JP2544563B2 - Thin film magnetic head and magnetic recording device - Google Patents

Thin film magnetic head and magnetic recording device

Info

Publication number
JP2544563B2
JP2544563B2 JP4160647A JP16064792A JP2544563B2 JP 2544563 B2 JP2544563 B2 JP 2544563B2 JP 4160647 A JP4160647 A JP 4160647A JP 16064792 A JP16064792 A JP 16064792A JP 2544563 B2 JP2544563 B2 JP 2544563B2
Authority
JP
Japan
Prior art keywords
magnetic
thickness
layer
thin film
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4160647A
Other languages
Japanese (ja)
Other versions
JPH06103525A (en
Inventor
正樹 大浦
真 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4160647A priority Critical patent/JP2544563B2/en
Publication of JPH06103525A publication Critical patent/JPH06103525A/en
Application granted granted Critical
Publication of JP2544563B2 publication Critical patent/JP2544563B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はメッキ、蒸着、スパッタ
等の膜形成手段とフォトリソグラフィーと呼称される高
精度パターン形成手段を用いて形成する薄膜磁気ヘッド
及びこの薄膜磁気ヘッドを搭載した磁気記録装置に関す
るものである。 【0002】 【従来の技術】薄膜技術を用いて磁気回路を構成した磁
気ヘッドが、データの記録密度を向上する上で利点があ
るとされ、パーマロイ金属片あるいはフェライト片に巻
線を施したタイプの磁気ヘッドにとってかわろうとする
動きがさかんである。この薄膜ヘッドの代表的な構成は
特開昭55−84019号公報及び特開昭55−840
20号公報に詳細に記述されている。特開昭55−84
019号公報及び特開昭55−84020号公報によれ
ば、ヨーク構造は磁極先端領域及び後端領域で構成さ
れ、パーマロイのような磁気材料の2層で構成される。
上下の磁気層の磁極先端領域は磁気記録媒体のトラック
の幅に等しいか、又はそれより僅かに小さく、磁気記録
媒体に対して法線方向に僅かに伸びており、磁極先端領
域に続く後端領域では上下の磁気層の幅は漸進的に増大
している。 【0003】 【発明が解決しようとする課題】このような薄膜ヘッド
磁気回路において、データの記録密度を増すためには、
磁気ヘッドの動作面に露出した磁性層の厚み、すなわち
ポールピースの厚さを薄くすることが基本的に重要な要
素である。しかしながら同一の磁気回路を用いて、記録
媒体への書込みと再生を兼用させる場合においては、前
述した高記録密度化をはかるため、ポールピースの厚さ
を薄くする要件は必要十分条件とはなり得ない。すなわ
ち書込みに際しては、動作面から所定のすきまを有して
配置された記録媒体に書込みに必要な磁界を発生させる
ため、導体コイルに流した励磁電流により磁気回路を励
磁する必要がある。この時磁性層の厚みが薄いと磁気的
に飽和し励磁電流を増しても有効な磁界を発生させ得な
い。したがって書込みと再生を共に満足させ得る磁性層
厚の範囲を求めることが重要である。しかしながら高記
録密度化を実現するため記録媒体は高保磁力を持たせる
方向にあり、このことは磁気ヘッドとしてより強い磁界
を発生させる必要が新たに発生し、前記した書込みと再
生を共に満足させる為の磁性層厚の範囲が非常に狭くな
るか、もしくはその範囲が存在しえないという問題点を
クローズアップさせる状況になってきている。 【0004】本発明の目的は記録特性及び再生特性に優
れた薄膜磁気ヘッドとこのヘッドを搭載した磁気記録装
置を提供することにある。 【0005】 【課題を解決するための手段】上部磁性層(第2の磁性
層)の少なくとも磁気ギャップがある側の厚さを下部磁
性層(第1の磁性層)の厚さよりも大きくした薄膜磁気
ヘッドを用いて、薄膜磁気ヘッドと相対移動を行なう磁
気記録媒体に情報の記録及び再生を行なう。 【0006】 【作用】薄膜ヘッドにおいて媒体上の一つの磁化反転を
再生した場合図1に示した孤立反転再生波形が得られ
る。この再生波形は従来のバルク材で作った磁気ヘッド
と異なり、動作面に露出している磁性層の厚みすなわち
ポールピース厚みが数μmのオーダであるために孤立波
形の両サイドにアンダーシュートが発生する。この孤立
波形のアンダーシュートはよく観察すると左右のアンダ
ーシュート量が異なっておりこの差異に筆者は注目し
た。すなわち図1の再生波形のピーク位置に対して左側
の部分と右側の部分のアンダーシュート量が異なってい
ることである。この原因は図2で示された薄膜磁気ヘッ
ドの一般的構造の断面図において、第1の磁性層1は媒
体平面3に対して垂直方向に伸びており、第2の磁性層
2は途中で折れ曲った構造と成っていることに起因して
いる。この孤立再生波形においてアンダーシュート量が
少ない側は第2の磁性層がある側であり、アンダーシュ
ート量が大きい側は第1の磁性層の側である。ここで高
密度化した場合にこれらのアンダーシュート量の差がど
のように影響するか言及しよう。一般的に高記録密度化
した場合に得られる再生波形は孤立波形の重ね合せが
かなり精度で成り立つことが言われている。今、一つ
の磁化反転の次に非常に短間隔で次の磁化反転が
場合を考える。この2つの磁化反転による再生波形は、
図3(a)、(b)の2つの孤立波形の重ね合せによ
り図3(c)として求めることができる。図3(c)に
おいて△T1及び△T2として示されているように本来あ
るべき波形ピークの位置がずれるすなわちピークシフト
が発生する。これらのピークシフト量の大きさは、それ
ぞれの孤立波形ピーク位置に対応したもう一つの孤立波
形のの勾配の大小で決定される。今、最初の孤立波形
に対して次の孤立波形のピークの位置が最初孤立波形
の0を横切る近傍にある場合その位置での前記した勾
配はアンダシュート量の大きさに依存することが理解
されよう。したがって△T1と△T2の大きさを比較した
場合、アンダシュートの小さい側のピークシフト△T
1が小になる。図4はポールピースの厚みを可変させピ
ークシフト△T1と△T2の関係を図示したものである。
この図から同一のポールピース厚みに対しては△T2
大でありかつ膜に依存する傾向が△T1に比して大で
ある。このことからピークシフトを減させるためには
第1の磁性層厚みを薄くする方が効果的であることがわ
かる。すなわち第1と第2の磁性層膜厚を共に同一量減
少させるよりは第1の磁性層をより薄くすべきであるこ
とを示している。 【0007】一方書込側に対しては、前述したように記
録媒体を磁化するため磁気ヘッド動作面に強い磁界を発
生させる必要があり、磁気回路の磁路は出来るだけ飽和
を防ぐような構造をとることが重要である。このために
は磁路となる磁性層の飽和磁束密度を上げることが必要
であると同時に磁路の断面積を増加させることも重要で
ある。図2の薄膜ヘッド断面構造図にもどってこの観点
から磁路構造を見ると、第2の磁性層の斜面部4が問題
となる。一般的にある段差を有したものの上から蒸着、
スパッタ、メッキ等の技術をつかって膜形成を行なう場
合斜面部のつきまわりは平面上に形成した膜厚よりも減
少する。特に蒸着、スパッタの場合はこの傾向が顕著で
あり、カバレッジファクターと称される平面と斜面部の
膜厚相対比は斜面の傾斜に依存するが、この傾斜角が3
0°前後の場合で0.7〜0.8が一般的である。すなわ
ち薄膜ヘッド構造においてはこの斜面部が断面積を考慮
した場合一番小さくなるところであり磁気的にもっとも
飽和が起こりやすい箇所であると言える。したがって第
2の磁性層を第1の磁性層と磁気的に同一の条件で使う
には、第2の磁性層の厚さをカバレッジファクターで割
った値すなわち第1の磁性層の厚さの1.2〜1.4倍程
度とするのがが好ましい。以上再生時及び書込時共第1
の磁性層の厚さよりも第2の磁性層の厚さを増した方が
好ましいという理由を説明した。 【0008】 【実施例】以下本発明の一実施例についてさらに説明す
る。図5に磁気テープ用薄膜ヘッドの断面図を示す。耐
摩耗性が非常に優れたサファイア単結晶基板10上に第
1の磁性層11が1.5μmの厚さでスパッタ形成され
所定の形状にパターニングされる。さらに磁気ギャップ
長となるアルミナ膜12が0.5μm形成され平面状渦
巻形の導体コイル13が蒸着されパターニングされる。
導体コイル13の凹凸をカバーするよう適当な絶縁物1
4をその上に形成し第2の磁性層15が厚さ2μmの厚
さで導体コイル及び絶縁物を覆うようにスパッタ形成さ
れ所定の形状にパターニングされる。この時磁気回路の
動作面から遠い側は第1の磁性層11と第2の磁性層1
5が磁気的に短絡するよう予めアルミナ膜は除去され
る。このあと端子部(図示せず)を形成し所定の厚さの
保護層16が付着される。このあと複数個ならんだ素子
を所定のギャップ深さになるまで(一点鎖線で示す)研
摩加工し、磁気ヘッド素子を得る。ここで第1の磁性層
膜厚1.5μmと第2の磁性層膜厚2μmと異ならせた
のは、上記構造体において斜面部のスパッタされた磁性
層膜のカバレッジファクターは0.75であったため1.
5÷0.75=2で決定された。このような方法で得ら
れた磁気ヘッド素子を用いて保磁力600Oeの大きさ
を有した磁気テープ媒体に、互いに2.1μmの間隔を
おいて2つの磁化反転を記録した。この時読み出された
磁化反転の間隔は2.25μmであった。一方同様な方
法で形成された第1と第2の磁性層膜厚が共に2μmの
ヘッドは2.8μmであった。また共に膜厚1.5μmを
有するヘッドは2.1μm程度であったが非常にヘッド
出力が小さく書込時に磁路が飽和して十分媒体に書き込
めなかったことに原因することがわかった。このことは
明らかに第1と第2の磁性層の厚さを変えたことが薄膜
ヘッドとしての特性を改善していることを示しており本
発明の効果を如実に示すものである。 【0009】本実施例における双方の磁性層の厚みの差
0.5μmは、双方の磁性層膜を形成する際のバラツキ
巾、通常は膜厚の±10%以上であることに留意された
い。 【0010】また本実施例においては特に記さなかった
が、通常薄膜ヘッドの磁気回路構造において動作面に露
出した磁性体の厚みすなわちポールピース厚に比して内
部において部分的に厚くし記録、再生効率をげる手段
用いられる場合があるが発明は上記構造において
も実施例で述べたと同様の効果を得ることができること
は動作原理からも明らかである。 【0011】 【発明の効果】本発明によれば、書込特性及び再生特性
に優れた磁気テープ装置や磁気ディスク装置等の磁気記
録装置を提供することが出来る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film magnetic head formed by means of film forming means such as plating, vapor deposition and sputtering and high precision pattern forming means called photolithography.
And a magnetic recording device equipped with this thin film magnetic head . A magnetic head having a magnetic circuit formed by using thin film technology is said to have an advantage in improving the data recording density, and is a type in which a permalloy metal piece or ferrite piece is wound. There is a lot of movement to replace the magnetic head. A typical structure of this thin film head is disclosed in Japanese Patent Laid-Open No. 55-84019 and Japanese Patent Laid-Open No. 55-840.
It is described in detail in Japanese Patent No. 20. JP-A-55-84
According to Japanese Patent Laid-Open No. 019 and Japanese Patent Laid-Open No. 55-84020, the yoke structure is composed of a magnetic pole front end region and a rear end region, and is composed of two layers of a magnetic material such as permalloy.
The magnetic pole tip regions of the upper and lower magnetic layers are equal to or slightly smaller than the track width of the magnetic recording medium and extend slightly in the normal direction to the magnetic recording medium. In the region, the widths of the upper and lower magnetic layers gradually increase. In such a thin film head magnetic circuit, in order to increase the data recording density,
It is a fundamentally important factor to reduce the thickness of the magnetic layer exposed on the operating surface of the magnetic head, that is, the thickness of the pole piece. However, when the same magnetic circuit is used for both writing and reading on the recording medium, the requirement for thin pole pieces may be a necessary and sufficient condition in order to achieve the high recording density described above. Absent. That is, at the time of writing, it is necessary to excite the magnetic circuit by the exciting current flowing in the conductor coil in order to generate a magnetic field required for writing in the recording medium arranged with a predetermined clearance from the operating surface. At this time, if the magnetic layer is thin, it is magnetically saturated and an effective magnetic field cannot be generated even if the exciting current is increased. Therefore, it is important to find the range of the magnetic layer thickness that can satisfy both writing and reading. However, in order to realize a high recording density, the recording medium tends to have a high coercive force, which necessitates the generation of a stronger magnetic field as a magnetic head, which satisfies both the above-mentioned writing and reproducing. There is a situation in which the problem that the magnetic layer thickness range is extremely narrowed or that the range cannot exist is highlighted. It is an object of the present invention to provide a thin film magnetic head having excellent recording and reproducing characteristics and a magnetic recording device equipped with this head . A thin film in which the thickness of at least the magnetic gap of the upper magnetic layer (second magnetic layer) is larger than the thickness of the lower magnetic layer (first magnetic layer). Information is recorded on and reproduced from a magnetic recording medium that moves relative to the thin film magnetic head using the magnetic head. When reproducing one magnetization reversal on the medium in the thin film head, the isolated reversal reproduction waveform shown in FIG. 1 is obtained. Unlike the conventional magnetic head made of bulk material, this reproduced waveform has an undershoot on both sides of the isolated waveform because the thickness of the magnetic layer exposed on the operating surface, that is, the pole piece thickness, is on the order of several μm. To do. When the undershoot of this solitary waveform is closely observed, the left and right undershoot amounts are different, and the author paid attention to this difference. That is, the undershoot amounts of the left side portion and the right side portion are different from the peak position of the reproduced waveform in FIG. The reason for this is that in the cross-sectional view of the general structure of the thin film magnetic head shown in FIG. 2, the first magnetic layer 1 extends in the direction perpendicular to the medium plane 3, and the second magnetic layer 2 is in the middle. This is due to the fact that it has a bent structure. In this isolated reproduction waveform, the side having a smaller amount of undershoot is the side having the second magnetic layer, and the side having a larger amount of undershoot is the side of the first magnetic layer. Here, let us mention how the difference in these undershoot amounts affects when the density is increased. Generally higher recording density reproduced waveform obtained when the is said that holds with considerable accuracy causes I overlaid case of isolated waveform. Now, consider the case where the next magnetization reversal came in a very short have interval to the next one of the magnetization reversal. The reproduced waveform by these two magnetization reversals is
FIG. 3 (a), Ru can be obtained as FIG. 3 (c) by not I overlapped case of two isolated waveforms (b). As shown by ΔT 1 and ΔT 2 in FIG. 3 (c), the position of the waveform peak that should originally be displaced, that is, a peak shift occurs. The magnitude of these peak shift amounts is determined by the magnitude of the slope of the tail of another isolated waveform corresponding to each isolated waveform peak position. Now, if the position of the peak of the next solitary wave is near crossing 0 first isolated waveform, said the gradient at that position is dependent on the size of the under over shoot biomass for the first isolated waveform Will be understood. Therefore △ when comparing the size of the T 1 and △ T 2, a small peak on the side shifts of undershoot over chute △ T
1 becomes small. FIG. 4 shows the relationship between the peak shifts ΔT 1 and ΔT 2 by varying the thickness of the pole piece.
This is for the same pole piece thickness from FIG is larger than the tendency △ T 1 to △ T 2 is dependent on it and the film thickness larger. This in order to decrease less of a peak shift from it can be seen that better to reduce the thickness of the first magnetic layer thickness is effective. That is, it is shown that the first magnetic layer should be thinner than the thicknesses of both the first and second magnetic layers should be reduced by the same amount. On the other hand, on the write side, as described above, it is necessary to generate a strong magnetic field on the operating surface of the magnetic head in order to magnetize the recording medium, and the magnetic path of the magnetic circuit is structured to prevent saturation as much as possible. It is important to take For this purpose, it is necessary to increase the saturation magnetic flux density of the magnetic layer that forms the magnetic path, and at the same time, it is important to increase the cross-sectional area of the magnetic path. Returning to the thin-film head cross-sectional structure diagram of FIG. 2 and looking at the magnetic path structure from this viewpoint, the slope portion 4 of the second magnetic layer becomes a problem. In general, vapor deposition from the top with a certain level difference,
When a film is formed by using a technique such as sputtering or plating, the throwing power of the slope portion is smaller than the film thickness formed on the flat surface. This tendency is particularly remarkable in the case of vapor deposition and sputtering, and the relative ratio of the film thickness between the flat surface and the slope portion, which is called the coverage factor, depends on the slope of the slope, and this slope angle is 3
In the case of around 0 °, it is generally 0.7 to 0.8. That is, in the thin film head structure, this slope is the smallest when the cross-sectional area is taken into consideration, and it can be said that this is where magnetic saturation is most likely to occur. Therefore, in order to use the second magnetic layer magnetically under the same conditions as the first magnetic layer, a value obtained by dividing the thickness of the second magnetic layer by the coverage factor, that is, the thickness of the first magnetic layer is 1 It is preferably about 0.2 to 1.4 times. First for both playback and writing
The reason why it is preferable to increase the thickness of the second magnetic layer rather than the thickness of the magnetic layer is explained. An embodiment of the present invention will be further described below. FIG. 5 shows a cross-sectional view of a thin film head for magnetic tape. The first magnetic layer 11 is sputtered to a thickness of 1.5 μm on the sapphire single crystal substrate 10 having excellent wear resistance and patterned into a predetermined shape. Further, an alumina film 12 having a magnetic gap length of 0.5 μm is formed and a planar spiral coil 13 is deposited and patterned.
Insulator 1 suitable for covering the irregularities of the conductor coil 13
4 is formed thereon, and the second magnetic layer 15 having a thickness of 2 μm is formed by sputtering so as to cover the conductor coil and the insulator and patterned into a predetermined shape. At this time, the first magnetic layer 11 and the second magnetic layer 1 are located on the side far from the operating surface of the magnetic circuit.
The alumina film is previously removed so that 5 is magnetically short-circuited. After that, a terminal portion (not shown) is formed and a protective layer 16 having a predetermined thickness is attached. After that, the plurality of aligned elements are polished until a predetermined gap depth (shown by a chain line) is obtained to obtain a magnetic head element. Here, the difference between the first magnetic layer thickness of 1.5 μm and the second magnetic layer thickness of 2 μm is that the coverage factor of the sputtered magnetic layer film in the above-mentioned structure is 0.75. Play 1.
It was decided by 5 ÷ 0.75 = 2. Using the magnetic head element obtained by such a method, two magnetization reversals were recorded on a magnetic tape medium having a coercive force of 600 Oe at intervals of 2.1 μm. The interval of magnetization reversal read at this time was 2.25 μm. On the other hand, a head having a thickness of 2 μm for both the first and second magnetic layers formed by the same method had a thickness of 2.8 μm. Further, both of the heads having a film thickness of 1.5 μm were about 2.1 μm, but it was found that the head output was very small and the magnetic path was saturated at the time of writing and it was not possible to write on the medium sufficiently. This clearly shows that changing the thicknesses of the first and second magnetic layers improves the characteristics of the thin film head, and demonstrates the effect of the present invention. It should be noted that the difference of 0.5 μm in thickness between both magnetic layers in this embodiment is a variation width when forming both magnetic layer films, usually ± 10% or more of the film thickness. Although not particularly described in the present embodiment, in general, in the magnetic circuit structure of the thin film head, the thickness of the magnetic body exposed on the operating surface, that is, the thickness of the pole piece is partially thickened internally for recording / reproducing. above gel means the efficiency
However, it is apparent from the principle of operation that the present invention can obtain the same effects as those described in the embodiments with the above structure. According to the present invention, it is possible to provide a magnetic recording device such as a magnetic tape device or a magnetic disk device which is excellent in writing characteristics and reproducing characteristics.

【図面の簡単な説明】 【図1】薄膜ヘッドの孤立再生波形を示す図。 【図2】従来の薄膜ヘッドの断面模式図。 【図3】本発明の原理を説明するための薄膜ヘッド孤立
再生波形と合成した波形を示す図。 【図4】本発明を説明するためのポールピース厚みとピ
ークシフトの関係を示す図。 【図5】本発明の一実施例を示す薄膜ヘッド断面図であ
る。 【符号の説明】 11…第1の磁性層、 15…第2の磁性層、 10…基板、 12…アルミナ膜、 13…導体コイル、 14…絶縁物、 16…保護膜。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an isolated reproduction waveform of a thin film head. FIG. 2 is a schematic sectional view of a conventional thin film head. FIG. 3 is a diagram showing a waveform synthesized with a thin film head isolated reproduction waveform for explaining the principle of the present invention. FIG. 4 is a diagram showing a relationship between a pole piece thickness and a peak shift for explaining the present invention. FIG. 5 is a cross-sectional view of a thin film head showing an embodiment of the present invention. [Description of Reference Signs] 11 ... First magnetic layer, 15 ... Second magnetic layer, 10 ... Substrate, 12 ... Alumina film, 13 ... Conductor coil, 14 ... Insulator, 16 ... Protective film.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 GARY E.ROBERTS ET AL.”ORIGINS OF PL AYBACK PULSE ASYMM ETRY IN RECORDING WITH THIN FILM DIS K HEADS”,IEEE TRAN SACTIONS ON MAGNET ICS VOL.MAG−17,NO. 6,NOVEMBER 1981,P.2902 −P.2904 日経エレクトロニクス,(1980年7月 7日),P.110−P.112   ────────────────────────────────────────────────── ─── Continued front page    (56) References GARY E. ROBERTS ET                 AL. "ORIGINS OF PL               AYBACK PULSE ASYMM               ETRY IN RECORDING               WITH THIN FILM DIS               K HEADS ", IEEE TRAN               SACTIONS ON MAGNET               ICS VOL. MAG-17, NO.               6, NOVEMBER 1981, P.M. 2902               -P. 2904                 Nikkei Electronics, (July 1980               7th), P. 110-P. 112

Claims (1)

(57)【特許請求の範囲】 .基板と、 該基板上に形成された第1の磁性層と、 該第1の磁性層上に形成された磁気ギャップ層と、 該磁気ギャップ層上に形成された導体コイルと、 前記磁気ギャップ層上及び絶縁層を介して前記導体コイ
ル上に形成された第2の磁性層とを具備し、 前記第2の磁性層は磁気記録媒体のトラックの幅に等し
いか又はそれより僅かに小さい幅を持つ先端領域と幅が
漸進的に増大する後端領域とで構成され、該先端領域は
前記磁気ギャップ層上に位置する平坦部と該平坦部に続
く前記導体コイルの乗り上げ部に位置する斜面部とで構
成され、該平坦部の厚みは対向する第1の磁性層の厚み
よりも大きく、該斜面部の厚みは第1の磁性層の厚みと
ほぼ同じかそれ以上であることを特徴とする薄膜磁気ヘ
ッド。 .基板と、該基板上に形成された第1の磁性層と、該
第1の磁性層上に形成された磁気ギャップ層と、該磁気
ギャップ層上に形成された導体コイルと、前記磁気ギャ
ップ層上及び絶縁層を介して前記導体コイル上に形成さ
れた第2の磁性層とを有し、該第2の磁性層は磁気記録
媒体のトラックの幅に等しいか又はそれより僅かに小さ
い幅を持つ先端領域と幅が漸進的に増大する後端領域と
で構成され、該先端領域は前記磁気ギャップ層上に位置
する平坦部と該平坦部に続く前記導体コイルの乗り上げ
部に位置する斜面部とで構成され、該平坦部の厚みは対
向する第1の磁性層の厚みよりも大きく、該斜面部の厚
みは第1の磁性層の厚みとほぼ同じかそれ以上である薄
膜磁気ヘッドと、該薄膜磁気ヘッドと相対移動を行う磁
気記録媒体とを具備することを特徴とする磁気記録装
置。
(57) [Claims] 1 . A substrate, a first magnetic layer formed on the substrate, a magnetic gap layer formed on the first magnetic layer, a conductor coil formed on the magnetic gap layer, and the magnetic gap layer A second magnetic layer formed on the conductor coil via an upper layer and an insulating layer, the second magnetic layer having a width equal to or slightly smaller than the width of the track of the magnetic recording medium. A front end region and a rear end region whose width gradually increases, the front end region being a flat portion located on the magnetic gap layer and a slope portion located at the riding portion of the conductor coil following the flat portion. And the thickness of the flat portion is larger than the thickness of the opposing first magnetic layer, and the thickness of the slope portion is substantially the same as or greater than the thickness of the first magnetic layer. Thin film magnetic head. 2 . Substrate, first magnetic layer formed on the substrate, magnetic gap layer formed on the first magnetic layer, conductor coil formed on the magnetic gap layer, and magnetic gap layer A second magnetic layer formed on the conductor coil via an upper layer and an insulating layer, the second magnetic layer having a width equal to or slightly smaller than the width of the track of the magnetic recording medium. A front end region and a rear end region whose width gradually increases, the front end region being a flat portion located on the magnetic gap layer and a slope portion located at the riding portion of the conductor coil following the flat portion. A thin film magnetic head in which the thickness of the flat portion is larger than the thickness of the opposing first magnetic layer and the thickness of the slope portion is substantially the same as or greater than the thickness of the first magnetic layer, Includes the thin film magnetic head and a magnetic recording medium that moves relative to the thin film magnetic head. The magnetic recording apparatus, characterized in that.
JP4160647A 1992-06-19 1992-06-19 Thin film magnetic head and magnetic recording device Expired - Lifetime JP2544563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4160647A JP2544563B2 (en) 1992-06-19 1992-06-19 Thin film magnetic head and magnetic recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4160647A JP2544563B2 (en) 1992-06-19 1992-06-19 Thin film magnetic head and magnetic recording device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57016220A Division JPS58137120A (en) 1982-02-05 1982-02-05 Magnetic thin-film head

Publications (2)

Publication Number Publication Date
JPH06103525A JPH06103525A (en) 1994-04-15
JP2544563B2 true JP2544563B2 (en) 1996-10-16

Family

ID=15719459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4160647A Expired - Lifetime JP2544563B2 (en) 1992-06-19 1992-06-19 Thin film magnetic head and magnetic recording device

Country Status (1)

Country Link
JP (1) JP2544563B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292709A (en) * 1976-01-30 1977-08-04 Hitachi Ltd Magnetic head of thin film
US4190872A (en) * 1978-12-21 1980-02-26 International Business Machines Corporation Thin film inductive transducer
JPS5661018A (en) * 1979-10-19 1981-05-26 Hitachi Ltd Manufacture of thin film magnetic head
JP2560908B2 (en) * 1990-10-25 1996-12-04 日本電気株式会社 Evaluation parameter learning method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GARYE.ROBERTSETAL."ORIGINSOFPLAYBACKPULSEASYMMETRYINRECORDINGWITHTHINFILMDISKHEADS",IEEETRANSACTIONSONMAGNETICSVOL.MAG−17,NO.6,NOVEMBER1981,P.2902−P.2904
日経エレクトロニクス,(1980年7月7日),P.110−P.112

Also Published As

Publication number Publication date
JPH06103525A (en) 1994-04-15

Similar Documents

Publication Publication Date Title
US6266216B1 (en) Inductive/MR composite type thin-film magnetic head with NLTS reduction
US5590008A (en) Magnetic disc unit having a plurality of magnetic heads which include multilayer magnetic films
JP3795236B2 (en) Thin film magnetic head
JP3083218B2 (en) Thin film magnetic head
JP3369444B2 (en) Thin film magnetic head
US6101067A (en) Thin film magnetic head with a particularly shaped magnetic pole piece and spaced relative to an MR element
JPH0544086B2 (en)
US5739991A (en) Composite thin film head having magnetoresistive and inductive head portions with nonmagnetic thin film interposed between core and shield portions of core layer
JP3052625B2 (en) Magnetoresistive thin film magnetic head
JP3184465B2 (en) Thin film magnetic head and method of manufacturing the same
JP2544563B2 (en) Thin film magnetic head and magnetic recording device
JP2550829B2 (en) Thin film magnetic head and magnetic recording device
JP3475868B2 (en) Magnetoresistive thin-film magnetic head
JPS6045916A (en) Thin film magnetic head
JP3367161B2 (en) Method of manufacturing magnetoresistive head
JP3361345B2 (en) Magnetic recording device
JPS6381617A (en) Single magnetic pole type magnetic head for perpendicular recording
JP3039033B2 (en) Perpendicular magnetic recording / reproducing method
JP2509073Y2 (en) Magnetic head
JP3279081B2 (en) Signal playback method
JPS6331852B2 (en)
JPH046608A (en) Thin film magnetic head and magnetic disk device with the thin film magnetic head mounted thereon
JPH05101332A (en) Thin film magnetic head
JPS626416A (en) Thin film magnetic head
JPH11126313A (en) Magneto-resistive element, magneto-resistive head and magnetic disk device using the same