JP2543207Y2 - 複合線材 - Google Patents

複合線材

Info

Publication number
JP2543207Y2
JP2543207Y2 JP1995003064U JP306495U JP2543207Y2 JP 2543207 Y2 JP2543207 Y2 JP 2543207Y2 JP 1995003064 U JP1995003064 U JP 1995003064U JP 306495 U JP306495 U JP 306495U JP 2543207 Y2 JP2543207 Y2 JP 2543207Y2
Authority
JP
Japan
Prior art keywords
lead
battery
composite wire
die
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1995003064U
Other languages
English (en)
Other versions
JPH08910U (ja
Inventor
リチャード、ジェー、ブランヤー
チャールズ、エル、マシューズ
Original Assignee
リチャード、ジェー、ブランヤー
チャールズ、エル、マシューズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/763,851 external-priority patent/US4658623A/en
Application filed by リチャード、ジェー、ブランヤー, チャールズ、エル、マシューズ filed Critical リチャード、ジェー、ブランヤー
Publication of JPH08910U publication Critical patent/JPH08910U/ja
Application granted granted Critical
Publication of JP2543207Y2 publication Critical patent/JP2543207Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Description

【考案の詳細な説明】
【0001】
【産業上の利用分野】本考案は、押出し加工できる防蝕
用金属、例えば鉛で被覆された金属線や繊維状の芯材よ
りなる切れ目のない複合線材に係わり、特に、電極用の
グリッド等を構成するための小径の複合線材に関する。
【0002】
【従来の技術】従来、電池の電極は、一般に金属を主材
料とし、これに活性材を層状に付着させたものである。
ここに、最も広く使用されている充電可能の電池は、鉛
と酸を使用した鉛電池であり、この鉛電池の電極グリッ
ドは、通常、酸化鉛より成る活性材で覆われている。
【0003】この種の鉛電池は、比較的重く、単位重量
当りの放電エネルギーが小さい。このように、鉛電池が
重いのは、極板のグリッド及び活性材料と、その電池の
コネクタやバスバーに多量の鉛を使用しているからであ
る。
【0004】これを以下に説明する。
【0005】極板は、種々の理由から厚くせざるを得な
い。例えば、前記活性材を、糊状となし、これを極板の
グリッドに塗りつけて硬化させることが通常行われてい
るが、この糊状の活性材は、それ自体の接着力は強いが
極板のグリッドに対する接着力が弱く、特に充放電をく
り返えした時に剥離し易い。この特性のために、極板の
グリッドが活性材を充分保持し得るように、その極板の
グリッドに余裕を持たせる必要がある。その上、極板自
体が比較的破損し易いので、電極としての機能を発揮す
るに必要な重量より頑丈に、重くしなければならないか
らである。
【0006】従来、鉛電池の極板のグリッドは、一般
に、鉛を溶かして所要の形状に鋳造するか、又は鉛板か
ら機械強度の大きいグリッドにするという方法によって
作られ、このようにして作られたグリッドが電極に組み
立てられる。
【0007】ここに、電極は、その製造、取扱及び電池
への組込みを行なう際に多くの機械的な応力を受ける。
電池の中に組み込まれた後は、多くの誘発される応力を
受ける。
【0008】製造時に受ける応力は、主として活性材を
糊状にして極板のグリッドに付け、このグリッドの中に
塗り込む糊付段階におけるものである。この糊状の活性
材は、重く、比較的堅く(すなわち可塑性がほとんどな
く)、この糊状の活性材を極板に付け、このグリッドの
中に塗り込める時に、グリッドを曲げたり、引き伸ばし
たり、引裂いたりし易い。このようにグリッドが変形す
ると、このグリッドの各所に応力が生じ、この応力の生
じた部分が真先に腐蝕され、続いてこの腐蝕が急速に進
行する。
【0009】これと同じ理由で、展延した鉛板で作った
グリッドは、鋳造したグリッドよりも軽いという長所を
有するものの、応力腐蝕が極めて進行し易い。その理由
は、その鉛板の打ち伸ばされた部分がそれぞれ応力点に
なっているからである。
【0010】また、前記誘発される応力は、電池に充放
電をくり返えしているうちに生ずる電極の膨張収縮、活
性材を支持している導電性部材の活性材の重量によるた
わみ、その電池が自動車に使用される場合には、車体へ
の衝撃、熱履歴、振動等によって生ずる。
【0011】前記機械的応力及び誘発される応力が電極
を構成している材料の引張強度又は剪断強度を越えた時
に、電極は、機械的な損傷を受ける。このような電極の
前記応力による機械的損傷の過早発生を防ぐためには、
その電極の厚さを応力に耐え得る厚さにする必要があ
る。
【0012】このため、グリッドの鉛を前記応力に耐え
得るように厚くしなければならないので、従来のグリッ
ドの断面積は、通電に実際に必要な寸法よりも大きくす
る必要があったのであり、グリッドが厚い電池は比較的
重く、電池の単位重量当りの放電エネルギーが小さく、
材料の利用率が悪いのが現状であった。
【0013】一方、電池の容量を増すためには、極板の
グリッドを厚くするだけでなく、電極に付ける活性材の
層を厚くしなければならない。この活性材の層を厚くす
る必要があるのは、一般論として、活性材の層を厚くす
る程、電池の電気的エネルギーを貯え得る能力が増すか
らである。
【0014】活性材の容積(及び重量)を増し、電池の
ケース、帯状の接続線材、支柱及び極板のグリッドのバ
スバーの重量をほぼ一定に抑えれば、電池の単位重量当
りの活性材の利用率は良くなるので、その電池の単位重
量当りの放電エネルギーは増加する。しかしながら、従
来の鉛電池の活性材利用率は、ほとんどの場合、電池重
量の約50乃至55%にすぎない。
【0015】活性材の層を厚くするためには、極板のグ
リッドを、厚くした活性材を充分支え得るように強くし
なければならない。高純度の鉛でグリッドを作る場合
は、そのグリッドの厚さを、電気的機能上必要な厚さよ
り厚くして、上述の機械的応力及び誘発される応力に耐
え得るようにしなければならない。
【0016】活性材の厚さには限界がある。その限界の
ひとつの要素は、活性材の重量であり、他の要素は、そ
の活性材の電気的特性である。陽極板の活性材は半導体
であり、その内部抵抗のために電気を通し得る距離は比
較的短い。従って活性材の厚さは、その活性材が効率よ
く電気を通し得る距離が限界となる。この活性材の特性
が、陽極板にバスバーを設けなければならないことの一
つの理由である。このバスバーは、前記活性材に生じた
電流をその活性材の外に導く作用をする。
【0017】また、活性材層の厚さは、極板に付けられ
た活性材が充放電を繰り返えしているうちに活性度が低
下するため、及び活性材の引張強度が小さいために限定
される。これらの特性のために、上述の機械的応力によ
って、極板のグリッドから活性材が砕けて過早剥離す
る。活性材の電池の電解液への浮遊による電池の寿命の
縮まりを防止する対策をとれば、それに伴って電池が更
に重くなる。前記活性材の電解液中への浮遊を防ぐため
には、電極に特殊なガラスで作った押圧パッドを設け、
このパッドで活性材を極板のグリッドに押し付け、これ
により電池内部に短絡回路が形成されるのを防ぐことが
挙げられるが、このために、電池は容量が増さずに重量
が増加する。
【0018】
【考案が解決しようとする課題】前記各要因のために、
従来の殆どの電池は、耐久性と容量と単位重量当りの放
電エネルギーとが均衡を保ち、用途に応じてこれらの特
性の何れかが最適になるように作られている。例えば、
電池の重量が最重要特性である場合には、電極の活性材
層を実用上支障のない範囲内で最も薄くし、それに応じ
て極板のグリッドも極力薄くすることが行われている。
電池の活性材層を薄くし、極板のグリッドを軽量化すれ
ば、製造費がかさみ、電池の寿命が縮まり、電池の容量
が低下するので、その程度を勘案して電池の軽量化の程
度が決められる。
【0019】また、鉛電池の重量、容積及び容量につい
て見れば、これらの特性上、充電式のフラッシュライト
用電池クラスの電池は、「D級」「C級」等の電池にす
るのが困難なために「AAA級」まで下げたり、より小
型の特殊用途の電池にせざるを得ない。
【0020】鉛電池の極板を渦巻形構造にすれば「BC
級」電池を「D級」電池にすることは容易である。この
「BC級」電池も、「D級」電池も、放電電流が大き
く、極板が鉛であり、この極板のグリッドは、高純度の
平らな鉛板をダイスで絞り、内側にきつく巻き、間隙の
少ない渦巻形にして、丸い電池のケ―スの中に収めたも
のである。
【0021】この渦巻形のグリッドを用いれば、極板の
表面積が広くなり、従来の電池のように小さいグリッド
を何箇も平行につなぐ必要がなく、従って軽量化し、製
造コストを下げ得るが、亀裂があれば酸によって急速に
腐蝕されてしまう。
【0022】しかしながら、「D級」より小さい電池は
市販されていない。それは、この種の電池に使用される
グリッドは柔く、薄いもの(約1.016mm)でも細
い電池の中に充分に収め得るように渦巻形に巻くことが
できないからである。このサイズの電池のグリッドは、
強度の最も大きい鉛でも耐え得ない程、強く湾曲させな
ければならないので、亀裂や応力点ができ、このような
亀裂は電池の中の酸により急速に腐蝕され、従ってグリ
ッドが急速に腐蝕されてしまう。
【0023】本考案は上記問題点に鑑み、引張強度の大
きい繊維状の材料、光学ガラス繊維又は電気伝導性の良
い金属線等の芯材を押出加工可能の防蝕用金属、例えば
鉛、亜鉛又はニッケル等で被覆して、例えば電池のグリ
ッドを構成するために最適な複合線材を提供し、この種
のグリッドの重量の低下及び強度の強化、更には屈曲性
の良さを確保することを目的とし、さらに、前記複合材
料を複数個束ねて使用することによって、例えば高電流
のスローブローフューズ材料として使用することができ
る複合線材を提供することを目的とする。
【0024】
【課題を解決するための手段】上記目的を達成するた
め、本考案による複合線材は、繊維状材料からなる芯材
と、前記芯材にほぼ均一の厚さで被覆され、接合された
押出し成形可能な防蝕用金属の被覆と、を備えた電気導
電性の複合線材であって、前記複合線材は約0.7mm
よりも小さな直径を有することを特徴とする。そして、
この複合線材は、芯材を押出しダイス内に供給する供給
工程と、この芯材の供給と同時に防蝕用金属を押出して
該芯材にほぼ均一の厚さの該金属による被覆を接合形成
する押出し工程とにより製造することができる。また、
前記押出し工程によって被覆させた鉛の微細粒の大きさ
が、ほぼ0.25×10−6インチ(0.635×10
−6cm)であることを特徴としている。さらに、前記
被覆は、この被覆全てに実質的に均一な微細粒組織を有
することを特徴としている。また、前記被覆は、硫酸に
よる腐食をほぼ完全に防止するための十分に小さい微細
粒組織を有することを特徴としている。また、前記金属
は、鉛であることを特徴としている。また、本発明によ
る複合線材は、内壁と内部に配置されたピストンとを有
する圧縮室内に金属を供給する工程と、前記ピストンを
移動して押出圧を形成し、前記金属を圧縮室から押出し
ダイス内に圧縮する工程と、前記押出圧より低い圧力で
圧縮室内の金属の一部をピストンの開口を介してピスト
ンと圧縮室の内壁とにより形成された環状領域に注入
し、これにより圧縮室の内壁に沿ってピストンをシール
すると共に金属の圧縮の間にピストンを通過した金属の
漏れを防止する工程とにより製造することができる。
【0025】また、複合線材は、芯材と、押出し加工可
能な防蝕用金属の均一な薄い被覆よりなり、この被覆
は、実質的に均一な微細粒組織を有していることを特徴
としている。
【0026】
【作用】上記のように構成した本考案によれば、例えば
電池のグリッドを、引張強度の大きい繊維状の材料、光
学ガラス繊維又は電気伝導性の良い金属線等の芯材を押
出加工可能の防蝕用金属、例えば鉛、亜鉛又はニッケル
等で被覆した複合線材で構成することができ、これによ
って、この種のグリッドの軽量化、強度の強化及び屈曲
性の良さを確保することができる。また、前記複合線材
を使用して、軽量で強度的に強く、しかも屈曲性が良い
複合ケーブルを構成することができる。
【0027】
【実施例】以下、本考案の実施例を図面を参照して説明
する。
【0028】鉛球10などの純粋な押出加工が可能の防
蝕用金属が振動型フィーダ12の中に装入され、シュー
トまたは導管14を通して、チャンバ16の中に入る。
このチャンバ16は、プランジャ22を通る孔17とス
ライダ21の上面19とから成る。
【0029】前記シュート14の中の鉛球10は、熱電
対20によって制御される予熱コイル18によって所定
温度まで加熱される。プランジャ22は、ピストンロッ
ド26を介して往復動フィードシリンダ24に連結さ
れ、最初、その後退位置にある時は、複数の加熱された
鉛球10がチャンバ16の中に落下する。
【0030】フィードシリンダ24を作動させると、プ
ランジャ22が往復動して、チャンバ16の内部に保持
された鉛球10をスライダ21の上面19に沿って圧縮
室30の上端の孔、即ちアパチュア28の上に移動させ
る。フィードシリンダ24は、空気導入ライン32と空
気排出ライン34とによって空気作動される。またシリ
ンダ24は油圧作動され、あるいはソレノイドに接続さ
れることもできる。
【0031】プランジャ22が破線36で示す位置に達
した時、プランジャ22の端部38がリミットスイッチ
40と接触して、プランジャ22を停止させ、その進行
方向を逆転させ、これを初期位置に戻す。プランジャ2
2が破線36の位置にある間にチャンバ16が圧縮室3
0の上端のアパチュア28の上に配置されて、チャンバ
16中の鉛球をアパチュア28を通して圧縮室30の中
に落下させる。
【0032】プランジャ22がその初期位置に戻ると
き、このプランジャ22の角部42がリミットスイッチ
44と接触して、プランジャ22の運動を停め、これを
次の行程で逆転させる。
【0033】圧縮室30の中において、鉛球10(また
はその他の押出可能の防蝕用金属)が熱電対49の制御
のもとに、加熱コイル48から圧縮室30の壁体46に
加えられる熱によって加熱される。この金属が所定温度
に加熱された時、油圧シリンダ50を作動させ、ピスト
ン52をその初期位置からアパチュア28を通して圧縮
室30の中まで下降させ、圧縮室30から前記鉛球10
をアパチュア、即ち孔54を通して押出し、図3におい
て更に詳細に示すように、ダイス保持具、即ちダイホル
ダ62によって保持された入口ダイス58と出口ダイス
60との間のスペース56の中に押込む。ダイホルダ6
2は、圧縮室30の壁体46の中のネジ孔121の中に
ネジ込まれている。
【0034】油圧シリンダ50は、入口ライン64と出
口ライン66とによって発生される油圧によって作動さ
れる。これらのライン64と66は比較制御弁68と圧
力ゲージ70とを備える。圧油はタンク72からポンプ
74によって、冷却ラジエータ76を通して比例制御弁
68まで送られる。
【0035】ピストン52が図2に示すように、破線7
8で示す位置に達した時、フランジ即ちツバ80がリミ
ットスイッチ82に接触しピストン52を停止させ、そ
の行程を逆転させ、これをその初期位置に戻す。ピスト
ン52がその初期位置に達した時、ツバ80がリミット
スイッチ84と接触し、ピストン52の行程を停止さ
せ、次の行程に逆転させる。
【0036】圧縮室30の内部のピストン50による鉛
球10の圧縮で熱が発生する。熱電対49が圧縮室30
の内部の温度を検知し、加熱コイル48により圧縮室3
0の壁体46の加熱を調整する。
【0037】芯材86は、“Eガラス”または“Cガラ
ス”型のガラス繊維または光学ガラス繊維、炭素繊維、
合成繊維その他の適当な繊維、あるいは銅またはアルミ
ニウムなどの高導電性金属の細線とすることができ、こ
の芯材86は、図1および図2において符号90で示す
ような一定張力モータと制御組立体によって芯材リール
88から引出され、その際に所定張力に保持される。芯
材86がリール88から引出されるに従って、リール8
8の周囲のシールド92が芯材86のもつれを防止し、
またリール88の近くで浮遊する物の付着を防ぐ。
【0038】芯材86は、定心リング94を通してリー
ル88から引出され、またそのもつれを防止するために
ばねテンショナ96によって引張り張力が加えられる。
ローラ98が芯材86を入口ダイス58と出口ダイス6
0に向かって案内し、そこで金属をもって被覆される細
い複合ワイヤ100を形成する。ワイヤ100がダイホ
ルダ62から出る時、このワイヤ100は、ローラ10
2に掛け回わされ、このローラ102から下方に浮遊オ
モリ104に掛け回わされ、次にローラ106に戻さ
れ、このようにしてモータ90と108の始動から停止
まで一定張力が保持される。
【0039】参照数字100で示す“ワイヤ”とは、繊
維材料であれ、または高導電性ワイヤであれ、芯材86
を、鉛、亜鉛、またはニッケルなどの伸張性を有する防
蝕用金属で被覆して得られる複合ワイヤ即ち複合線材を
指す。次にローラ110がワイヤ100を横送り手段1
12に案内する。ワイヤ100がローラ110を通る
時、比例速度エンコーダ114がこの速度を測定し、横
送り手段112およびモータ90,108と協働してワ
イヤ100を巻取スプール116上に巻取る。スプール
116上のワイヤ100の均等な巻取りを保証するため
横送り手段112が横送りバー118に沿って前後に運
動する。
【0040】今図3と図4について述べれば、入口ダイ
ス58と出口ダイス60は、ダイス分離具即ちセパレー
タ120の内部にスペーサ・ワッシャ122aと122
bとによって保持されている。セパレータ120は、ダ
イホルダ62のキャビティ65の内部に保持され、ダイ
ス保持具即ちダイホルダ62の中のネジ123の中から
プラグ124を締付けることによって圧縮力が加えられ
る。
【0041】入口ダイス58はフランジ59を備え、出
口ダイス60はフランジ61を備え、これらのフランジ
59と61がダイセパレータ120の両端面と夫々当接
しているので、ダイセパレータ120のキャビティ65
の中においてダイス間隔を保持する。ダイホルダ62
は、アパチュア126を備え、このアパチュア126
は、ダイセパレータ120、入口ダイス58、出口ダイ
ス60およびスペーサ・ワッシャ122a,122bが
ダイホルダ62の中に組込まれる時、ダイセパレータ1
20のアパチュア128と整列させられる。
【0042】ダイホルダ62がネジ119によって圧縮
シリンダ30の壁体46のネジ付きアパチュア121の
中にねじ込まれる際に、アパチュア126は圧縮シリン
ダ30の底部のアパチュア54とぴったり対向するよう
な寸法を有する。
【0043】またダイホルダ62は、芯材86を通すた
めのアパチュア130を備えている。入口ダイス58
は、そのテーパ134の頂点にアパチュア132を備え
ている。ピストン52によって、鉛球10は、圧縮室3
0からアパチュア54,126および128を挿通さ
れ、入口ダイス58と出口ダイス60の中間スペース5
6の中に入る。
【0044】出口ダイス60は、その円錐形テーパ13
8の頂点に出口アパチュア136を備えている。入口ダ
イス58のテーパ134は、芯材86の運動方向に沿っ
て先細っている。出口ダイス60のテーパ138は、芯
材86の運動方向と逆方向に沿って先細っているが、芯
材86の運動と同一方向に先細らせることもでき、或い
は全くテーパを付けないこともできる。しかし芯材86
の運動方向と逆方向に沿って出口ダイス60にテーパを
付けることが好ましい。なぜならば、他の形状でも低い
押出圧を使用することはできるが、複合ワイヤ100中
の芯材86の寿命と同心性が損なわれるからである。更
に、出口ダイス60が芯材86の運動方向と逆方向に先
細っていなければ、スペース56の内部の鉛球10によ
って出口ダイス60に加えられる圧力が増大するが故
に、保持プラグ124をネジ山123の中に、ワッシャ
122および入口ダイス58と出口ダイス60のそれぞ
れのフランジ59と61に対して、より強くねじ込まれ
なければならない。
【0045】また保持プラグ124は、ワイヤ100を
通すためのアパチュア140を備えている。
【0046】図11と図12について述べれば、図3と
図4のダイス組立体の好ましい変更態様を示す。この場
合、各成分はできる限り、図3と図4の対応の成分の参
照数字および名称を与えている。さらに詳しく述べれ
ば、入口ダイス58′と出口ダイス60′は、セパレー
タ120′の内部にバックアップ・ワッシャ122a′
と122b′とによって保持され、また保持プラグ12
4′をネジ山123′に沿ってダイホルダ62′のキャ
ビティ65′の中に締付けることによって圧縮力が加え
られる。
【0047】保持プラグ124′は、ダイホルダ62′
のキャビティ65′の中にねじ込まれるためのネジ山1
25′を備えているから、このプラグ62′は、端面6
3′に対して軽度のカント(傾斜)を有し、その結果、
ダイセパレータ120′の内部において出口ダイス6
0′のずれ、即ちスキューを生じる場合がある。このよ
うなスキューを防止するため、凸面ワッシャ67′と凹
面ワッシャ69′とを有するスラストワッシャ組立体を
保持プラグ124′とバックアップ・ワッシャ122
a′との間に配置する。これらのワッシャ67′と6
9′の凹面と凸面の相互作用が、バックアップ・ワッシ
ャ122a′に対する保持プラグ124′の締付けから
生じるスキューを効果的に防止することができる。
【0048】ダイホルダ62′は、圧縮シリンダ30′
の底部のアパチュア54(図1及び図2参照)にぴった
りと適合する寸法のアパチュア126′を有する。ダイ
セパレータ120′は、各端部のフランジ127a′,
127b′と、これより小径の中心部129′とを有
し、フランジ127a′と127b′の直径は、ダイセ
パレータ120′を受けるダイホルダ62′のキャビテ
ィ65′の内径と略同等である。
【0049】ダイセパレータ120′のフランジ部12
7a′,127b′と小径の中心部129′との組合わ
せにより、ダイセパレータ120′の中心部129′と
ダイホルダ62′のキャビティ65′の内壁面との間に
スペース131′が残される。このスペ―ス131′
は、アパチュア135a′と135b′によってセパレ
ータ120′のスペース56′と連通している。
【0050】このスペース56′の内部の圧下物質の存
在によって入口ダイス58′と出口ダイス60′に加え
られる圧力の故に、これらのダイス58′と60′上に
は、図3と図4に示すフランジ59と60のようなフラ
ンジを設ける必要がない。過渡期中にダイセパレータ1
20′の中のスペース56′の内部にダイス58′と6
0′を保持し、またこれら対するの軸方向整列を保証す
るため、これらのダイスダイス58′と60′の直径は
ダイセパレータ120′の内部56′の内壁の直径より
約0.0127mm程大であって、これらのダイス5
8′と60′は、熱、油および油圧プレスを用いてセパ
レータ120′の内部にプレスばめされる。
【0051】またダイホルダ62′は、芯材86(図1
及び図2参照)を通すためのアパチュア130′を備え
ている。入口ダイス58′は、そのテーパー134′の
頂点にアパチュア132′を備えている。出口ダイス6
0′は、その円錐形テーパ138′の頂点に出口アパチ
ュア136′を備えている。また保持プラグ124′
は、ワイヤ100を通すためのアパチュア140′を備
えている。
【0052】図11と図12に図示の実施態様は、芯材
86がスペース56を通過する際にこれに加えられる圧
力があらゆる方向において等しいことを特徴としてい
る。図3と図4に図示の装置をもって小直径の複合ワイ
ヤを製造する場合、鉛がアパチュア126と128を通
して押込まれる際に芯材86に対して上から加えられる
差圧の結果、芯材86は、スペース56の内部において
出口ダイス60のアパチュア136に対して定心状態に
止まることができない。
【0053】このような差圧が芯材86を下方に押し、
芯材86はもはや出口ダイス60のアパチュア136の
中心部に入ることができず、芯材86が複合ワイヤ10
0内部において偏心させられる。またこの下向き差圧は
ダイホルダ62の内部の部品の変形を生じるのに十分で
ある。
【0054】高い押出圧は、高い生産速度によって与え
られる節約の結果である。生産効率を最大限に成し、ま
た圧縮室30に再充填する必要を減少させるため、大直
径の圧縮室30(約15.875mm)とピストン52
が使用される。
【0055】小直径の圧縮室30とピストン52は、再
充填のために装置を頻繁に停止させることを必要とす
る。しかし、0.245mmのガラス芯材を含む0.3
81mm直径の複合ワイヤを製造する際に、大直径の圧
縮室30とピストン52は、断面減少率を3100:1
を超えさせる。非常に長く、また小直径の圧縮室30を
使用すれば、再装填回数が少なくなりまた断面減少率が
低下するが、ピストン52と圧縮室30との整列の問題
および長いピストン52における合成の欠陥の問題の故
に好ましくない。
【0056】このような高い押出圧は、押出圧が断面減
少率の一次関数ではなく、従って押出圧が断面減少率の
比例増大よりも高い割合で増大するという数学的事実の
結果である。高い押出圧は種々の設計上の問題を生じる
が、次のようにしてこれらの問題が解決される。
【0057】例えば、断面減少率が250:1を超える
場合、押出圧が非常に高くなり、圧縮室30の壁体46
が高強度鋼で作られていてもその形状を保持する能力を
超えてしまう。ピストン52が圧縮室30の中の鉛球1
0を押出す際にこのような高い押出圧が生じると、実際
に圧縮室30の壁体46を外側に湾曲させ、鉛球10を
ピストン52の周囲から脱出させて、下記に述べるよう
な漏れに伴う諸問題を生じる。特にピストン52が圧縮
室30の大体半分まで下降したときに、この圧縮室30
の壁体46の湾曲が顕著となる。
【0058】このような壁体46の湾曲を防止するた
め、圧縮室30の壁体46として複式同心シリンダ(図
示されず)が使用される。好ましい実施態様において
は、4本のシリンダを使用し、各シリンダの外径が隣接
の包囲シリンダの内径より約0.0254mm程大と
し、これらのシリンダを入子状にプレスばめして圧縮室
30の壁体46を形成する。
【0059】このように極度に高い押出圧の損失を最小
限に成し、スペース56の中において所望圧を得るため
に、より高い圧力を使用することを避けるように、出口
ダイス60が圧縮室30の直下に配置され、その結果と
してアパチュア126と128を通して差圧を生じ、ま
たスペース56の中において芯材86の下向きの湾曲が
生じる。所要の押出圧を最小限にすると共にこのような
差圧を最小限にするため、図11に示す好ましい構造が
使用される。
【0060】出口ダイス60′が圧縮室30の直下に配
置されるが、金属は相互に180°の方向からスペース
56′の中に導入され、これによって芯材86に加えら
れる圧力を平衡させる。金属材料は、ピストン52によ
って圧縮室30からアパチュア54と126′を通って
押出されスペース131′に入り、ダイセパレータ12
0′の中心部129′の周囲に沿ってアパチュア135
a′と135b′とを通り入口ダイス58′と出口ダイ
ス60′との間のスペース56′に入る。
【0061】ダイセパレータ129′の中央部の周囲に
一定間隔に配置される限り、また圧縮室30の底部のア
パチュア54の直下に配置されない限り、追加アパチュ
アを備えることができる。図11と図12に示す実施態
様を使用した場合、複合ワイヤ100の外径に対する芯
材86の同心率は±5%の範囲内に保持することができ
る。
【0062】図5にピストン52の拡大図を示す。ピス
トン52は、その底部にベベル面142を備えている。
またピストン52は、環状の平坦な突出部、即ちランド
144,146と、横方向貫通孔148とを備えてい
る。縦孔150が横孔148と連通している。ベベル面
142、ランド144,146、横孔148および縦孔
150が協働してピストン52の圧縮行程中にピストン
52を圧縮室30の内壁面152(図1)に沿って密封
させ、また圧縮室30の内部にピストン52を定心させ
る。高圧金属が縦孔150を通して横孔148に入り、
次にランド144,146と圧縮室30の内壁面152
とによって形成されたスペースの中に押込まれて、ピス
トン52を内壁面152に圧着密封させ、またピストン
52を定心させる。
【0063】このような密封構造は、装置の高押出圧に
よって必要とされる。例えば、ピストン52と圧縮室3
0の内壁面152との間隔は0.0127mmまで減少
させることができるが、この直径方向の間隙は、圧縮中
に押出される耐蝕金属をピストン52に沿って過度に漏
れさせるのに十分であり、これに伴なって有効押出圧の
損失を生じる。この装置を用いて製造される複合ワイヤ
が小直径であるが故に、もし前記のような密封構造が使
用されなければ、芯材86に使用される量の10倍もの
金属がピストン52に沿って漏れる可能性がある。
【0064】このような漏れの結果として、より多量の
金属が使用され(漏れ分は回収できるとしても)、また
従って圧縮室30の再装填をより頻繁に必要とし、生産
性を低下させることの他に、このような漏れは一般に非
対称的であって、ピストン52を圧縮室30の中で偏心
させて内側面152と接触させる。
【0065】このような接触の結果、壁体46の直接的
な傷を生じ、より大きな漏れと押出圧の損失とを生じ
る。これ故に、極度に長い小径の圧縮室30は、その頻
繁な再装填の必要を解決するためには役に立たない。こ
のような構造に伴う整列の問題と剛性の問題が圧縮室中
のピストン52の定心の問題に掛け合わされて、ピスト
ン52に沿った金属の漏れを激化する。漏れ量の増大と
押出圧の低下は、前記の損失のほかに最大生産率の低下
を生じる。
【0066】そこで、図5に図示の構造は、押出される
防蝕用金属をピストン52のランド144,146と圧
縮室30の内壁面152とによって形成されたスペース
の中に流入させる。このスペースの中に進入した金属
は、環状ランド144を超えて押出す圧力を有しないの
で、ピストン52に沿った漏れを確実に防止することが
できる。
【0067】さらに、前記のスペースの中に押出される
金属は、押出圧に依存して約351〜703Kg/cm
2 に加圧される。一般的に、このスペース中の金属圧は
圧縮室30の内部の圧力の約1/4〜1/3の範囲であ
る。この圧力がピストン52とこれを包囲する内壁面1
52との間に均等に加えられて、ピストン52を圧縮室
30の中心に定心させ、また、ピストン52と内壁面1
52との接触を防止することができる。
【0068】また、同時にこのスペースの中の金属は、
バビット軸受に類似した低摩擦軸受面に等しい効果を生
じ、ピストンドラッグを低下させ、押出しのために、よ
り多くの油圧を残す。このように構成されたシールを有
するピストン52を数ヶ月間テストした。数百万サイク
ルののち、摩耗または漏れの徴候は現われず、ピストン
52と圧縮室30の壁体46は、激しい使用後にもスリ
傷がなく、防蝕用金属の全量が芯材86に使用されてい
た。
【0069】長い小直径の圧縮室30を使用するなら
ば、効率的な生産率を保証するために必要とされる2,
812〜3,515Kg/cm2 の押出圧を発生しない
点まで断面縮小率を低下させるが故に、ピストン52の
密封構造の必要が避けられるように思われる。
【0070】事実、長い小直径の圧縮室30を使用すれ
ば、シールなしの真っ直ぐなピストン52の使用を可能
とする程度の押出圧を生じる。しかしながら、このよう
な構造に伴なう前記の整列性の問題、剛性の問題および
定心性の問題は、この構造の有効性を制限する重大な制
限要因となる。
【0071】油圧シリンダ50は、プラットフォーム1
54上に載置され、このプラットフォーム154は、基
板158に立設された円柱156によって支持され、ボ
ルト160と162によって定置保持されている。スラ
イダ21が円柱156に取付けられ、フィードシリンダ
24とそのピストンロッド26およびプランジャ22の
支持体としての役割を果たす。
【0072】圧縮室30は、テーブル164によって支
持され、このテーブル164は、半球形状突起166を
備え、この突起166がテーブル164のキャビティ1
68の内部に受けられている。ボルト170が基板15
8の穴172とテーブル164の孔174とを通して上
方に突出し、半球形突起166のネジ穴176の中に受
けられている。
【0073】キャビティ168の内径は、半球形突起1
66の半径より少しく大に設定されているから、圧縮室
30がボルト170上にねじ込まれるとき、キャビティ
168と半球形突起166とが協働して圧縮室30をテ
ーブル164上に定心させる。故に、プランジャ22が
図1において破線36で示す延長位置にある時、アパチ
ュア28は孔17と整列され、またプランジャ22がそ
の初期位置まで戻った時にアパチュア28はピストン5
2と軸方向に整列するようなされている。
【0074】今図2について述べれば、本装置は、制御
盤178から適当な回路網によって制御される。制御盤
178は、入力ライン32と出力ライン34によってフ
ィードシリンダ24に接続されている。比例制御弁68
が入力ライン68i と出力ライン68o とによって制御
盤178に接続され、これによって油圧シリンダ50を
制御する。リミットスイッチ40,44,82,84お
よびモータ90,108が、それぞれ入力ラインおよび
出力ライン40i と40o 、44i と44o 、82i と
82o 、84i と84o および90i と90o 、108
i と108o によって、制御盤178に接続されてい
る。
【0075】制御盤178に対する入力は、熱電対2
0,49から、それぞれ入力ライン20i と49i から
受けられ、また予熱コイル18と加熱コイル48がそれ
ぞれ入力ラインおよび出力ライン18i と18O および
48i と480 を通して、この入力に基いて制御され
る。また比例速度エンコーダ114からライン114i
を通して入力が受けられる。このようにして、本装置の
作動前および/または作動中にすべての作動パラメータ
が設定されまた制御される。
【0076】本実施例における連続的複合ワイヤの重要
な特徴は、バッテリの酸による腐蝕に対する防蝕用、ま
たは光通信ファイバケーブルの場合には、下記のように
ケーブルの使用される苛酷な環境における防蝕用にあ
る。例えば、原則として鉛球の粒径が小である程、その
防蝕用が大である。大粒径そのものが腐食を生じるので
はなく、腐食が生じた時に粒界が浸食されるが、小粒径
は粒界の浸食の感受性を低下させる。本装置は、少くと
も部分的に小粒径を生じるが故に高防蝕用を有する鉛球
の押出しをもたらす。
【0077】鉛球が鋳造され次に固化された時の平均粒
径は約6.35mmである。本装置を使用すれば、鉛球
の平均粒径は電子走査顕微鏡で測定して約6.35×1
6mmである。下記の実施例によって、さらに詳細に
説明する。
【0078】実施例 I 実施例Iに使用される装置は、約0.013″のアパチ
ュアを有する入口ダイスを具備する。出口ダイスのアパ
チュアは、直径が約0.020″であり、入口ダイスの
末端と出口ダイスの入口との間隔は約0.006″に設
定された。
【0079】鉛球を振動型フィーダの中に装入し、予熱
用導管の中に振動作用で送り、次に圧縮室中に送入し、
この圧縮室の中で鉛球をさらに加熱して温度を約232
℃に安定させる。モータ/制御組立体がファイバを一定
張力で引張って、そのもつれを防止しながら、ファイバ
はダイスを通して毎分約30.48mの速度で送られ、
同時に鉛が約2,812Kg/cm2 ±25%の圧力で
押出される。出口ダイスアパチュアの頂点で測定した場
合、鉛温度は約307℃であった。
【0080】この実施例においては、直径約0.508
mmの細い連続的、複合導電ワイヤを製造するための心
線ファイバとして、商標“KEVLAR 49”で市販
されているアラミドファイバを使用した。ファイバ心線
の周囲の鉛被覆(鉛層)の厚さは約0.127mmであ
った。
【0081】実施例 II “Cガラス”として業界公知の市販の化学ガラスを被覆
するため、同様の操作を使用した。2,812〜3,5
15Kg/cm2 ±25%の押出圧において、毎分46
〜91mの生産速度を用いた。鉛被覆ワイヤのファイバ
心線としてこの“Cガラス”が使用した場合、本実施例
で作られた複合ワイヤは、約0.635mmの直径を有
し、鉛被覆の厚さは約0.1524mmである。
【0082】実施例 III 直径0.254mmの市販のCガラスを被覆するために
同様の工程を使用し、外径0.381mmの複合ワイヤ
を得た。約0.381mmのアパチュアを有する出口ダ
イスと共に、直径約0.3048mmのアパチュアの入
口ダイスを使用し、ダイス間のスペースは約0.076
2mmであった。約2,812〜約3,535Kg/c
2 ±25%の押出圧を使用した。
【0083】実施例 IV 直径約0.508mmの24AWG銅線を鉛で被覆する
ために同様の工程を使用し、直径0.7112mmの複
合ワイヤを得た。使用された入口ダイスと出口ダイスの
直径はそれぞれ約0.5334mmおよび約0.711
2mmであって、ダイス間スペ―スは約0.1016m
mであった。約2,109〜約2,812Kg/cm2
±25%の押出圧を使用した。
【0084】実施例 V 直径0.2032mmのアルミニウムワイヤを鉛で被覆
するために同様の工程を使用し、直径0.381mmの
複合ワイヤを得た。使用された入口ダイスと出口ダイス
の直径はそれぞれ約0.254mmと約0.381mm
であって、ダイス間スペースは約0.0762mmであ
った。約2,812〜約3,515Kg/cm2 ±25
%の押出圧を用いた。
【0085】実施例 VI オーエンス・コーニング ファイバガラスから入手され
る直径0.381mmの1本のモノフィラメント光学フ
ァイバを鉛で被覆するために同様の工程を使用し、直径
0.635mmの複合ワイヤを得た。使用された入口ダ
イスと出口ダイスの直径はそれぞれ0.4572mmと
約0.635mmであり、ダイス間スペースは約0.1
27mmであった。約2,109〜約2,812Kg/
cm2 ±25%の押出圧を使用した。
【0086】他の種のファイバを、鉛、亜鉛、ニッケル
などの押出可能な防蝕用金属をも被覆するために同様の
工程を使用することができる。例えば、Keblerフ
ァイバの他のグレードを使用することができ、またニュ
ーヨーク,グレート・レーキ・カーボン・コーポレーシ
ョンから商標“FORTAFIL”で数種のグレードで
製造販売されているカーボン・ファイバ等の材料を使用
することができる。
【0087】また“Eガラス”として知られているヤー
ンなどの他のガラスヤーンを被覆させることができる。
また複合ワイヤの芯材として、銀、金、ニッケルおよび
タンタルなどの高導電性金属も適当である。
【0088】本装置を用い、約4.218Kg/cm2
までの押出圧で、約152.4m/分もの生産率が得ら
れた。複合ワイヤを製造する速度は、出口ダイスのアパ
チュアにおける金属温度によって制限される。この温度
は、芯材上に被覆される金属とその押出圧とによって変
動する。例えば、前記実施例Iに求めた条件の下に、出
口ダイスのアパチュアにおける金属温度は約307℃で
ある。この温度は、鉛の融点327℃より相当に低く、
従って液状鉛の飛散を防止するが、鉛に対して所要の可
塑性を与えるには十分に高い。亜鉛またはニッケルの場
合、それぞれこの箇所における385〜404℃または
1066〜1121℃の温度が必要とされる。
【0089】一般に、高い生産率においては、高い押圧
圧が必要とされ、従って出口ダイスのアパチュアの温度
が高くなる。前記の実施例Iに述べた条件で毎分約15
2m以上の生産率を得るためには、油圧油または商品名
DOWTHERMで市販されている合成冷却液あるい
は類似の液体をもってダイスの周囲区域を冷却し、また
ラジエータに達する入力ラインと出力ラインとを冷却す
る必要がある。
【0090】前記の方法によっては作られたファイバ材
料または高導電性金属からなる心線と鉛被覆層とを有す
る複合ワイヤを通常の織成装置上でスクリムまたはワイ
ヤクロスに織成することができる。
【0091】このようなスクリムまたはクロスは、電気
化学的電池に使用する他、他の多数の用途を有する。例
えば、イオン化放射線および/または電磁放射線を吸収
するためのブランケットまたはラッピングとして使用
し、或いは防音材として使用することができる。
【0092】単位面積当りのスクリム重量、従ってイオ
ン化放射線の吸収能は、織成クロスの単位長さ当りの複
合ワイヤの数と直径によって決定され、これより少ない
程度において芯材の選択によって決定される。勿論、複
合ワイヤから織成されたファブリックは完全遮蔽体を成
すものではないが、放射線を大巾に低減させる。所望の
ように低減率を増大するため、その複数層を使用するこ
ともできる。
【0093】例えば、直径0.3302mmのEガラス
心線を鉛被覆した直径0.508mmのワイヤをもって
織成される大型スクリムまたはブランケットは、センチ
メートル当り4ストランドで織成され、ロール状で供給
される。このブランケットをロールから巻戻し、建物の
内壁を仕上げるためのシートロック材に対して接着する
ことにより、この部屋の有効な遮蔽を成し、X線装置ま
たは放射線治療装置のために安全に使用することができ
る。
【0094】またこのブランケットを同じ目的から、カ
ーテンとして使用し、たとえばレールから吊下げ、引あ
げることができるようにする。
【0095】光学ファイバが芯材として使用される場
合、これによって作られた複合ワイヤは、特に光通信ケ
ーブルにおいて使用される。このような数本の複合ワイ
ヤを図23に示すように、また下記に説明するように、
鉛の外皮をもって被覆する。光通信ケーブルは、多くの
場合、配線溝に沿って敷設され、土中に埋められ、また
は直接に化学腐蝕を受け、あるいは敷設箇所の種々の型
のバクテリヤ産物によって腐蝕されるその他の環境の中
に配置される。このような環境においては、通常の絶縁
保護被覆は劣化するが、鉛またはその他の押出性耐蝕金
属の被覆は劣化されない。
【0096】複合ワイヤの好ましい用途は、図6に示す
ように、酸性鉛電池の電極のグリッド(格子)として使
用するにある。目の粗いスクリム180が適当寸法に切
断され、またグリッドから電流を集電するために純粋
(合金)鉛の支持枠、即ちバックフレーム182が備え
られている。特定の用途のためには、鉛線が交差するフ
ァブリック上の点184において、ワイヤが相互に溶接
されまたは電気メッキされる。
【0097】スクリム180の縁部において、ワイヤは
186で示すように折返えされ、あるいは188に示す
ようにフレーム182を備える。フレーム182はスク
リム180の上に鋳造され、また溶接され、または押出
され、電気特性を有しまたは有しない適当な機械強度を
与える材料から成る。
【0098】また図14に示すように、ファイバ材また
は高導電性金属の芯材を有する複合ワイヤのスクリム
に、高導電性金属芯材を有する複合ワイヤまたは母線か
ら成るフレームを備えることができる。図を明瞭にする
ため、図6に示された電極グリッドの細部は、図14
(乃至図15〜図18)には図示されていない。
【0099】図14は、スクリム195とフレーム19
6とから成るグリッドを示し、フレーム196は2本の
端子197に終わっている。これらの端子197は、電
気的には1体を成す。なぜならば、これらの両方の線は
同一電荷の電流を同一方向に、すなわちバッテリの端子
(図示されず)またはバッテリの他のグリッド(図示さ
れず)に伝達するからである。
【0100】スクリム195を構成する各ワイヤの末端
はフレーム196に対してハンダ接合されている。この
フレーム196は、好ましい実施態様においては銅の芯
材と鉛被覆とを有する比較的太い複合ワイヤ(すなわち
直径0.7112mm)から成る。この構造は、銅の高
導電性と、バッテリ中の酸が母線またはフレーム196
上の鉛被覆のみを“見る”ことから生じる長寿命とを結
合するものである。
【0101】バッテリ重量が主要関心事でない場合、ま
たは高電流が必要とされる場合、あるいは充填サイクル
/放電サイクル中のバッテリの正規加熱を最小限にしな
ければならない場合、スクリム195も、ファイバ芯材
ではなく高導電性芯材を有する複合ワイヤで構成するこ
とができる。用途に従って、図15〜図18に示すよう
な母線とスクリムの数種の構造を使用することができ
る。
【0102】直径0.3302mmのCガラスの上に
0.1524mmの鉛被覆層を押出すことによって作ら
れた複合ワイヤをこのようなスクリム状に織成した場
合、図6の交差点184−184間の距離が約5.08
mmとなるように織成した。
【0103】当業者には明らかなように、若干の用途に
おいては、約25.4mmもの大間隔または約2.54
mmもの小間隔が望ましく、また若干の用途についてグ
リッド強度と導電性を最適化するため、相異なる直径の
鉛被覆ワイヤをスクリム状に織成することができる。例
えば負のグリッドは正のグリッドと異なる作動要件を有
し、相異なるスクリム間隔および鉛被厚さを必要とする
場合がある。
【0104】図6に示すグリッドは、バッテリの正グリ
ッドにも負グリッドにも使用することができるようなさ
れている。正グリッドとして使用される時、スクリム1
80は厚い活性物質層によって被覆されなければならな
い。スクリム180のゆるい織成の故に、この正電極の
製造中に活性物質ペースト190がスクリム180のス
ペース192の中に押込まれる。ペースト190が硬化
された時、スクリム180の格子構造がグリッド上に活
性物質を保持するための骨材として役立ち、その結果、
耐久性と導電性にすぐれた軽量の電極が得られる。
【0105】また下記に述べるテストから、バッテリを
変更し、類似の変更されないバッテリより性能を高める
ことができる。従ってこのようなグリッドから成るバッ
テリの性能特性を保持しながら各グリッドに施用される
活性物質の量を減少させることができ、スペースと重量
とを節約することができる。
【0106】通常の正電極に比較して重量を低下させな
がら正電極の活性物質の耐久性を大と成すため、厚さ約
0.0762mmの鉛被覆を有する直径約0.381m
mの鉛被覆複合ワイヤを小片状に切断し(長さ約2.5
4〜12.7mm)、これを活性物質ペーストの中に均
一に混合することができる。
【0107】図6に図示のように,鉛被覆複合ワイヤの
これらの小片194は、活性物質ペースト190の全体
に分散され、次にこのペースト190をスクリム180
に使用する。スクリム180の鉛被覆複合ワイヤの高い
引張り強さが、コンクリート成形物に鉄筋が強度を与え
るのと同様に、活性物質を保持するのに役立ち、また短
い複合ワイヤ小片194の純粋な鉛被覆が活性物質19
0を通して多数の軽量の超導電路を成す。このようにし
て構成された電極は、活性物質の重量、その半導体特性
および活性物質の剥落を防止するための内部支持体によ
る活性物質の厚さの制限を克服するものである。
【0108】負電極グリッドより活性物質層は十分に強
力であり、また前記鉛被覆ワイヤ小片を必要としない程
度に導電性であるけれども、この場合でも、複合ワイヤ
は負極において有効に使用することができる。この場
合、鉛被覆複合ワイヤを負電極のグリッド要素としてス
クリム状に織成することができる。複合ワイヤの高い引
張り応力とせん断応力およびその軽量の故に、このよう
なグリッドはグリッドの耐久性の顕著な改良と、グリッ
ド重量の大巾な減少とをもたらす。
【0109】上記のようにして構成された複数の正電極
/負電極対を、他の点では通常型のバッテリケースの中
に組込んで、高容量、長寿命および高比エネルギーのバ
ッテリをうることができる。
【0110】鉛被覆複合ワイヤは、いわゆる“バイプレ
ート”バッテリにおいて使用するのに特に適している。
この種のバッテリは、その発生する高電圧(電池当り
2.2Vのオーダ、バッテリ当り40〜150VD
C)、低電流およびその小サイズを特徴とし、通常バッ
テリ程度に小型にすることができる。
【0111】特に重要なことは、バイプレートバッテリ
の各電池がエネルギーを電池の“壁ごし”に次の電池の
中に位置することにある。これによって単一電池中の正
極と負極を並列に結ぶ重い鉛の母線を除去することがで
きる。さらに、バッテリ出力の電流が低く電圧が高いの
で、バッテリの各端に小さい鉛端子を使用することがで
き、これがさらに重量節約をもたらす。
【0112】電池間の電気接続を保持しながら各電池の
電解質を分離するように一連の電池を配置したバイプレ
ート電池を製造することができる。このような電解質分
離は、ポリエチレン、ポリプロピレンまた類似材料から
成るプレート198(図7〜図10参照)によって実施
される。
【0113】このプレート198の横縁200は、バッ
テリケース204の壁体202の中に埋め込まれて電池
206A,206B,206C,206Dを密封してい
る。プレート198の上縁208は、バッテリケース2
04の上板210の中に埋め込まれて、電池206A,
206B,206Cおよび206Dを完全に密封してい
る。
【0114】電池間の導電性は、鉛被覆ワイヤによって
与えられる。この鉛被覆ワイヤは、プレート198をバ
ッテリケース204の壁体202と上板210の中に埋
め込む前に、スクリム212状に織成されプレート19
8の上縁に沿って巻付けられる。スクリム212は、好
ましい形状として、図7および図10に示すように、プ
レート198に対して使用され、或いは図8に示すよう
な他の形で使用することができる。
【0115】図7および図10に示す実施態様において
は、電流は矢印214の方向に(即ちプレート198の
上縁208を超えて)電池206Dから206Cへ流
れ、次に電池206Bから電池206Aに流れる。図8
に示す他の実施態様おいては、電流は矢印216の方向
に(即ちプレート198の横縁200に沿って)1つの
電池から次の電池に流れる。
【0116】いずれの実施態様においても、バッテリケ
ース204の壁体202と上板210に対してプレート
198の横縁200と上縁208を密封するため、これ
らの縁において強いプレスバメ、または密封剤またはそ
の組合わせを使用する必要がある。
【0117】図7と図10に図示の実施態様を使用する
場合、矢印214の方向にプレート198の上縁208
を超えるコンダクタンスを容易にするため、スクリム2
12の中の垂直ワイヤの数を増大する。また図8の実施
態様が使用される場合、矢印216の方向にプレート1
98の横縁200を超えるコンダクタンスを容易にする
ため、スクリム212の中の水平ワイヤの数を増大す
る。
【0118】公知のように、スクリム212を具備した
プレート198は、活性物質ペーストを備えている(図
の明瞭のために図示せず)。各プレート198の正極側
は正極ペーストを備え、負極側は負極ペーストを備え、
またこのペーストはプレート198の横縁200または
上縁208を超えて連続していない。スクリム212A
は正極ペースト層を備え、スクリム212Bは負極ペー
スト層を備えている。活性物質層の厚さとバッテリの使
用目的とに応じて、図7および図10におけるスクリム
212の水平ワイヤの数を減少させ、または水平ワイヤ
を省略することもできる。
【0119】図8に示す実施態様の場合には、スクリム
212の中の垂直ワイヤの数を減少させ、または省略す
ることもできる。この場合、スクリム212は、特定用
途にとって必要とされる耐久度を生じるのに十分な数の
電流方向に対して直角のワイヤを備えるにすぎない。
【0120】各電池206A,206B,206Cおよ
び206Dは電解液即ち電解質(図示されず)によって
満たされ、この電解質は液状またはゲル状とすることが
できる。またこれらの電池は、Cガラスから成るセパレ
ータ218と、電解質を保持するための“スポンジ”と
して作用する完全酸化パッドとを備えている。
【0121】セパレータ218は、実際にスクリム21
2上の活性物質と接触する程度に厚く、活性物質をこの
セパレータとプレート198との間に挟持することによ
って活性物質を固定する機能を果たす。スクリム212
Aと212Dの場合、セパレータ218は、活性物質を
それぞれのセパレータとバッテリケース204の端壁と
の間に固定するのに役立つ。
【0122】バッテリケース204の負極端と正極端に
おける電池206Dと206Aは、それぞれスクリム2
12Bと212Aとを備える。これらのスクリム212
Bと212Aは、その上端においてそれぞれバスバー即
ち母線220と222に終わり、これらの母線はガラ
ス、ポリプロピレンまたはその他のプラスチックまたは
ポリプロピレン中ガラス材の中に密封されている。
【0123】これらの母線220と222は鉛から成
り、好ましくは銅から成り、スクリム212Bと212
Aはそれぞれの母線220と222に対してハンダ付け
または溶接されている。母線220と222はそれぞれ
端子224と226を備えている。バッテリケース20
4の上板210はカバー228を備え、またこのカバー
228は、通常の通気孔(図示されず)を備えることが
できる。
【0124】図13について述べれば、図9と図10の
バイプレートバッテリの他の実施態様が示されている。
この図において、各部分は可能な限り、図9および図1
0において用いたのと同一番号で示されている。
【0125】プレート208′は、バッテリケース20
4′の壁体202′の中に埋め込まれて、電池206
A′,206B′,206C′および206D′を密封
している。各プレート208′の上縁がバッテリケ―ス
204′の上板210′の中に埋め込まれて、電池20
6A′,206B′,206C′および206D′を完
全に密封している。
【0126】スクリム212′は、図7と図8に図示の
ように、プレート198′に対して使用されるが、スク
リム212′のワイヤはプレート198′の横縁20
0′または上縁208′の回りに連続的ではない。電池
間の導電性はコネクタ207′によって与えられ、この
コネクタ207′は、銅またはアルミニウムによって構
成され、これに対してスクリム212′が接続されてい
る。高電流出力を必要としない用途の場合に、追加重量
を節約するため、コネクタ207′を除去し、スクリム
212′は、ワイヤを単にねじって相互にハンダ付け
し、または電気メッキすることができる。
【0127】図13に示す実施態様の場合、コネクタ2
07′は、各電池206A′,206B′,206C′
および206D′の中に含まれる電解質(図示されず)
による化学腐蝕から隔離されているので、コネクタ20
7′を、高導電性金属芯材と酸性電解質の腐食に抵抗す
る鉛被覆とを有する複合ワイヤで構成する必要はない。
コネクタ207′は、上板210′によって電解質から
隔離され、上板210′を構成する材料の中に埋め込ま
れ、または図13に図示のように、シリコーン・ゴム・
インサート209′などの他の材料の中に埋め込むこと
ができる。上板210′とインサート209′は、共に
図9と図10について述べたような各種の他の材料によ
って構成することができる。
【0128】各電池206A′,206B′,206
C′および206D′に電解質を満たし、この電解質は
液状またはゲルとすることができる(スターブド固定化
電解質またはリコンビナント電解質としても知られ
る)。ゲル電解質が使用される時、図13のように構成
されたバッテリは、その電解質が電池から漏出しないの
で、バッテリが振動されまたは逆転される用途について
も好適である。各電池206A′,206B′,206
C′および206D′はそれぞれセパレータ218′を
備え、このセパレータ218′は、各プレート198′
の両側面のスクリム212′と、バッテリケース20
4′の両端のスクリム212A′と212B′とに使用
された活性物質ペースト(図示されず)に接触してい
る。
【0129】スクリム212A′と212B′の上端
は、夫々インサート209′の中に密封された母線22
0′および222′に終わっている。これらの母線22
0′と222′は鉛から成り、あるいは好ましくは銅で
構成することができ、またスクリム212B′と212
A′はそれぞれの母線220′と222′に対してハン
ダ付けまたは溶接されている。
【0130】また各母線220′と222′は、それぞ
れ端子224′と226′とを備えている。バッテリケ
ース204′の上端は、カバー228′を備え、このカ
バー228′は、ゲル電解質が使用される場合には密封
され、或いは通常の通気孔(図示されず)を備えること
ができる。
【0131】而して、18AWG(直径1.016m
m)の銅母線に0.127mmの鉛層を被覆して直径
1.27mmの複合母線を作り、市販のヘビーデューテ
ィ、ゴルフカートサイズ、6ボルト デュープサイクル
バッテリの内部鉛ストラップおよびコネクタの代わり
にこの複合ワイヤを使用した。全重量1.157Kgの
内部鉛ストラップおよびコネクタの代わりに、同等電流
量を有する0.1395Kgの複合母線を使用すれば、
コネクタ重量の約88%の節約となる。このようにして
得られたバッテリは、従来バッテリの性能に対してあら
ゆる点で少なくとも同等の性能特性を有する。さらに、
このようにして構成された母線は通常のストラップとコ
ネクタよりも直径が小さく、同等容量を有する、よりコ
ンパクトなバッテリが可能となる。
【0132】他のヘビーデューティ、ゴルフカートサイ
ズの6ボルト ディープサイクルバッテリのグリッドの
代わりに、図14に示す構造のグリッドを使用した。直
径0.305mmのCガラス芯材の上に厚さ0.102
mmの鉛層を被覆して成る直径0.508mmの複合ワ
イヤからスクリムを織成した。母線クレームは、直径
1.27mmで0.127mm厚さの鉛層を有する鉛/
銅(18AWG)複合ワイヤであった。置き換えられた
69のグリッドの全重量は,活性物質ペーストを除いて
7.35Kgであり、これらの従来グリッドに代わった
本グリッドの全重量は、活性ペースト物質を除いて1.
84AKgであって、約75%のグリッド重量節約を生
じた。
【0133】この変更されたバッテリは、従来バッテリ
と少なくとも同程度の性能を有し、若干の性能特性にお
いては従来バッテリの能力を超えていた。例えば変更バ
ッテリは、同一放電電流において、非変更バッテリより
約25%大なるアンペア時を生じる。バッテリの総重量
は29.25Kgから22.05Kgに低下し、重量節
約は約25%であった。他のテストにおいて、同様に変
更された12ボルトの鉛酸性航空機用バッテリは、同等
の放電率において、約30%の重量減少(それぞれ1
1.25Kgから約7.65Kgのウェットウェイトに
低下)と、より高い全体放電容量とを示している。
【0134】このように、複合被覆ワイヤを電極グリッ
ドとして使用するためにスクリム状に織成することがで
きる。0.203mmの銅ワイヤ芯材を有する直径0.
381mmの鉛被覆ワイヤは、ガラス芯材を有する直径
0.381mmの鉛被覆ワイヤよりも約5.5倍の導電
性を有する。アルミニウムワイヤも芯材として使用する
ことができ、またこの目的から、銀、金、ニッケルおよ
びタンタルなどの他の高導電性金属を使用することがで
きる。
【0135】各芯材金属はそれぞれ利点と欠点を有す
る。例えば鉛−銅は結合に優れているが、アルミニウム
−鉛は結合に比較的劣る。しかしアルミニウム芯材複合
ワイヤは、銅芯材複合ワイヤよりもはるかに軽量であ
り、このことは、軽量が耐久性より重要な用途について
は、アルミニウム芯材複合ワイヤが好ましい構造である
ことを示している。銅芯材の複合ワイヤは、同等の電流
量で直径が小さく、薄いグリッドを製造することができ
るので、よりコンパクトなバッテリが可能となる。銀と
金はすぐれた導体であるが、その価格が非常に高いので
特殊用途に制限される。
【0136】特に重要なことは、ファイバ芯材または高
度に導電性金属の芯材を有する鉛被覆ワイヤから織成さ
れたスクリムは、固いラセン電池状に巻取ることができ
ることであり、これは“AA”サイズの小型の高電流、
再充電可能の鉛−酸バッテリを可能とする。これは打抜
型、ダイカット型またはエキスパンデッド型鉛グリッド
については不可能である。
【0137】数個の“AA”サイズのバッテリを製造
し、10アンペアの放電電流でテストした。これらのグ
リッドを図17に示す。このグリッドは、直径0.30
5mmのCガラス芯材と0.120mmの厚さの鉛被覆
(鉛層)とから成る直径0.508mmの複合ワイヤか
ら織成されたスクリム230から成る。
【0138】このグリッドから電流を引出す複合母線2
32は、直径0.508mmの24AWG銅母線芯材の
上に厚さ0.102mmの鉛被覆を押出し成形した直径
0.711mmの複合ワイヤである。この複合母線23
2は、グリッド230を構成する複合ワイヤの末端23
4に沿って該グリッド230にハンダ付けされている。
母線232は低電流用途のためには除去され、またそれ
ぞれのバッテリ用途について図14〜図18に示すグリ
ッドのいずれかの形状が使用される。
【0139】図19について述べれば、図17に示す構
造の1対のグリッド236を固いラセン状に巻き、その
間にセパレータ238を介在させた状態が示されてい
る。このような電池の他の構造を図20に示す。
【0140】図21は、グリッド236とセパレータ2
38をケーシング240の中に組込むために図19に示
すラセン構造に巻取る前の状態を示す。ケーシング24
0はキャップ242によって密封され、またこれらのケ
ーシング部材240,242はコネクタ244を備えて
いる。活性物質ペーストと電解質は、図面を明瞭にする
ため図19、図20および図21には図示されていな
い。好ましい実施態様においては、バッテリ充電中にガ
スの放出を防止するため、電解質はスターブド固定化電
解質またはリコンビナント・ゲル電解質(懸濁電解質と
しても知られる)である。コネクタは通常母線構造であ
るが、好ましくは前述のように銅またはアルミニウムの
芯材を有する複合ワイヤから成る。
【0141】図19〜図22に示した別個のコネクタ2
44を使用する代りに、グリッド236の煙突部分24
5を捩じってキャップ242を通しコネクタとして使用
することができる。コネクタ244の省略はある程度重
量を節約するが、捩じられた煙突部分の導電能力は、高
導電性金属の芯材を有する複合ワイヤ母線の導電率以下
である。従ってこのような構造は、バッテリの電力発生
能力よりは低重量が主要関心事である用途について好ま
しい。
【0142】それぞれ約2.2ボルトを発生することの
できる図19と図21に示す4個の電池を図22に示し
た通常の9ボルトバッテリのバッテリケースの中に組込
んだ。バッテリケース246はその内部構造を示すため
に鎖線で示され、このバッテリは4個の電池248をコ
ネクタ244によって直列に結線して成る。コネクタ2
44は通常の正極250と負極252とで終わってい
る。
【0143】“D”サイズより小サイズの、通常の9ボ
ルトサイズのバッテリも、図9と図10に示すバイプレ
ート構造の電池で構成することができる。各バッテリケ
ース246は複数の電池を含み、これらの電池は、図7
に図示のプレート198の上縁208に掛回されたスク
リム212と同様のスクリムを図9および図10と同様
に具備している。また図9および図10の母線220,
222と端子224,226と同様の母線および端子が
使用される。
【0144】図23は複合ケーブル254を示すもの
で、この複合ケーブル254は、複合ワイヤ256と鉛
の外皮258とから成る。ワイヤ256は前述のように
鉛被覆262を備えた芯材260から成る。芯材260
は、前述のEガラス、Cガラス、カーボンまたはアラミ
ド・ファイバなどのファイバ材として、あるいはアルミ
ニウムまたは銅などの高導電性金属とすることができ
る。好ましい実施態様においては、Cガラス芯材を有す
る直径0.508mmの10本の複合ワイヤ256を厚
さ約0.254mmの鉛をもって被覆した。この複合ケ
ーブル254を高電流のスローブローフューズ材料とし
て使用することができる。
【0145】ケーブル254の張力を増大するため、外
皮258を使用する前に複合ワイヤ256をねじり、折
曲げ、または編組することができる。複数の複合ワイヤ
256を通過させてこれらのワイヤ256に所望厚さの
外皮258を被覆するに十分な大直径のアパチュアを有
するダイス組立体を用いて、図1と図2の装置の中にこ
れらのワイヤ256を走らせることによって外皮258
を形成する。
【0146】例えば、前記の好ましい複合ケーブルを製
造するため、直径2.36mmのアパチュアを有する入
口ダイスを、直径2.87mmのアパチュアの出口ダイ
スと共に使用し、これらのダイスは相互に約0.254
mm離間されていた。約2,109〜2,812Kg/
cm2 ±25%の押出圧を使用し、ダイキャリヤ中の温
度は約121〜149℃に保持された。ケーブル256
は、少ければ6本、多ければ12本の鉛被覆ファイバ
(複合ワイヤ256)をもって構成される。
【0147】ここに、複合ケーブルは、特定の用途に合
わせることができる。例えば、ケーブルの性能特性は、
鉛被覆ファイバに使用される鉛の質量と、芯材ファイバ
の型とに応じて変動する。例えば、複数の鉛被覆ワイヤ
に使用される鉛の外皮の質量を増大すれば、これより少
量の鉛を使用したケーブルほど急速には破壊しないケー
ブルが得られる。また、Eガラスまたは合成ファイバな
どの心線材料を使用して得られるケーブル強度の増大に
より、生産速度の増大と、扱い易いフューズ材料の製造
が可能となる。
【0148】本考案は前記の説明のみに限定されるもの
でなく、その主旨の範囲内において任意に変更実施でき
ることは勿論である。
【0149】
【考案の効果】本考案は上記のような構成であるので、
引張強度の大きい繊維状の材料、光学ガラス繊維または
電気伝導性の良い金属を芯材となし、この芯材に押出し
加工可能の防蝕用金属、例えば鉛、亜鉛またはニッケル
で被覆して、例えば電極用のグリッドを構成する複合線
材を形成し、これによってこの種のグリッドの重量の低
下及び強度の強化、更には屈曲性の良さを確保すること
ができる。しかも、上記複合線材を複数本使用して複合
ケーブルを構成することによって、この複合ケーブルの
軽量化、強度の強化及び屈曲性の確保を図ることができ
るといった効果がある。
【図面の簡単な説明】
【図1】本考案の複合線材の製造に使用される装置の一
部破断正面図。
【図2】図1の装置の制御装置の系統図。
【図3】図1の装置のダイスを含む部分の断面図。
【図4】図1及び図3の装置の分解斜視図。
【図5】ピストンの拡大断面図。
【図6】本考案に基く陽極の一部切断の立面斜視図。
【図7】二極板型電池に使用する電極の立面斜視図。
【図8】図7の電極とは形状が異る他の電極の立面斜視
図。
【図9】二極板型電池の図10の線9−9に沿う断面
図。
【図10】二極板型電池の図9の線10−10に沿う縦
断面図。
【図11】図3に示したダイス部分とは形状の異るダイ
ス部分の断面図。
【図12】図11のダイス部分の分解斜視図、
【図13】図10の二極板型電池の他の構造の縦断面
図。
【図14】本考案に基く電極用グリッドの正面図。
【図15】電極用グリッドの他の形状の正面図。
【図16】電極用グリッドの他の形状の正面図。
【図17】電極用グリッドの他の形状の正面図。
【図18】電極用グリッドの他の形状の正面図。
【図19】陽極と陰極が対になりセパレータで仕切られ
た鉛電池用渦巻形電極の平面図。
【図20】図19の対になった陽極及び陰極の巻き方の
異る平面図。
【図21】図19に示す電極より成るセルの分解斜視
図。
【図22】図21のセルを4箇組み合わせて成る充電式
9ボルト電池の内部を示す斜視図。
【図23】複合線材より成るケーブルの一方の端部を切
り開き他方の端部を切断した状態の斜視図。
【符号の説明】
10 鉛球 12 フィーダ 22 プランジャ 30 圧縮室 52 ピストン 56 スペース 58,60 ダイス 62 ダイホルダ 86 芯材 100 複合ワイヤ 120 ダイセパレータ 180,195,212,230 スクリム 182 バックフレーム 196 フレーム 202 ケース壁 204 バッテリケース 220,222 母線
───────────────────────────────────────────────────── フロントページの続き (72)考案者 チャールズ、エル、マシューズ アメリカ合衆国テキサス州、オースチ ン、ピー、オー、ボックス、6290 (56)参考文献 特開 昭54−16359(JP,A)

Claims (5)

    (57)【実用新案登録請求の範囲】
  1. 【請求項1】繊維状材料からなる芯材と、前記芯材にほ
    ぼ均一の厚さで被覆され、接合された押出し成形可能な
    防蝕用金属の被覆と、を備えた電気導電性の複合線材で
    あって、前記複合線材は約0.7mmよりも小さな直径
    を有することを特徴とする電気導電性の複合線材。
  2. 【請求項2】押出し成形された被覆の微細粒の大きさ
    が、ほぼ0.25×10−6インチ(0.635×10
    −6cm)であることを特徴とする請求項1記載の複合
    線材。
  3. 【請求項3】前記被覆は、この被覆全てに実質的に均一
    な微細粒組織を有することを特徴とする請求項1記載の
    複合線材。
  4. 【請求項4】前記被覆は、硫酸による腐食をほぼ完全に
    防止するための十分に小さい微細粒組織を有することを
    特徴とする請求項3記載の複合線材。
  5. 【請求項5】前記金属は、鉛であることを特徴とする請
    求項4記載の複合線材。
JP1995003064U 1984-08-22 1995-04-10 複合線材 Expired - Lifetime JP2543207Y2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US64367684A 1984-08-22 1984-08-22
US643676 1985-08-12
US06/763,851 US4658623A (en) 1984-08-22 1985-08-12 Method and apparatus for coating a core material with metal
US763851 1985-08-12

Publications (2)

Publication Number Publication Date
JPH08910U JPH08910U (ja) 1996-06-07
JP2543207Y2 true JP2543207Y2 (ja) 1997-08-06

Family

ID=27094321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1995003064U Expired - Lifetime JP2543207Y2 (ja) 1984-08-22 1995-04-10 複合線材

Country Status (1)

Country Link
JP (1) JP2543207Y2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2824004B1 (fr) * 2001-04-30 2003-05-30 Valeo Equip Electr Moteur Procede de fabrication d'un fil electriquement conducteur et dispositif pour la mise en oeuvre d'un tel procede
US7131308B2 (en) * 2004-02-13 2006-11-07 3M Innovative Properties Company Method for making metal cladded metal matrix composite wire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416359A (en) * 1977-07-07 1979-02-06 Hitachi Cable Ltd Manufacture of composite lead wire to be connected to battery

Also Published As

Publication number Publication date
JPH08910U (ja) 1996-06-07

Similar Documents

Publication Publication Date Title
EP0172563A2 (en) Method and apparatus for coating a core material with metal
US4865933A (en) Battery grid structure made of composite wire
US5925470A (en) Coated elongated core material
US4336314A (en) Pasted type lead-acid battery
CN100499227C (zh) 铅蓄电池用铅基合金、铅蓄电池用基板和铅蓄电池
US5441824A (en) Quasi-bipolar battery requiring no casing
KR102046199B1 (ko) 개선된 납산 배터리 구성
US20050208382A1 (en) Composite wire having impervious core for use in an energy storage device
CN1097318C (zh) 铅蓄电池
US4865928A (en) Electric battery
US5010637A (en) Method and apparatus for coating a core material with metal
EP0344305A1 (en) NICKEL HYDROGEN ACCUMULATOR WITH EXTENDED LIFE.
JP2543207Y2 (ja) 複合線材
JP2708655B2 (ja) 電池のグリッドの製造方法
CA1336614C (en) Battery grid element
US5001022A (en) Lead-acid storage battery and related method of construction
US4456666A (en) Titanium wire reinforced lead composite electrode structure
CN220569731U (zh) 一种负极极片、锂离子电池及电化学装置
US6858350B2 (en) Composite materials and methods of forming
KR920010002B1 (ko) 티타늄으로 보강된 축전지 그리드
JPH02119063A (ja) クラッド式密閉形鉛畜電地
JPH08339820A (ja) 負極吸収式シ−ル形鉛蓄電池
JPH0449756B2 (ja)
JPS58103777A (ja) 鉛蓄電池
UA61667A (en) Positive electrode of a lead-acid accumulator and a method for producing the electrode