JPS61276891A - Method for liquefying coal containing circulation system - Google Patents

Method for liquefying coal containing circulation system

Info

Publication number
JPS61276891A
JPS61276891A JP12009085A JP12009085A JPS61276891A JP S61276891 A JPS61276891 A JP S61276891A JP 12009085 A JP12009085 A JP 12009085A JP 12009085 A JP12009085 A JP 12009085A JP S61276891 A JPS61276891 A JP S61276891A
Authority
JP
Japan
Prior art keywords
coal
solvent
hydrogenation
ash
deashing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12009085A
Other languages
Japanese (ja)
Other versions
JPS6247919B2 (en
Inventor
Osamu Okuma
大隈 修
Koji Murakoshi
浩二 村越
Yasuo Sugino
杉野 康雄
Kaizaburou Saitou
斉藤 海三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KATSUTAN EKIKA KK
Asia Oil Co Ltd
Nippon Brown Coal Liquefaction Co Ltd
Idemitsu Kosan Co Ltd
Kobe Steel Ltd
Mitsubishi Kasei Corp
Original Assignee
NIPPON KATSUTAN EKIKA KK
Asia Oil Co Ltd
Nippon Brown Coal Liquefaction Co Ltd
Idemitsu Kosan Co Ltd
Kobe Steel Ltd
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KATSUTAN EKIKA KK, Asia Oil Co Ltd, Nippon Brown Coal Liquefaction Co Ltd, Idemitsu Kosan Co Ltd, Kobe Steel Ltd, Mitsubishi Kasei Corp filed Critical NIPPON KATSUTAN EKIKA KK
Priority to JP12009085A priority Critical patent/JPS61276891A/en
Publication of JPS61276891A publication Critical patent/JPS61276891A/en
Publication of JPS6247919B2 publication Critical patent/JPS6247919B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To improve the yield of a liquid hydrocarbon, by subjecting solvent- purified coal obtained by hydrogenation reaction of coal to a deashing step, removing only the ash, and circulating preasphaltene separated in the deasphalting step through the hydrogenation reaction. CONSTITUTION:For example, a slurrying agent and catalyst are added to coal dust, and the resultant mixture is brought to a high-temperature state. The mixture is then fed to the primary hydrogenation region, and high-pressure hydrogen is introduce thereinto to carry out the primary hdrogenation reaction at a high temperature under high pressure. The hydrogenated material is then distilled to separate naphtha and a solvent fraction as a product. The solvent- purified coal (CLB) is then subjected to a deashing step and deashed to prevent the accumulation of the ash in the system. After deashing, the CLB is fed to a deasphalting step to separate preasphaltene, which is circulated through the primary hydrogenation step to improve the yield of the distillate oil.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は石炭を水添して油成分を製造する方法に関し、
詳細には循環システムを組込むことによって油状分収率
を向上する石炭液化法に関するものである。尚石炭の液
化反応としては、一般に一段水添法と二段水添法が知ら
れているが、本発明の方法はいずれの水添法にも適用す
ることが可能である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing an oil component by hydrogenating coal.
In detail, it relates to a coal liquefaction method that improves oil fraction yield by incorporating a circulation system. Generally, a single-stage hydrogenation method and a two-stage hydrogenation method are known as coal liquefaction reactions, but the method of the present invention can be applied to either hydrogenation method.

C従来の技術] 石炭の水添によって石炭構成4分中の水素/炭素比率を
高める方法、即ち高融点の炭化水素系化合物(常温固体
状)を低融点の炭化水素系化合物(常温液体状)に変換
する方法は公知である。この方法は一般に石炭液化方法
と称され、水素供与性の高い炭化水素系溶剤中、触媒の
存在下若しくは非存在下に高温高圧の水素を作用するこ
とによって行なわれる。従ってこの反応(一般に水添反
応)によって得られる生成物中には、(1)石炭中に共
存している各種無機物(灰分)、(2)水添反応が進行
していない炭化水素系化合物。
C. Prior Art] A method of increasing the hydrogen/carbon ratio in the coal composition by hydrogenating coal, that is, replacing a high melting point hydrocarbon compound (solid at room temperature) with a low melting point hydrocarbon compound (liquid at room temperature). Methods for converting into are well known. This method is generally referred to as a coal liquefaction method, and is carried out by applying high temperature and high pressure hydrogen in a highly hydrogen-donating hydrocarbon solvent in the presence or absence of a catalyst. Therefore, the products obtained by this reaction (generally hydrogenation reaction) include (1) various inorganic substances (ash) coexisting in the coal, and (2) hydrocarbon compounds on which the hydrogenation reaction has not proceeded.

(未反応炭)、(3)水添反応の進行が軽度であって水
素/炭素比率が十分には高められていない中間融点の炭
化水素類、(4)水添反応が適度に進行して低融点化の
達成された液状炭化水素類、(5)水添が過度に進行し
た、もしくは熱分解によって低分子量となったガス状成
分、(6)その他(溶剤、水、水素ガス等)等が混在し
た状態となっており、これらの分離或は第2段水添[前
記(2)4、(3)の成分を更に水添して(4〕の成分
を多く生成する反応]等について腐心されている。
(unreacted carbon), (3) intermediate melting point hydrocarbons in which the hydrogenation reaction has progressed only slightly and the hydrogen/carbon ratio has not been sufficiently increased, and (4) hydrocarbons in which the hydrogenation reaction has progressed moderately. Liquid hydrocarbons with a low melting point, (5) gaseous components that have undergone excessive hydrogenation or have a low molecular weight due to thermal decomposition, (6) others (solvents, water, hydrogen gas, etc.), etc. However, much attention has been paid to their separation or second-stage hydrogenation (a reaction in which components (2), 4, and (3) are further hydrogenated to produce a large amount of component (4)), etc. ing.

[発明が解決しようとする問題点] 石炭の水添反応生成物中に含まれている物質については
前述の如く(1)〜(6)の物質群に大別てきるが、水
添の主目的から考えても(4)に分類した低融点液状炭
化水素類がもっとも望ましい目的物であると言える。従
って(2)及び(3)に分類した未反応乃至反応不十分
物質を更に水添して低融点液状炭化水素類の収率を上げ
ることが要求されている。
[Problems to be Solved by the Invention] Substances contained in coal hydrogenation reaction products can be broadly classified into substance groups (1) to (6) as described above, but the main Considering the purpose, it can be said that the low melting point liquid hydrocarbons classified as (4) are the most desirable target substances. Therefore, it is required to further hydrogenate unreacted or insufficiently reacted substances classified as (2) and (3) to increase the yield of low-melting liquid hydrocarbons.

一方上記の様な炭化水素系溶剤を使用する方法(通称溶
剤精製法)では、水添反応終了後の蒸留によって低融点
液状炭化水素類を留出油(ナフサおよび溶剤留分)とし
て採取することが行なわれると共に、蒸留残渣[前記(
1)、(2)。
On the other hand, in the method using a hydrocarbon solvent as described above (commonly known as the solvent refining method), low melting point liquid hydrocarbons are collected as distillate oil (naphtha and solvent fraction) by distillation after the hydrogenation reaction is completed. At the same time, the distillation residue [above ((
1), (2).

(3)の各物質群を含む]を溶剤精製炭と称してその利
用手段並びに用途が探られている0例えばそれ自体を燃
料として利用するのも一法であるが、第2段水添反応工
程を設けその原料として供給することにより、前述した
様な留出油分の収率向上に寄与せしめるということも努
力されている。しかし溶剤精製炭は本質的に蒸留残渣で
ある為色々な成分が混在しており、例えば(3)に分類
した成分もさらにアスファルテン(ベンゼンやトルエン
に可溶な成分)とプリアスファルテン(ベンゼンやトル
エンに不溶の成分)に分類出来、プリアスクアルテンは
触媒被毒性を発揮して第2段水添反応の進行を阻害する
という問題もある0本発明者等は上記の如き事情を憂慮
し、溶剤精製炭中のプリアスファルテンが従来余り良い
利用手段乃至用途に恵まれていないこ左に着眼すると共
に、これを元の(第1段に相当する)水添反応領域へ循
環して留出油の収率向上に寄与せしめるのが良いと考え
種々検討を行なった。又プリアスファルテンを循環する
に当たっては、循環による不要分の蓄積という弊害を除
去する為の対策も必要になってくる。
(3) containing each substance group] is called solvent-refined coal, and its usage and applications are being explored. For example, one method is to use it itself as a fuel, but the second hydrogenation reaction step Efforts have also been made to contribute to improving the yield of distillate oil as described above by supplying it as a raw material. However, since solvent-refined coal is essentially a distillation residue, it contains various components.For example, the components classified in (3) also include asphaltenes (components soluble in benzene and toluene) and puriasphaltenes (components soluble in benzene and toluene). Concerned about the above situation, the inventors of the present invention are concerned about the above-mentioned circumstances, and have developed a solvent-refined coal. We focused on the fact that the puriasphaltenes in the water have not been well-utilized or used in the past, and we improved the yield of distillate by circulating them back to the hydrogenation reaction region (corresponding to the first stage). We considered that it would be a good idea to contribute to this, and conducted various studies. Furthermore, when circulating puriasphaltenes, it is necessary to take measures to eliminate the harmful effects of accumulation of unnecessary substances due to circulation.

[問題点を解決する為の手段] 本発明は、水添反応生成物を灰分除去工程に付して循環
ライン内における灰分の蓄積を防止する点と、脱が工程
において分離されるプリアスファルテンを水添反応へ循
環して留出油の収率を向上させる点に要旨を有するもの
である。
[Means for Solving the Problems] The present invention is characterized in that the hydrogenation reaction product is subjected to an ash removal step to prevent the accumulation of ash in the circulation line, and that the preasphaltenes separated in the removal step are removed by water. The purpose of this is to improve the yield of distillate oil by circulating it to the addition reaction.

[作用] 水添反応の条件自体は本発明において何ら制限を受けな
い。従って供給石炭の性状や粒度、溶剤の種類(循環溶
剤の使用)9反応温度・圧力、触媒の有無や種類、更に
は原料や各種溶剤の使用量等は常法或は改良法に準じて
選定すれば良く、要は石炭を構成する常温固体状炭化水
素に水素を付加させて常温液体状炭化水素にする方法が
本発明の対象となる。又2次水添を付加するか否か、或
はこのときの2次水添反応条件等についても特に制限を
受けるものではない。
[Operation] The conditions of the hydrogenation reaction themselves are not limited in any way in the present invention. Therefore, the properties and particle size of the supplied coal, the type of solvent (use of circulating solvent), the reaction temperature and pressure, the presence or absence of a catalyst and the type, as well as the amount of raw materials and various solvents used, etc. are selected according to conventional or improved methods. In short, the subject of the present invention is a method of adding hydrogen to room-temperature solid hydrocarbons constituting coal to make them into room-temperature liquid hydrocarbons. Furthermore, there are no particular restrictions on whether or not to add secondary hydrogenation, or on the secondary hydrogenation reaction conditions at this time.

第1図は本発明の水添プロセスを例示的に示す概念図で
あって、2次水添を付加する場合のプロセスを表わして
いる。以下本プロセスに従って本発明を説明する。
FIG. 1 is a conceptual diagram illustrating the hydrogenation process of the present invention, and shows a process in which secondary hydrogenation is added. The present invention will be explained below according to this process.

石炭粉末にスラリー化溶剤と触媒を加え、高温状態にし
て1次水添反応領域中に加える。ここには高圧水素が導
入され、高温・高圧下に1次水添反応が行なわれる。得
られた水添物を蒸留に付し、低沸点留分であるナフサ及
び溶剤留分を回収しナフサと余剰溶剤を製品とするとと
もに該溶剤をスラリー化溶剤として1次水添反応領域に
循環する。蒸留残渣は前述の溶剤精製炭(CoalLi
quid  Bottom:CLB)であるが、この中
には水素化の不十分な高融点炭化水素未反応炭の他に石
炭白米の灰分或は触媒由来の灰分が含まれている。
A slurrying solvent and a catalyst are added to the coal powder, heated to a high temperature, and added into the primary hydrogenation reaction zone. High-pressure hydrogen is introduced here, and a primary hydrogenation reaction is carried out at high temperature and high pressure. The obtained hydrogenated product is subjected to distillation, and the naphtha and solvent fractions, which are low-boiling fractions, are recovered, and the naphtha and excess solvent are made into products, and the solvent is circulated to the primary hydrogenation reaction area as a slurry solvent. do. The distillation residue is treated with the above-mentioned solvent-refined coal (CoalLi).
(quid bottom: CLB), which contains ash from coal white rice or catalyst-derived ash in addition to unreacted high-melting-point hydrocarbon coal that has been insufficiently hydrogenated.

従って本明細書では厳密な使い分けをして前者の高融点
炭化水素を狭義のCLBといい、後者の灰分類を一括し
て灰分と述べることもある。
Therefore, in this specification, the former high melting point hydrocarbon is referred to as CLB in a narrow sense, and the latter ash classification is sometimes referred to collectively as ash content.

この蒸留残液からプリアスファルテンを分離してこれを
1次水添反応領域へ循環供給する点に本発明の基本的な
要点が存在するが、プリアスファルテンに伴なわれて循
環される灰分と未反応炭の蓄積問題をどの様にして解消
するかという問題がある。即ち蒸留残渣からプリアスフ
ァルテンを分離する手段については本発明の制限すると
ころではないが、プリアスファルテンは蒸留残渣中では
もっとも炭素数の多い物質群に属する為、プリー7スフ
アルテンの分離を眼目とする分離手段では、灰分及び未
反応度がプリアスファルテンに伴なわれて分離されてく
るという問題がある0例えばプリアスファルテンは前述
の様にベンゼンやトルエンに不溶の炭化水素類である為
、ベンゼンやトルエンに対する溶解度の差を利用してプ
リアスファルテンを分離する方法が採用され得るが、こ
の方法では灰分や未反応度も不溶成分として、プリアス
ファルテンと挙動を共にするので、分離されたプリアス
ファルテンには灰分や未反応度が混入することになる。
The basic point of the present invention is to separate puriasphaltenes from this distillation residual liquid and circulate and supply them to the primary hydrogenation reaction zone. There is a problem of how to solve the problem of accumulation of reactive carbon. That is, although the present invention does not limit the means for separating puriasphaltenes from the distillation residue, since puriasphaltenes belong to the group of substances with the largest number of carbon atoms in the distillation residue, the separation is aimed at separating puriasphaltenes. With this method, there is a problem that ash and unreacted substances are separated along with the preasphaltenes. For example, as mentioned above, since the preasphaltenes are hydrocarbons that are insoluble in benzene and toluene, A method of separating puriasphaltenes using the difference in solubility can be adopted, but in this method, ash and unreacted substances act together with the puriasphaltenes as insoluble components, so the separated puriasphaltenes contain ash and unreacted components. Unreacted particles will be mixed in.

又プリアスファルテンの分離手段としてはこの他蒸留法
や液体クロマトグラフィー法を利用することもできるが
、これらの方法であうン ても、灰分の混入がない状態でプリアスファルテンを分
離するということは必ずしも容易ではない、従って前記
要点の如く蒸留残液から分離したプリアスファルテンを
1次水添反応領域へ循環供給することを考えた場合、こ
のプリアスファルテンは順次水添反応を受けて低融点化
し、例えばベンゼンやトルエンに溶解するものとなって
循環ラインから除かれていくので該ライン中に蓄積され
ていくという不合理は生じないが、未反応度や灰分につ
いては水添を受ける訳ではなく、むしろ原料石炭や触媒
として新たな補給を受ける一方であるから、前記ライン
中で徐々に蓄積されていくという問題が生じる。
Distillation and liquid chromatography can also be used as means for separating puriasphaltenes, but even with these methods, it is not always easy to separate puriasphaltenes without ash contamination. Therefore, when considering circulating and supplying the preasphaltene separated from the distillation residue to the primary hydrogenation reaction zone as mentioned above, this preasphaltene undergoes a hydrogenation reaction sequentially to lower its melting point, and, for example, benzene Since it is dissolved in toluene and removed from the circulation line, there is no unreasonable problem of accumulation in the line, but unreacted and ash content does not undergo hydrogenation, but rather is removed from the circulation line. Since new supplies of coal and catalyst are constantly being received, the problem arises of gradual accumulation in the line.

その為本発明においては、第1図もしくは、第2図に示
す様に脱灰工程を設け、比較的容易に脱灰出来る灰分と
未反応度(粒径の大きなもの)を系内に蓄積しない程度
に系外へ排出する為のラインを設ける。(以下粗脱灰と
称す)、一般に行なわれる脱灰処理は、遠心分離法2重
力沈降法。
Therefore, in the present invention, a deashing step is provided as shown in Figure 1 or Figure 2 to prevent ash that can be relatively easily deashed and unreacted particles (large particle size) from accumulating in the system. A line will be provided to discharge the liquid to the outside of the system. (hereinafter referred to as rough demineralization), the commonly used demineralization processes are centrifugation and double gravity sedimentation.

溶剤脱灰法或は濾過法等であり、前出の狭義のCLHに
ついてもその一部が灰分に伴なわれて分離される。しか
し、ここで比較的粒径の大きなもののみを脱灰するため
脱灰工程を簡略化出来るとともに、灰分及び未反応度に
伴なわれるCLBを最小にすることができる。以下第1
図及び第2図に示すフローに従って説明する。
This method is a solvent deashing method, a filtration method, etc., and a part of the CLH in the narrow sense mentioned above is separated along with the ash. However, since only particles with a relatively large particle size are deashed, the deashing process can be simplified, and CLB caused by ash content and unreactedness can be minimized. Part 1 below
This will be explained according to the flow shown in FIG.

第1因においては、蒸留残渣を粗脱灰工程に付し、脱灰
が比較的固lliな微細な灰分(灰分■)及び未反応度
(■)を含んだCLBは脱瀝工程にまわされ、前述した
様な手段によってプリアスクアルテンが除去される。そ
して税源されるプリアスファルテンには前記の脱灰され
にくい未分離の灰分■及び未反応度のはこの工程でプリ
アスファルテンと共に1次水添工程に循環される。
For the first cause, the distillation residue is subjected to a rough deashing process, and the CLB containing relatively hard fine ash (ash content ■) and unreacted content (■) is sent to the deashing process. , Priasqualten is removed by means such as those described above. In this step, the unseparated ash (1) and unreacted ash, which are difficult to deash, and the unreacted puriasphaltenes are recycled together with the puriasphaltenes to the primary hydrogenation step.

又灰分及び未反応度が蓄積しない範囲であれば、CLB
をそのまま1次水添工程に循環することもできる。
In addition, as long as ash and unreactedness do not accumulate, CLB
can also be recycled as is to the primary hydrogenation step.

従って第1図においては、灰分及び未反応度の系外への
除去ラインを2系列としているが、主体となるのは脱灰
分離物の除去ラインであり、税源除去物の分離ラインは
副次的となる。そしてこれらの使い分は或は適用比率は
、脱灰分離物中のCLB混入率や脱灰分離物中の灰分混
入率を勘案して定めるべきである。
Therefore, in Figure 1, there are two lines for removing ash content and unreacted substances from the system, but the main line is the line for removing the demineralized products, and the line for separating the tax base removal products is the secondary line. become a target. The amount or application ratio of these should be determined in consideration of the CLB mixing rate in the demineralized product and the ash content in the demineralized product.

こうして脱灰及び税源された油状物(Deashedo
il  :DAO)は、蒸留工程における回収溶剤の一
部と共に2次水添工程に供給される。モして水添の結果
であるナフサは製゛品として回収され、ナフサまで軽質
化されるに至っていない中質油分はHD A O(H7
drogenated Deashed oil)とし
て1次水添工程に循環するが、製品として回収してもよ
い。
The oil thus deashed and taxed (Deashed)
il:DAO) is supplied to the secondary hydrogenation step together with a portion of the recovered solvent in the distillation step. The naphtha that is the result of hydrogenation is recovered as a product, and the medium oil that has not yet been reduced to naphtha is processed into HD A O (H7
It is recycled to the primary hydrogenation step as drogenated deashed oil, but it may be recovered as a product.

次に第2図について説明する。第2図の場合は、1次水
添の生成液をそのまま粗脱灰工程に付すものを示す、脱
灰の対象及び脱灰法の選定は。
Next, FIG. 2 will be explained. In the case of Figure 2, the product liquid of the primary hydrogenation is directly subjected to the crude deashing process, and the selection of the deashing target and deashing method is as follows.

第11Nにおける説明と同様である。第1図においては
、蒸留残液を粗脱灰工程に付しているが、蒸留残液は常
温で固体であり、温度をあげれば液体となるものの、粘
度が高く粗脱灰には溶剤の添加等が必要となる。この第
1図の方法は第2図のそれに比べて適切な溶剤を選定出
来、その回収も容易となること及び処理すべき蒸留残渣
量が生成液役より著しく少ないという利点がある。一方
第2図においては生成液そのものが常温で液体であるこ
とによって、そのまま粗脱灰にかけるか又は粘度を調整
する目的で溶剤を添加するにしても量的に少なくてすみ
蒸留で回収されるナフサや中質油をそのまま利用すると
いうことも出来るという利点がある。
This is the same as the explanation for No. 11N. In Figure 1, the distillation residue is subjected to a rough deashing process, but the distillation residue is solid at room temperature, and although it becomes liquid when the temperature is raised, it has a high viscosity and requires no solvent for rough deashing. Addition, etc. is required. Compared to the method shown in FIG. 2, the method shown in FIG. 1 has the advantage that an appropriate solvent can be selected, its recovery is easy, and the amount of distillation residue to be treated is significantly smaller than that of the produced liquid. On the other hand, in Figure 2, since the product liquid itself is liquid at room temperature, even if it is subjected to rough deashing as it is or a solvent is added for the purpose of adjusting the viscosity, the quantity is small and it can be recovered by distillation. It has the advantage that naphtha and medium-quality oil can be used as they are.

第1図あるいは第2図の選定については、採用する脱灰
法によって決定すべきである。
The selection of Figure 1 or Figure 2 should be determined by the demineralization method employed.

尚本発明の第1図の工程では脱どの前に脱灰を行なって
いるが、税源後に行なっても何等問題はない。
In the process shown in FIG. 1 of the present invention, deashing is performed before deashing, but there is no problem if it is performed after deashing.

[実施例] 51容量のオートクレーブを用い次に示す実験を行なっ
た。尚水素圧力は、いずれも初期圧は60kg/ cs
+2 参G?あり、反応温度は430℃のものと460
℃の2系列に分けて比較した。又触媒は鉄系とし、Fe
換算で3.0重量%(対無水無灰石炭規準)使用した。
[Example] The following experiment was conducted using a 51-capacity autoclave. The initial hydrogen pressure is 60 kg/cs in both cases.
+2 San G? The reaction temperature is 430℃ and 460℃.
The temperature was divided into two series and compared. In addition, the catalyst is iron-based, and Fe
It was used in an amount of 3.0% by weight (based on anhydrous and ash-free coal).

結果は第1表に示す。The results are shown in Table 1.

実験1:石炭と溶媒(循環なしに相当)。Experiment 1: Coal and solvent (equivalent to no circulation).

実験2:石炭と溶媒に、CLB中のトルエン可溶分を加
えた(アスファルテンの循環 に相当)。
Experiment 2: Toluene solubles in CLB were added to coal and solvent (corresponding to asphaltene circulation).

実験3:石炭と溶媒に、CLB中のトルエン不溶分を加
えた(粗脱灰後のプリアス ファルテンの循環:本発明例に相 当)。
Experiment 3: Toluene-insoluble content in CLB was added to coal and solvent (circulation of preasphaltene after rough deashing: corresponds to the example of the present invention).

第1表に見られる通り、循環なしの実験1に比べて循環
ありに相当する実験2,3では全油状物の収率が顕著に
向上している。又実験2,3を比べてみると、従来廃棄
又はエネルギー源として廃棄するに過ぎなかったトルエ
ン不溶分を利用する実験3は、元々循環使用価値の認め
られていたトルエン可溶分を利用する実験2と比べても
保色なくむしろ全油状物収率において実験2を凌駕する
好結果を与えている。
As can be seen in Table 1, the yield of the total oil was significantly improved in Experiments 2 and 3, which corresponded to experiments with circulation, compared to Experiment 1 without circulation. Also, when comparing Experiments 2 and 3, Experiment 3 uses toluene-insoluble matter, which was conventionally only discarded or discarded as an energy source, whereas Experiment 3 uses toluene-soluble matter, which was originally recognized to have recycling value. Even when compared to Experiment 2, there was no color retention, and rather a good result was obtained that surpassed Experiment 2 in terms of total oily yield.

又転化率を見ても非循環型の場合は原料石炭中米転化の
ものをかなり残しているが1本発明のプリアスファルテ
ン循環型(実験3)は、アスファルテン循環型(実験2
)と同様はぼ完全に近い転化率を示しており、水添効率
の良さを理解することができる。
Also, looking at the conversion rate, in the case of the non-recycling type, there is still a considerable amount of raw material converted from raw coal in Central America, but the pre-asphaltene recycling type of the present invention (Experiment 3) is different from that of the asphaltene recycling type (Experiment 2).
) shows an almost complete conversion rate, which helps to understand the high hydrogenation efficiency.

[発明の効果] 本発明は上記の様に構成されているので、税源によって
得られたプリアスファルテンを水添工程へ循環供給する
ことによる水添率の向上、ひいては油状物全収率の向上
を達成することができた。
[Effects of the Invention] Since the present invention is configured as described above, it is possible to improve the hydrogenation rate by circulating and supplying the puriasphaltenes obtained by tax revenue to the hydrogenation process, and by extension, to improve the total yield of oily products. I was able to achieve this.

又粗脱灰工程を組合わせることによって循環ライン中の
灰分蓄積を防止することができると共に、脱灰工程その
ものを、蓄積を防止する範囲に簡略化することによって
石炭液化工程を経済性及び生産性の両面において大きく
前進させることができた。
In addition, by combining the coarse deashing process, it is possible to prevent ash accumulation in the circulation line, and by simplifying the deashing process itself to the extent that prevents accumulation, the coal liquefaction process can be made more economical and productive. We were able to make significant progress on both fronts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明工程の実施例説明図である。 出願人  株式会社神戸製鋼所(ほか4名)第1図 石炭粉末 スラリー化溶剤 触    媒 ナフサ 第2図− ナフサ FIG. 1 and FIG. 2 are explanatory diagrams of an embodiment of the process of the present invention. Applicant: Kobe Steel, Ltd. (and 4 others) Figure 1 coal powder Slurrying solvent catalyst naphtha Figure 2- naphtha

Claims (1)

【特許請求の範囲】[Claims] 石炭を水添反応に付す石炭液化方法において、水添反応
によって得られる溶剤精製炭を灰分除去工程に付し、溶
剤精製炭に含まれる灰分のみ除去して系内への蓄積を防
止し、次いで脱瀝工程に供給して分離されるプリアスフ
ァルテンを、水添反応域へ循環供給することを特徴とす
る循環システムを含む石炭液化方法。
In a coal liquefaction method in which coal is subjected to a hydrogenation reaction, the solvent-purified coal obtained by the hydrogenation reaction is subjected to an ash removal step to remove only the ash contained in the solvent-purified coal to prevent accumulation in the system, and then A coal liquefaction method including a circulation system characterized in that preasphaltene, which is supplied to a deasphalting step and separated, is circulated and supplied to a hydrogenation reaction zone.
JP12009085A 1985-06-03 1985-06-03 Method for liquefying coal containing circulation system Granted JPS61276891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12009085A JPS61276891A (en) 1985-06-03 1985-06-03 Method for liquefying coal containing circulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12009085A JPS61276891A (en) 1985-06-03 1985-06-03 Method for liquefying coal containing circulation system

Publications (2)

Publication Number Publication Date
JPS61276891A true JPS61276891A (en) 1986-12-06
JPS6247919B2 JPS6247919B2 (en) 1987-10-09

Family

ID=14777658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12009085A Granted JPS61276891A (en) 1985-06-03 1985-06-03 Method for liquefying coal containing circulation system

Country Status (1)

Country Link
JP (1) JPS61276891A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238195A (en) * 1987-03-27 1988-10-04 Sumitomo Metal Ind Ltd Liquefaction of coal
JPH01304182A (en) * 1988-05-31 1989-12-07 Nippon Katsutan Ekika Kk Coal liquefaction technique
JPH03181593A (en) * 1989-12-11 1991-08-07 Sumitomo Metal Ind Ltd Method for liqefying coal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238195A (en) * 1987-03-27 1988-10-04 Sumitomo Metal Ind Ltd Liquefaction of coal
JPH01304182A (en) * 1988-05-31 1989-12-07 Nippon Katsutan Ekika Kk Coal liquefaction technique
JPH03181593A (en) * 1989-12-11 1991-08-07 Sumitomo Metal Ind Ltd Method for liqefying coal

Also Published As

Publication number Publication date
JPS6247919B2 (en) 1987-10-09

Similar Documents

Publication Publication Date Title
US4354922A (en) Processing of heavy hydrocarbon oils
US4081359A (en) Process for the liquefaction of coal and separation of solids from the liquid product
AU2005266712B2 (en) A process for direct liquefaction of coal
US3791956A (en) Conversion of coal to clean fuel
US3705092A (en) Solvent extraction of coal by a heavy oil
JPS6230189A (en) Improvement in yield of distillable component in cracking ofhydrogen donating diluent
JPS5981383A (en) Coal solvent purification
US3143489A (en) Process for making liquid fuels from coal
US4133646A (en) Phenolic recycle solvent in two-stage coal liquefaction process
US4332666A (en) Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered
US4081358A (en) Process for the liquefaction of coal and separation of solids from the liquid product
US4317711A (en) Coprocessing of residual oil and coal
US4395324A (en) Thermal cracking with hydrogen donor diluent
DE3835494A1 (en) CATALYTIC TWO-STEP CONFLECTION OF COAL USING CASCADE FROM USED CREEP BED CATALYST
US4422922A (en) Coal liquefaction and hydroprocessing of petroleum oils
US4077866A (en) Process for producing low-sulfur liquid and solid fuels from coal
US4325800A (en) Two-stage coal liquefaction process with interstage guard bed
US4134821A (en) Maintenance of solvent balance in coal liquefaction process
US4402821A (en) Process for liquefaction of coal
US2358573A (en) Chemical process
US4032428A (en) Liquefaction of coal
US4331531A (en) Three-stage coal liquefaction process
US4151066A (en) Coal liquefaction process
JPS61276891A (en) Method for liquefying coal containing circulation system
US4394248A (en) Coal liquefaction process