分析、解析して、施工地盤に適
合した杭の設計を行うようにしたものであり、掘孔内地
盤に変位を与え、変位を与えた力と変位を計測、分析
し、各種理論式等により分析、解析、演算して、施工地
盤性能に最適で、且つ、安全な基礎杭を設計することも
でき、この設計値を、後続の杭の施工に伝達して杭の設
計を効率的に行うこともできる。
請求項4の基礎杭の判断、設計方法においては、施工
しながら土と杭の性能を分析、解析して、杭の性能・品
質の保証を提供するようにしたものであり、打設する全
ての杭について、杭の性能の明確なデータを提供し、基
礎杭全てが安全で適切な品質であることを、その都度、
施工現場で直ちに保証する事ができる。
また、請求項5の性能計測装置は、本体装置より、外
周に拡張して掘孔内孔壁地盤に変位を与える水平押圧装
置と、下方に突出して掘孔内先端地盤に変位を与える下
圧装置とよりなるから、掘孔内のいかなる深度の孔壁地
盤にも押圧して変位を与えることができ、更に、先端地
盤に変位を与える場合にも、孔壁地盤を押圧して得られ
る摩擦力を反力として、先端地盤を押圧するから充分な
押圧力が得られ、しかも装置が簡単で、上記基礎杭の性
能・品質の判断、設計方法の装置として好適である。
【図面の簡単な説明】
第1図は、本発明の実施例に係る地盤の性能計測装置の
縦断面図、 第2図は、前図のII-II断面図、 第3図は、第1図の地盤の性能計測装置の油圧回路及び
センサーによる計測値の送信回路の説明図、 第4図は、第1図の地盤の性能計測装置を用いる施工方
法の説明図、 第5図は、第1図の地盤の性能計測装置のブロック図、 第6図は、本発明の他の実施例に係る地盤の性能計測装
置の縦断面図、 第7図は、前図のVII-VII断面図、 第8図は、第6図のVIII-VIII断面図、 第9図は、本発明の更に他の実施例に係る地盤の性能計
測装置の縦断面図、 第10図は、前図のX-X断面図、 第11図は、本発明の更に他の実施例に係る地盤の性能計
測装置の縦断面図、 第12図は、前図のXII-XII断面図、 第13図は、本発明の実施例に係る基礎杭の性能・品質の
判断、設計方法のメインフロー図、 第14図は、前図中のサブルーチンsub1のフロー図、 第15図は、第13図中のサブルーチンsub2のフロー図、 第16図は、第13図中のサブルーチンsub3のフロー図、 第17図は、本発明の他の実施例に係る基礎杭の性能・品
質の判断、設計方法のメインフロー図、 第18図は、前図中のサブルーチンsub1のフロー図、 第19図は、第17図中のサブルーチンsub2aのフロー図、 第20図は、第17図中のサブルーチンsub2bのフロー図、 第21図は、第17図中のサブルーチンsub3のフロー図、 第22図は、本発明の実施例に係る基礎杭の性能・品質の
判断、設計方法で計測された軸方向変位Sと周面摩擦力
Fとの相関関係を示す図、 第23図は、本発明の実施例に係る基礎杭の性能・品質の
判断、設計方法で計測された先端押圧力P1と変位Y1との
相関関係を示す図、 第24図は、本発明の実施例に係る基礎杭の性能・品質の
判断、設計方法で計測された再押圧時の先端押圧力P2と
変位Y2との相関関係を示す図、 第25図は、本発明の実施例に係る基礎杭の性能・品質の
判断、設計方法で計測された水平押圧力H3と変位X3との
相関関係を示す図、 第26図は、実際地盤に打設された基礎杭の、従来方法に
よる載荷試験の際の載荷重と変位量との関係を示す説明
図、 第27図は、実際地盤に打設された基礎杭の、従来方法に
よる載荷試験によって得た杭地盤の性能結果値と、経験
式によって得た杭地盤の性能値との関係を示す説明図、 第28図は、理論式を記憶した杭支持力解析演算装置の記
憶手段を示す図、 第29図は、規準式を記憶した杭支持力解析演算装置の記
憶手段を示す図、 第30図は、他の規準式を記憶した杭支持力解析演算装置
の記憶手段を示す図である。 符号の説明 1……ケーシング、3……水平シリンダー、4,4b……垂
直シリンダー、5……押圧フレーム、6……ガイド板、
7……押圧面、9……排水パイプ、13……下圧盤、20…
…油圧制御装置、21……油圧ポンプ、22……マニホール
ド、23……電磁弁、24a,24b,24c……圧力センサー、26
a,26b,26c……位置センサー、29……軸移動シリンダ
ー、B……掘孔、K……杭支持力解析演算判定装置、S
……地盤の性能計測装置、S1……水平押圧装置、S2……
下圧装置、Ka……杭の性能・品質の保証提供装置。
フロントページの続き (72)発明者 大黒 出 大阪府大阪市淀川区新北野2丁目4番23 ―40 (56)参考文献 特開 昭52−90109(JP,A) 特公 昭46−15894(JP,B1) 特公 昭47−949(JP,B1)

Claims (5)

    (57)【特許請求の範囲】
  1. 【請求項1】外周部に水平押圧装置を設け下部に下圧装
    置を設けた地盤の性能計測装置を、基礎杭を造成する掘
    削孔内に設置し、 水平押圧装置により孔壁地盤を押圧して孔壁地盤に変位
    を与えて、孔壁地盤の水平抵抗力と水平変位とを計測
    し、 また、水平押圧装置により孔壁地盤を押圧して孔壁地盤
    に変位を与えて、変位を与えた状態で,水平押圧装置を
    軸方向に移動させるか又は周方向に回転移動させて、周
    面摩擦力と移動量(変位)とを計測し、 更に、下圧装置により先端地盤(孔底地盤)を押圧し
    て、押圧した力と先端地盤の変位とを計測し、 前記の計測により得られた計測値を、設計支持力と設計
    変位、及び、杭と土に関する各種理論式及び/又は各国
    や各種の規準が予め記憶されている杭支持力解析演算装
    置に入力し、分析、解析して蓄積し、 施工しながら杭の支持力及び/又は変位などの性能・品
    質を判断し、 更にそれらの解析資料を蓄積して後続の杭の設計を行
    い、 順次施工、設計を繰り返し行うことを特徴とする基礎杭
    の判断、設計方法。
  2. 【請求項2】施工しながら土と杭の性能を分析、解析し
    て、現に施工している杭が設計値に適合する杭であると
    判断することを特徴とする請求項1に記載の基礎杭の判
    断、設計方法。
  3. 【請求項3】施工しながら土と杭の性能を分析、解析し
    て、施工地盤に適合した杭の設計を行うことを特徴とす
    る請求項1に記載の基礎杭の判断、設計方法。
  4. 【請求項4】施工しながら土と杭の性能を分析、解析し
    て、杭の性能・品質の保証を、その都度、保証提供装置
    によりアウトプットし提供することを特徴とする請求項
    1〜3のいずれか1項に記載の基礎杭の判断、設計方
    法。
  5. 【請求項5】本体装置より、外周に拡張して掘孔内孔壁
    地盤に変位を与える水平押圧装置と、下方に突出して掘
    孔内先端地盤に変位を与える下圧装置とよりなる地盤の
    性能計測装置。
JP63334698A 1988-12-29 1988-12-29 基礎杭の性能・品質の判断、設計方法及び地盤の性能計測装置 Expired - Fee Related JP2548980B2 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP63334698A JP2548980B2 (ja) 1988-12-29 1988-12-29 基礎杭の性能・品質の判断、設計方法及び地盤の性能計測装置
US07/457,206 US5099696A (en) 1988-12-29 1989-12-26 Methods of determining capability and quality of foundation piles and of designing foundation piles, apparatus for measuring ground characteristics, method of making hole for foundation pile such as cast-in-situ pile and apparatus therefor
EP98105115A EP0849405A1 (en) 1988-12-29 1989-12-28 Methods of determining capability and quality of foundation piles and of designing foundation piles, apparatus for measuring ground characteristics, method of making hole for foundation pile such as cast-in-situ pile and apparatus therefor
DE68929108T DE68929108D1 (de) 1988-12-29 1989-12-28 Einrichtung zum Messen von Bodeneigenschaften und Verfahren zum Gestalten von Gründungspfählen für Bohrlöcher
EP89124126A EP0376340B1 (en) 1988-12-29 1989-12-28 Apparatus for analysing ground characteristics and method of determining a foundation pile for a bored hole
CN 89109615 CN1043763A (zh) 1988-12-29 1989-12-28 基桩的性能与质量的判定和设计方法,地基性能的计测装置,以及就地灌注桩等基桩的掘孔方法及其装置
CA002006945A CA2006945A1 (en) 1988-12-29 1989-12-29 Methods of determining capability and quality of foundation piles and of designing foundation piles. apparatus for measuring ground characteristics, method of making hole for foundation pile such as cast-in-situ pile and apparatus therefor.
US07/591,534 US5127270A (en) 1988-12-29 1990-10-01 Ground characteristics analyzer
US08/756,836 US5908268A (en) 1988-12-29 1996-11-26 Method of making a hole for a foundation pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63334698A JP2548980B2 (ja) 1988-12-29 1988-12-29 基礎杭の性能・品質の判断、設計方法及び地盤の性能計測装置

Publications (2)

Publication Number Publication Date
JPH02178416A JPH02178416A (ja) 1990-07-11
JP2548980B2 true JP2548980B2 (ja) 1996-10-30

Family

ID=18280218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63334698A Expired - Fee Related JP2548980B2 (ja) 1988-12-29 1988-12-29 基礎杭の性能・品質の判断、設計方法及び地盤の性能計測装置

Country Status (2)

Country Link
JP (1) JP2548980B2 (ja)
CN (1) CN1043763A (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3083484B2 (ja) * 1996-10-16 2000-09-04 財団法人 林業土木コンサルタンツ 構造物の基礎地盤支持力測定装置及び測定方法
JP2001131948A (ja) * 1999-11-01 2001-05-15 Ohbayashi Corp 深層載荷試験方法、地中構造物の構築方法、及びこの構築方法により構築された地中構造物
CN1296572C (zh) * 2003-06-16 2007-01-24 陈彦平 电探法桩基施工质量监控及加固技术的方法
JP3781022B2 (ja) * 2003-08-15 2006-05-31 学校法人千葉工業大学 地盤の原位置水平方向応力を求める測定装置
JP4765616B2 (ja) * 2005-12-27 2011-09-07 コベルコクレーン株式会社 地層探査方法及び同装置
JP4993168B2 (ja) * 2006-02-06 2012-08-08 積水ハウス株式会社 杭の設計支持力管理方法
BRPI0720423B1 (pt) * 2006-12-19 2018-06-26 Loadtest, Inc. Método de aplicação de carga a uma estaca, método de fornecimento de estacas para suportar carga de trabalho
CN102102365B (zh) * 2010-12-16 2013-02-06 中建三局建设工程股份有限公司 泥浆护壁钻孔灌注桩混凝土浇筑装置
CN104790439B (zh) * 2015-03-25 2016-11-30 福建省建筑工程质量检测中心有限公司 嵌岩桩的承载力检查评估方法
JP6812199B2 (ja) * 2016-10-25 2021-01-13 株式会社熊谷組 杭孔底検査装置
JP6871502B2 (ja) * 2016-11-22 2021-05-12 ジャパンパイル株式会社 杭基礎の設計システム、設計方法及び設計プログラム
JP6812233B2 (ja) * 2016-12-21 2021-01-13 株式会社熊谷組 杭孔検査方法及び杭孔検査装置
CN110056020B (zh) * 2019-05-29 2023-12-08 南昌航空大学 后置劲芯加长混凝土桩试验方法
CN111119860B (zh) * 2019-12-23 2023-01-10 山东科技大学 一种感知孔内压力分布状态的压杆
CN111502330A (zh) * 2020-04-14 2020-08-07 大唐环境产业集团股份有限公司 一种建筑垃圾基础二次利用方法
CN115096492B (zh) * 2022-08-29 2022-12-16 中国科学院地质与地球物理研究所 深层油气储层钻进式应力解除法地应力测量装置及方法

Also Published As

Publication number Publication date
JPH02178416A (ja) 1990-07-11
CN1043763A (zh) 1990-07-11

Similar Documents

Publication Publication Date Title
JP2548980B2 (ja) 基礎杭の性能・品質の判断、設計方法及び地盤の性能計測装置
EP0376340B1 (en) Apparatus for analysing ground characteristics and method of determining a foundation pile for a bored hole
US10823880B1 (en) Subsurface exploration using load tests on short model piles at various depths of a soil deposit for determining load-settlement relationship and engineering properties of soils and intermediate geomaterials
US5576494A (en) Method and apparatus for subterranean load-cell testing
Whitaker The design of piled foundations: structures and solid body mechanics
Lv et al. Three-dimensional numerical analysis of the stress transfer mechanism of XCC piled raft foundation
Mair et al. UNWIN MEMORIAL LECTURE 1992. DEVELOPMENTS IN GEOTECHNICAL ENGINEERING RESEARCH: APPLICATION TO TUNNELS AND DEEP EXCAVATIONS. DELIVERED AT THE ICE ON 17 MARCH 1992.(ABRIDGED).(WINNER OF 1994 GEOTECHNICAL RESEARCH MEDAL).
RU2626101C2 (ru) Способ и устройство для испытания несущей способности с использованием кольцевого датчика
Fellenius et al. O-cell testing and FE analysis of 28-m-deep barrette in Manila, Philippines
KR100742117B1 (ko) 지반에 타설된 콘크리트 말뚝의 지지하중 측정방법 및 그장치
CN108612134B (zh) 静钻根植桩荷载传递机理模型试验的装置和方法
Reese et al. Drilled Shaft Design and Construction Guidelines Manual: Reese, LC, and Allen, JD, Structural analysis and design for lateral loading
CN109975117A (zh) 顶管实验箱及实验方法
KR102105422B1 (ko) 반력스프링이 내설된 복동식 유압잭을 이용한 말뚝 선단 재하시험장치
Skov Pile foundation—Danish design methods and piling practice
JP3413374B2 (ja) 場所打杭先端載荷試験装置
KR20100048134A (ko) 동조배관방식 실린더로 구성된 재하시험장치 및 이를 이용한 현장콘크리트말뚝의 지지력 측정방법
Brown The rapid load testing of piles in fine grained soils.
Bozozuk et al. Analysis of load tests on instrumented steel test piles in compressible silty soil
Ignat Field and laboratory tests of laterally loaded rows of lime-cement columns
JP2003155736A (ja) 埋戻土の支持力判定方法及び装置
CN114991130B (zh) 一种抗拔载体桩及其施工方法
Zhussupbekov et al. Model and field tests of drilled displacement system piles
JPH0617577B2 (ja) 場所打ち杭等基礎杭の掘孔方法及びその装置
CN2408451Y (zh) 正置式缸体桩身反力静载试验油压装置

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees