JP2544920B2 - Liquefaction method of coal - Google Patents

Liquefaction method of coal

Info

Publication number
JP2544920B2
JP2544920B2 JP62071577A JP7157787A JP2544920B2 JP 2544920 B2 JP2544920 B2 JP 2544920B2 JP 62071577 A JP62071577 A JP 62071577A JP 7157787 A JP7157787 A JP 7157787A JP 2544920 B2 JP2544920 B2 JP 2544920B2
Authority
JP
Japan
Prior art keywords
coal
distillation
liquefaction
ash
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62071577A
Other languages
Japanese (ja)
Other versions
JPS63238195A (en
Inventor
正 矢尾
勝巳 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62071577A priority Critical patent/JP2544920B2/en
Publication of JPS63238195A publication Critical patent/JPS63238195A/en
Application granted granted Critical
Publication of JP2544920B2 publication Critical patent/JP2544920B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

本発明は、石炭の液化方法、特に蒸留工程の安定した
運転を行うための石炭の液化方法に関する。
The present invention relates to a coal liquefaction method, and more particularly to a coal liquefaction method for performing stable operation of a distillation process.

【従来の技術】[Prior art]

石炭の液化プロセスは、第1が参照されるように、石
炭の液化を行う液化反応工程、その液化生成物を液化油
と残渣に分離する蒸留工程、液化油に水素を付加して液
化に適した溶剤に改質する溶剤水素化工程で構成されて
いる。 液化反応工程には、石炭と石炭液化油を主成分とする
溶剤及び石炭の液化を促進する触媒が供給され、100〜3
00atm程度の水素加圧下で400〜500℃程度の高温に0.5〜
2.0時間程度保持することにより液化が行われる。 蒸留工程では、ガス、原料水素等が分離された後の液
化生成物の蒸留を行い、軽質油(BP;IBP〜200℃)、中
質油(BP;200〜350℃)重質油(BP;350〜538℃)が蒸留
塔塔頂から抜き出され、下部から蒸留残渣が抜き出され
る。溶剤水素化工程では、高級触媒(例えばNi−Mo/Al2
O3)を用いて、中質油、重質油に水素が付加され、石炭
液化用溶剤に適した性状に改質され、原料溶剤として循
環される。軽質油については、系外に導かれる。
The coal liquefaction process is suitable for liquefaction by liquefying coal, a liquefaction reaction step for liquefying coal, a distillation step for separating the liquefaction product into liquefied oil and a residue, and hydrogen addition to the liquefied oil, as referred to in the first section. It is composed of a solvent hydrogenation process for reforming into a different solvent. In the liquefaction reaction step, a solvent containing coal and coal liquefied oil as main components and a catalyst for promoting liquefaction of coal are supplied, and 100 to 3
0.5 ~ at high temperature of 400 ~ 500 ℃ under hydrogen pressure of about 00 atm
Liquefaction is performed by holding it for about 2.0 hours. In the distillation process, liquefied products are distilled after gas, raw hydrogen, etc. are separated, and light oil (BP; IBP ~ 200 ° C), medium oil (BP; 200 ~ 350 ° C) heavy oil (BP 350-538 ℃) is extracted from the top of the distillation column, and the distillation residue is extracted from the bottom. In the solvent hydrogenation process, higher catalysts (eg Ni-Mo / Al 2
O 3 ) is used to add hydrogen to medium oil and heavy oil, and is reformed to a property suitable for a coal liquefaction solvent and circulated as a raw material solvent. Light oil is introduced outside the system.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

このような石炭の液化プロセスでは、その建設費が高
価なこと、1炭種で大量の原料石炭の確保が困難なこと
等から、あらゆる石炭に対して適用可能であるとが望ま
れる。 また、石炭の液化プロセスでは、蒸留工程での蒸留残
渣の分離を確実に行いプロセスの安定運転を図ること
が、石炭液化工程での液収率の向上を図ることと同様に
重要である。 すなわち、蒸留塔のカット温度538℃の公知のプロセ
スで石炭の液化を行うと、灰分が少なく蒸留残渣の生成
量が多い石炭の液化では、蒸留工程は安定に操業される
が、高灰分で蒸留残渣の生成量が少ない石炭の液化で
は、蒸留工程で蒸留残渣中に灰分が濃化して蒸留残渣の
流動性が低下し、蒸留塔下部からの抜き出しが困難とな
り、液化プロセスの安定運転に支障をきたすという問題
がある。 この問題点を解決する方法としては、高灰分で蒸留
残渣の生成量が少ない石炭から、予め灰分を除去する方
法が考えられる。しかし、この方法は以下のような欠点
を有している。 (イ)石炭液化プロセスに必要な石炭量以上の処理能力
を有する脱灰設備を必要とするので、その建設費、運転
費が高価となる。 (ロ)石炭の液化を促進する作用のある灰分を予めに除
去することになり、新たな触媒を添加する必要がある。 また、蒸留工程に先立ち溶剤抽出、遠心分離、超臨
界抽出、アンチソルベントの添加等の方法で灰分を予め
除去する方法が考えられるが、この方法によると新たな
設備を必要とし、その建設費、運転費が高価となる。 このように、従来の運転方法では、高灰分で蒸留残渣
の生成量が少ない石炭の液化は困難であった。 したがって、本発明の課題は、使用炭種にかかわら
ず、石炭液化プロセス、特に蒸留工程の安定運転を図る
ことにある。
In such a coal liquefaction process, the construction cost is high, and it is difficult to secure a large amount of raw material coal with one type of coal. Further, in the coal liquefaction process, it is as important as surely separating the distillation residue in the distillation step to ensure stable operation of the process, as well as to improve the liquid yield in the coal liquefaction step. That is, when coal is liquefied by a known process at a distillation tower cut temperature of 538 ° C, the distillation process operates stably in the liquefaction of coal with a small amount of ash and a large amount of distillation residue, but distillation with a high ash content In the liquefaction of coal, which produces a small amount of residue, ash is concentrated in the distillation residue during the distillation process, and the fluidity of the distillation residue is reduced, making it difficult to extract from the bottom of the distillation column, which hinders stable operation of the liquefaction process. There is a problem of coming. As a method of solving this problem, a method of removing the ash in advance from coal having a high ash content and a small amount of distillation residue produced can be considered. However, this method has the following drawbacks. (A) Since the deashing equipment having a treatment capacity equal to or more than the amount of coal required for the coal liquefaction process is required, the construction cost and operating cost are high. (B) Ash that has the action of promoting the liquefaction of coal will be removed in advance, and it is necessary to add a new catalyst. Further, prior to the distillation step, solvent extraction, centrifugation, supercritical extraction, a method of removing ash in advance by a method such as addition of antisolvent is conceivable, but this method requires new equipment, its construction cost, Operating costs are high. As described above, according to the conventional operation method, it was difficult to liquefy coal having a high ash content and a small amount of distillation residue produced. Therefore, an object of the present invention is to achieve stable operation of a coal liquefaction process, particularly a distillation step, regardless of the type of coal used.

【課題を解決するための手段】[Means for Solving the Problems]

本発明者らは、蒸留工程を経た蒸留残渣を脱灰工程に
導き、この脱灰工程において灰分を分離し、灰分が分離
されたトルエン可溶分を含む残渣を石炭液化反応工程ま
たは蒸留工程に供給して再循環させることによって、蒸
留工程の安定運転ができることを見いだした。 すなわち、本発明は、石炭を溶剤および触媒を原料と
して、石炭液化反応工程において石炭の液化を行い、そ
の後蒸留工程において液化生成物の蒸留を行い、軽質
油、中質油および重質油と蒸留残渣との分離を行い、次
いで水素化工程において前記中質油および重質油に対し
て水素を付加し、得られた改質油を前記原料溶剤として
循環する石炭液化方法において、 前記蒸留残渣を脱灰工程において灰分を分離し、灰分
が分離されたトルエン可溶分を含む残渣を前記石炭液化
反応工程または蒸留工程に供給することを特徴とする石
炭の液化方法である。
The present inventors lead the distillation residue that has undergone the distillation step to a deashing step, separate the ash content in this deashing step, and remove the residue containing the toluene-soluble content from which the ash content has been separated into a coal liquefaction reaction step or a distillation step. It was found that a stable operation of the distillation process can be performed by supplying and recycling. That is, the present invention uses coal as a solvent and a catalyst as a raw material, liquefies coal in a coal liquefaction reaction step, and then distills a liquefied product in a distillation step to distill a light oil, a medium oil and a heavy oil. In the coal liquefaction method in which hydrogen is added to the intermediate oil and heavy oil in the hydrogenation step, and the obtained reformed oil is circulated as the raw material solvent, the distillation residue is separated from the residue. It is a coal liquefaction method characterized in that ash is separated in a deashing step, and a residue containing a toluene-soluble content from which the ash is separated is supplied to the coal liquefaction reaction step or the distillation step.

【作用】[Action]

本発明に従って、脱灰工程で灰分を分離し、灰分が分
離されたトルエン可溶分を含む残渣を前記石炭液化反応
工程または蒸留工程に供給すると、トルエン可溶分が増
大する結果、後に第2図を参照して説明するように、蒸
留工程における蒸留残渣の流動性が改善される。したが
って、高灰分で蒸留残渣が少ない石炭を用いたとして
も、蒸留工程において安定した運転が可能となる。
According to the present invention, when the ash content is separated in the deashing step and the residue containing the toluene-soluble content from which the ash content has been separated is supplied to the coal liquefaction reaction step or the distillation step, the toluene-soluble content increases, resulting in a second As described with reference to the drawings, the fluidity of the distillation residue in the distillation process is improved. Therefore, even if coal having a high ash content and a small amount of distillation residue is used, stable operation can be performed in the distillation step.

【実施例】【Example】

第1図は、本発明の1実施態様を示すフローシートで
ある。 本発明では、蒸留工程を経た蒸留残渣から、脱灰工程
において、灰分を除去する。灰分を除去分離する方法は
特に限定されず、溶剤抽出、超臨界抽出、遠心分離、重
力沈降、比重分離等が使用できる。また、これらに用い
る調整用溶剤も特に限定されず、プロセスで生成する軽
質油等も使用できる。 脱灰工程において、灰分を除去した後のトルエン可溶
分を含む残渣は、石炭液化工程または蒸留工程に供給さ
れる。この場合、石炭液化工程に供給したトルエン可溶
分は、蒸留工程に移行するので、トルエン可溶分を直接
蒸留工程に供給する場合と同様に、蒸留工程におけるト
ルエン可溶分が増加する。 その結果、蒸留工程における流動性が高まり、蒸留操
作を安定して行うことができる。また、トルエン可溶分
を石炭液化工程に供給した場合には、トルエン可溶分の
一部が分解されて液化油を生成するので、液収率が向上
する。 一方で、トルエン可溶分を水素化工程に供給すること
により、循環溶剤と共に最終的に蒸留工程に導くことも
考えられるが、水素化触媒が被毒し、反応性が低下する
ので好ましくない。 安定した液化プロセスにおける反応温度、反応時間、
水素圧、液化用触媒等は、公知の方法と格別差異はない
が、好ましい条件は、反応温度430〜470℃、反応時間0.
5〜2.0時間、水素圧100〜200atm程度である。液化用触
媒としては、安価な鉄系触媒を、助触媒(硫黄化合物)
と併用するものである。 (実施例) 次に、本発明の効果を実施例および比較例によって説
明する。 <比較例1> 5/の処理能力を有する石炭液化設備で第2表に示
す操業条件で第1表の分析値をもつバトルリバー炭の液
化を行い、その物質収支と得られた蒸留残渣の性状を調
べた。結果を第3表に比較例1として示す。 <実施例> 第4表には、実施例1として、灰分を除去した第3表
のトルエン可溶分を含む蒸留残渣を原料石炭に対して15
wt%加え、石炭液化工程に循環した場合の物質収支を示
す。なお、操業条件は第2表と同様である。 第3表と第4表を対比すると、本発明に係る実施例1
を示す第4表では、灰分を除去した蒸留残渣を石炭液化
工程に循環することにより、液収率が増加していること
が認められる。 <実施例2および比較例2> 第2図には、原料石炭を共通として、実施例2とし
て、脱灰工程で灰分を除去した後のトルエン可溶分を含
む蒸留残渣を蒸留工程の直前に、添加量を変えて添加し
た場合の蒸留残渣性状を示し、比較例2として、予め脱
灰を行った石炭を液化した際に得られる蒸留残渣性状を
脱灰レベルを変化させて示した。 第2図より、蒸留残渣の流動性を示す指標である軟化
点、流動点は蒸留残渣中のトルエン可溶分量と密接な関
係があり、トルエン可溶分量が増加すると、軟化点、流
動点は低下し、蒸留残渣の流動性が向上することが認め
られる。さらに、第2図より、実施例2は比較例2と、
軟化点および流動点の改善に関して、ほぼ同様の効果を
示すことが認められる。 したがって、これらの場合における設備を考えると、
原料石炭100に対して、歩留50%の場合において、比較
例2では、200の設備を必要とするのに対して、実施例
では約30の設備で充分である。その結果、比較例2に比
較して、実施例2によれば、脱灰に要する処理整備が小
さくすることが可能であり、その設備費、運転費の低減
に有効であることが認められる。
FIG. 1 is a flow sheet showing one embodiment of the present invention. In the present invention, ash is removed from the distillation residue that has undergone the distillation step in the deashing step. The method for removing and separating ash is not particularly limited, and solvent extraction, supercritical extraction, centrifugation, gravity settling, specific gravity separation and the like can be used. The adjusting solvent used for these is not particularly limited, and light oil produced in the process can be used. In the deashing step, the residue containing the toluene-soluble content after removing the ash is supplied to the coal liquefaction step or the distillation step. In this case, since the toluene-soluble component supplied to the coal liquefaction process shifts to the distillation process, the toluene-soluble component in the distillation process increases as in the case of directly supplying the toluene-soluble component to the distillation process. As a result, the fluidity in the distillation step is increased, and the distillation operation can be performed stably. Further, when the toluene-soluble component is supplied to the coal liquefaction process, a part of the toluene-soluble component is decomposed to produce liquefied oil, so that the liquid yield is improved. On the other hand, it is conceivable that the toluene-soluble component is fed to the hydrogenation step to finally lead to the distillation step together with the circulating solvent, but this is not preferable because the hydrogenation catalyst is poisoned and the reactivity is lowered. Reaction temperature, reaction time in stable liquefaction process,
Hydrogen pressure, liquefaction catalyst and the like are not particularly different from known methods, but preferable conditions are a reaction temperature of 430 to 470 ° C. and a reaction time of 0.
The hydrogen pressure is about 100 to 200 atm for 5 to 2.0 hours. As a liquefaction catalyst, an inexpensive iron-based catalyst is used as a co-catalyst (sulfur compound).
It is used together with. (Examples) Next, the effects of the present invention will be described with reference to Examples and Comparative Examples. <Comparative Example 1> Battle coal with the analytical values shown in Table 1 was liquefied under the operating conditions shown in Table 2 in a coal liquefaction facility having a treatment capacity of 5 /, and its mass balance and the obtained distillation residue were obtained. The property was examined. The results are shown in Table 3 as Comparative Example 1. <Example> In Table 4, as Example 1, the ash-removed distillation residue containing the toluene-soluble content of Table 3 was used for the raw coal.
In addition to wt%, the material balance when recycled to the coal liquefaction process is shown. The operating conditions are the same as in Table 2. Comparison of Tables 3 and 4 shows Example 1 according to the present invention.
It is recognized in Table 4 that the liquid yield is increased by circulating the ash-removed distillation residue to the coal liquefaction process. <Example 2 and Comparative Example 2> In FIG. 2, the raw material coal is commonly used, and as Example 2, the distillation residue containing the toluene-soluble component after removing the ash in the deashing step is provided immediately before the distillation step. The properties of the distillation residue when added in different amounts were shown. As Comparative Example 2, the properties of the distillation residue obtained when liquefying the coal that had been deashed in advance were shown by changing the deashing level. As shown in FIG. 2, the softening point and pour point, which are indicators of the fluidity of the distillation residue, are closely related to the amount of toluene-soluble components in the distillation residue. It can be seen that the fluidity of the distillation residue is improved. Further, as shown in FIG. 2, Example 2 is the same as Comparative Example 2,
It can be seen that almost the same effects are obtained with respect to the improvement of the softening point and the pour point. Therefore, considering the equipment in these cases,
In the case where the yield is 50% with respect to the raw material coal of 100, the comparative example 2 requires 200 facilities, whereas the example requires about 30 facilities. As a result, according to Example 2, compared with Comparative Example 2, it is possible to reduce the treatment and maintenance required for decalcification, and it is recognized that it is effective in reducing the equipment cost and operating cost.

【発明の効果】【The invention's effect】

本発明によれば以下のような効果を生ずることが認め
られる。 (イ)高灰分で蒸留残渣の生成量が少ない石炭であって
も、蒸留工程において安定した運転、トラブルのない操
業を運転が可能となる。 (ロ)したがって、従来、製品して用いる溶剤の一部
を、蒸留残渣の抜き出し用の溶剤として、循環使用せざ
るを得なかったの対して、本発明では、蒸留残渣を利用
するので、製品の収率が高まる。 (ハ)石炭液化を促進する作用のある灰分を液化工程ま
たは蒸留工程に供給できるので、石炭液化に用いられる
触媒使用量の減少に有効である。 (ハ)石炭液化に先立って、灰分を除去することなく、
原料石炭の全量を液化工程に供給できる。 (ニ)予め脱灰する場合、或いは蒸留工程の直前で脱灰
する場合と比べて、脱灰に要する処理設備を小さくする
ことが可能であり、その運転費も少なくてすむ。 (ホ)トルエン可溶分を液化工程または蒸留工程に循環
することにより、蒸留残渣から液を生成し、液収率が向
上する。
According to the present invention, the following effects are recognized. (B) Even with coal having a high ash content and a small amount of distillation residue produced, stable operation and trouble-free operation can be performed in the distillation process. (B) Therefore, conventionally, a part of the solvent used as a product had to be circulated and used as a solvent for extracting the distillation residue, whereas the present invention uses the distillation residue, The yield of is increased. (C) Since ash having the action of promoting coal liquefaction can be supplied to the liquefaction process or the distillation process, it is effective in reducing the amount of catalyst used for coal liquefaction. (C) Prior to coal liquefaction, without removing ash,
The entire amount of raw coal can be supplied to the liquefaction process. (D) Compared with the case of performing deashing in advance or performing immediately before the distillation step, it is possible to reduce the treatment equipment required for deashing, and the operating cost thereof can be reduced. (E) By circulating the toluene-soluble component in the liquefaction process or the distillation process, a liquid is produced from the distillation residue and the liquid yield is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の1実施態様のフローシート、第2図
は、実施例2および比較例2で得られる蒸留残渣の性状
を示す説明図である。
FIG. 1 is a flow sheet of one embodiment of the present invention, and FIG. 2 is an explanatory diagram showing properties of distillation residues obtained in Example 2 and Comparative Example 2.

フロントページの続き (56)参考文献 特開 昭59−109588(JP,A) 特開 昭56−65085(JP,A) 特開 昭59−142283(JP,A) 特開 昭61−276891(JP,A)Continuation of the front page (56) Reference JP-A-59-109588 (JP, A) JP-A-56-65085 (JP, A) JP-A-59-142283 (JP, A) JP-A-61-276891 (JP , A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】石炭を溶剤および触媒を原料として、石炭
液化反応工程において石炭の液化を行い、その後蒸留工
程において液化生成物の蒸留を行い、軽質油、中質油お
よび重質油と蒸留残渣との分離を行い、次いで水素化工
程において前記中質油および重質油に対して水素を付加
し、得られた改質油を前記原料溶剤として循環する石炭
液化方法において、 前記蒸留残渣を脱灰工程において灰分を分離し、灰分が
分離されたトルエン可溶分を含む残渣を前記石炭液化反
応工程または蒸留工程に供給することを特徴とする石炭
の液化方法。
1. Coal is liquefied in a coal liquefaction reaction step using coal as a solvent and a catalyst as a raw material, and then a liquefied product is distilled in a distillation step to obtain light oil, medium oil and heavy oil, and a distillation residue. In the coal liquefaction method, in which hydrogen is added to the intermediate oil and heavy oil in the hydrogenation step, and the obtained reformed oil is circulated as the raw material solvent, the distillation residue is removed. A coal liquefaction method, characterized in that ash is separated in an ash step, and a residue containing a toluene-soluble content from which the ash is separated is supplied to the coal liquefaction reaction step or the distillation step.
JP62071577A 1987-03-27 1987-03-27 Liquefaction method of coal Expired - Lifetime JP2544920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62071577A JP2544920B2 (en) 1987-03-27 1987-03-27 Liquefaction method of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62071577A JP2544920B2 (en) 1987-03-27 1987-03-27 Liquefaction method of coal

Publications (2)

Publication Number Publication Date
JPS63238195A JPS63238195A (en) 1988-10-04
JP2544920B2 true JP2544920B2 (en) 1996-10-16

Family

ID=13464692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62071577A Expired - Lifetime JP2544920B2 (en) 1987-03-27 1987-03-27 Liquefaction method of coal

Country Status (1)

Country Link
JP (1) JP2544920B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145195A (en) * 1990-10-05 1992-05-19 Sumitomo Metal Ind Ltd Liquefaction of coal
CN103769108A (en) * 2014-03-05 2014-05-07 神华集团有限责任公司 Method for simultaneously preparing Fischer-tropsch iron-based catalyst and direct coal liquefaction catalyst
CN105087058B (en) * 2015-08-04 2017-03-22 煤炭科学技术研究院有限公司 Separation method and system for coal liquefaction residues
CN105854345A (en) * 2016-05-30 2016-08-17 中国科学院西北高原生物研究所 Supercritical extraction process of cynomorium songaricum seed oil

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665085A (en) * 1979-10-31 1981-06-02 Mitsui Mining Co Ltd Liquefaction of coals
JPS59109588A (en) * 1982-12-15 1984-06-25 Kobe Steel Ltd Liquefaction of brown coal
JPS59142283A (en) * 1983-02-04 1984-08-15 Mitsubishi Heavy Ind Ltd Purifying product of coal liquefaction
JPS61276891A (en) * 1985-06-03 1986-12-06 Kobe Steel Ltd Method for liquefying coal containing circulation system

Also Published As

Publication number Publication date
JPS63238195A (en) 1988-10-04

Similar Documents

Publication Publication Date Title
JP3564578B2 (en) Method for obtaining engine fuel by extracting and hydrotreating hydrocarbon charge, and obtained gas oil
JPS6214600B2 (en)
JPH08199185A (en) Method and apparatus for purifying used oil
EP0221292B1 (en) A process for the regeneration of spent catalyst used in the upgrading of heavy hydrocarbon feedstocks
US4111786A (en) Process for liquefying coal
CN86102643A (en) The treating processes of heavy oil residue
JPS5817193A (en) Recovery of waste oil
JP2544920B2 (en) Liquefaction method of coal
US4402821A (en) Process for liquefaction of coal
JPS6126954B2 (en)
JPH055278B2 (en)
US4255252A (en) Procedure for the reprocessing of used lubricating oils
US4464245A (en) Method of increasing the oil yield from hydrogenation of coal
JPS5843433B2 (en) coal liquefaction method
EP1092005B1 (en) Removal of impurities from a hydrocarbon component or fraction
US4435276A (en) Method of treating heavy oil
KR100565540B1 (en) Method for removing contaminants from thermally cracked waste oils
CN219174448U (en) Crude oil distillation and catalytic cracking combined crude oil processing device
JPS6058484A (en) Coal liquefaction
CA1232859A (en) Two-feed oil extraction and demetallization process
JP2001072613A (en) Production of high purity indene and high purity indene
JPH01213398A (en) Method for liquefying coal
CN114292668A (en) Oxidation treatment method for fuel oil deep desulfurization process
JPS6058483A (en) Coal liquefaction
RU2028174C1 (en) Method of metallurgical industry greasy wastes separation

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070725

Year of fee payment: 11