JP2543055B2 - Vibration wave drive - Google Patents

Vibration wave drive

Info

Publication number
JP2543055B2
JP2543055B2 JP61281090A JP28109086A JP2543055B2 JP 2543055 B2 JP2543055 B2 JP 2543055B2 JP 61281090 A JP61281090 A JP 61281090A JP 28109086 A JP28109086 A JP 28109086A JP 2543055 B2 JP2543055 B2 JP 2543055B2
Authority
JP
Japan
Prior art keywords
contact
vibration
vibration wave
vibrating body
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61281090A
Other languages
Japanese (ja)
Other versions
JPS63136984A (en
Inventor
卓夫 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61281090A priority Critical patent/JP2543055B2/en
Publication of JPS63136984A publication Critical patent/JPS63136984A/en
Application granted granted Critical
Publication of JP2543055B2 publication Critical patent/JP2543055B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は振動波駆動装置,特にその振動体とこれに加
圧接触する移動体との摩擦接触部の改良に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration wave driving device, and more particularly to improvement of a frictional contact portion between a vibrating body thereof and a moving body which makes pressure contact with the vibrating body.

〔発明の背景〕 通常、振動波モータは、弾性材料よりなるリング状の
振動体と該振動体の表面に加圧接触せしめられているリ
ング状面を有するロータ(移動体)とを基本構成要素と
し、該振動体の他面に圧電素子,電歪素子などを配列固
着し、これらに交流電圧を印加することによって、該振
動体に周方向に進む横波と縦波とからなる進行波を発生
させて、それら両波の合成として振動体の表面上の各点
に一種の楕円運動を起させ、これにより、振動体の表面
に加圧接触しているロータを振動体の表面に沿って摩擦
駆動して回転させるように構成されている。
BACKGROUND OF THE INVENTION In general, a vibration wave motor includes a ring-shaped vibrating body made of an elastic material and a rotor (moving body) having a ring-shaped surface that is in pressure contact with the surface of the vibrating body. By arranging and fixing piezoelectric elements, electrostrictive elements, etc. on the other surface of the vibrating body, and applying an AC voltage to these, a traveling wave composed of a transverse wave and a longitudinal wave traveling in the circumferential direction is generated in the vibrating body. Then, as a combination of both waves, a kind of elliptical motion is caused at each point on the surface of the vibrating body, which causes the rotor that is in pressure contact with the surface of the vibrating body to rub along the surface of the vibrating body. It is configured to drive and rotate.

このような振動波モータにおいて、移動体(ロータ)
の振動体に対する接触状態を良好ならしめ、摩擦駆動力
の伝達効率を向上させるために、第5図に示すように、
リング状振動体2に対しリング状接触部3で接触するフ
ランジ部1-1を有するロータ1を用い、フランジ部1-1の
弾性変形によって振動体2との加圧接触を良好にしたも
のが提案されている(特開昭61-224882)。しかし、接
触部3の最適な大きさについては特に配慮がされておら
ず、まだ摩擦駆動力の伝達効率は不満足なものであっ
た。加えて本発明者が吸着現象と呼んでいる現象が時折
生じていた。吸着現象とは、フランジ部1-1の弾性変形
が振動体2の振動に引き込まれる様に一体となって共振
する現象で、これが生ずると振動体2の振動モードが変
化して振動が急に停止し、もちろんモータの駆動もスト
ップしてしまう。
In such a vibration wave motor, the moving body (rotor)
In order to make the contact state of the vibrating body with the good condition and improve the transmission efficiency of the friction driving force, as shown in FIG.
A rotor 1 having a flange portion 1-1 that comes into contact with the ring-shaped vibrating body 2 at the ring-shaped contact portion 3 is used, and good pressure contact with the vibrating body 2 is achieved by elastic deformation of the flange portion 1-1. It has been proposed (JP-A-61-224882). However, no particular consideration was given to the optimum size of the contact portion 3, and the transmission efficiency of the friction driving force was still unsatisfactory. In addition, the phenomenon that the present inventor called an adsorption phenomenon occasionally occurred. The adsorption phenomenon is a phenomenon in which the elastic deformation of the flange portion 1-1 is integrally resonated so as to be drawn into the vibration of the vibrating body 2, and when this occurs, the vibration mode of the vibrating body 2 changes and the vibration suddenly changes. It stops, and of course, the motor drive also stops.

〔発明の目的〕[Object of the Invention]

本発明の目的は振動波駆動装置において、振動体と移
動体との接触部を改良して、摩擦駆動力の伝達効率を高
めると共に、吸着現象の発生を防止することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to improve a contact portion between a vibrating body and a moving body in a vibration wave driving device to enhance a friction driving force transmission efficiency and prevent an occurrence of an adsorption phenomenon.

〔発明の概要〕[Outline of Invention]

本発明の振動波駆動装置は、振動波を発生させて、該
振動波により振動体と該振動体に接触する接触体とを相
対的に回転運動させる振動波駆動装置において、前記振
動体と前記接触体との両者の接触部の一方を0.5mm以下
の線巾となる線状突起部に形成し、他方を回転運動の軸
方向に対して直交する平面にしたことを特徴とするもの
である。
The vibration wave driving device of the present invention is a vibration wave driving device that generates a vibration wave and relatively rotates the vibrating body and a contact body in contact with the vibrating body by the vibrating wave. One of the contact parts of the contact body and the contact body is formed as a linear protrusion having a line width of 0.5 mm or less, and the other is formed as a plane orthogonal to the axial direction of the rotational movement. .

〔発明の実施例〕Example of Invention

振動波モータは本質的には摩擦駆動によって動くモー
タであり、振動波モータの駆動力は、ロータ(移動体)
を振動体に加圧接触させる加圧力Wとロータおよび振動
体の間の動摩擦係数μとの積μWに依存する。加圧力W
を大きくすれば駆動力は増大すると考えられるのである
が、加圧力Wを大きくし過ぎると振動体の振動を抑圧す
ることになり、かえって駆動力を低下させることにな
る。それ故、振動波モータの振動体およびロータの材料
は動摩擦係数μの大きな組み合せを選ぶ必要がある。
The vibration wave motor is essentially a motor that moves by friction drive, and the driving force of the vibration wave motor is the rotor (moving body).
Depends on the product μW of the pressing force W that makes the pressure contact with the vibrating body and the dynamic friction coefficient μ between the rotor and the vibrating body. Pressure W
It is considered that the driving force is increased by increasing, but if the pressing force W is excessively increased, the vibration of the vibrating body is suppressed, and the driving force is decreased. Therefore, it is necessary to select a material having a large dynamic friction coefficient μ for the materials of the vibration body and rotor of the vibration wave motor.

ところで振動する物体との摩擦接触は通常の振動のな
い場合の摩擦接触とかなり異っていることが知られてい
る。例えば、菅等の論文(“潤滑”、第25巻,第4号,2
40頁、1980年)に述べられているように、振動する物体
の摩擦接触に於ける動摩擦係数は、振動の無い場合に比
べて低下する。本発明者はこの点に注目していくつかの
実験を行なった。以下にその実験内容と結果について説
明する。
By the way, it is known that frictional contact with a vibrating object is quite different from normal frictional contact without vibration. For example, Kan et al.'S paper ("Lubrication", Vol. 25, No. 4, 2
(Page 40, 1980), the coefficient of dynamic friction in the frictional contact of a vibrating object is lower than that in the absence of vibration. The present inventor paid attention to this point and conducted some experiments. The details and results of the experiment are described below.

第4図は実験に用いた摩擦試験機を示す図である。固
定側摩擦試験材4および回転側摩擦試験材5は、重り6
により加圧され、接触部5-1で互に加圧接触されてい
る。回転側摩擦試験材5は回転台7の上に固定され、回
転台7は軸13を通じて原動機16により回転が与えられ
る。固定側摩擦試験材4は円板8に固定されており、円
板8には軸9が取り付けられている。軸9は軸受10によ
り回転および上下運動が自在になる様に支持されてい
る。軸9には腕11が固定されていて、腕11の端部には回
転止めを兼ねたトルク測定器12がある。さて原動機13に
より回転側摩擦試験材5を強制的に回転させると、固定
側摩擦試験材4にも摩擦により回転力が生じる。この摩
擦回転力はトルク測定器12より摩擦トルクとして測定で
きるものである。測定された摩擦トルクを接触部5-1の
平均半径で除し、さらに重り6の重量で除することによ
り、固定側摩擦試験材4と回転側摩擦試験材5との動摩
擦係数μを算出することが出来る。
FIG. 4 is a diagram showing the friction tester used in the experiment. The fixed side friction test material 4 and the rotating side friction test material 5 are weights 6
Are pressed by each other, and are in pressure contact with each other at the contact portion 5-1. The rotating side friction test material 5 is fixed on the rotating table 7, and the rotating table 7 is rotated by the motor 16 through the shaft 13. The fixed-side friction test material 4 is fixed to a disc 8, and a shaft 9 is attached to the disc 8. The shaft 9 is supported by a bearing 10 so that it can freely rotate and move up and down. An arm 11 is fixed to the shaft 9, and a torque measuring device 12 also serving as a rotation stopper is provided at the end of the arm 11. Now, when the rotating side friction test material 5 is forcibly rotated by the prime mover 13, the fixed side friction test material 4 also produces a rotational force due to friction. This friction torque can be measured as a friction torque by the torque measuring device 12. The dynamic friction coefficient μ between the stationary side friction test material 4 and the rotating side friction test material 5 is calculated by dividing the measured friction torque by the average radius of the contact portion 5-1 and further by the weight of the weight 6. You can

以上の説明は一般の摩擦試験機と変わらないが、この
試験機ではさらに固定側摩擦試験材4の上面に圧電素子
14が接合されているところに特徴がある。圧電素子14の
上下両面には不図示の電極が設けられていて、各々の電
極は高周波電源15に接続されている。すなわち、この摩
擦試験機では固定側摩擦試験材4に振動を与えながら、
動摩擦係数μを測定することができるものである。
Although the above description is the same as that of a general friction tester, in this tester, the piezoelectric element is further provided on the upper surface of the fixed side friction test material 4.
The feature is that 14 is joined. Electrodes (not shown) are provided on both upper and lower surfaces of the piezoelectric element 14, and each electrode is connected to a high frequency power supply 15. That is, in this friction tester, while applying vibration to the fixed side friction test material 4,
The dynamic friction coefficient μ can be measured.

本摩擦試験では、回転側摩擦試験材5と固定側摩擦試
験材4との接触部5-1の巾を種々に変えながら振動を加
えて試験をした。固定側摩擦試験材4は外径46mm,内径3
8mmの4-6真ちゅうを用い、回転側摩擦試験材5はアルミ
ニウム(A5056)で作り、接触部5-1の巾を変化させたも
のをいくつか用いた。また両試験材の接触部は鏡面状態
に研磨して試験をした。重り6の重量は700grとし、固
定側摩擦試験材4に6次の面外曲げ振動(曲げ振動変位
がリング状試験材4の面と垂直な方向すなわち軸方向に
生ずるような振動)を約43KHzの共振周波数で生じさ
せ、その最大振巾は約0.6μmであった。尚、これらの
値は実際の振動波モータにほぼ等しいものを選んであ
る。以上の条件で摩擦試験を行なった結果を第1表に示
す。
In this friction test, vibration was applied while changing the width of the contact portion 5-1 between the rotating side friction test material 5 and the fixed side friction test material 4 in various ways. Fixed side friction test material 4 has an outer diameter of 46 mm and an inner diameter of 3
Using 8 mm 4-6 brass, the friction test material 5 on the rotating side was made of aluminum (A5056), and several materials having different widths of the contact portion 5-1 were used. Further, the contact portion of both test materials was polished to a mirror surface state and tested. The weight 6 has a weight of 700 gr, and a sixth-order out-of-plane bending vibration (vibration causing bending vibration displacement in the direction perpendicular to the surface of the ring-shaped test material 4, that is, in the axial direction) is applied to the fixed-side friction test material 4 at about 43 KHz. Was generated at the resonance frequency of, and the maximum amplitude was about 0.6 μm. It should be noted that these values are selected to be substantially equal to those of the actual vibration wave motor. The results of the friction test conducted under the above conditions are shown in Table 1.

第1表は、回転側摩擦部材5の接触部5-1の巾を変え
て動摩擦係数μを測定したものである。表から明らかな
様に振動を与えない場合はμ=0.33であり、接触巾とは
無関係である。ところが固定側摩擦部材4に振動を与え
ると状態は一変する。すなわち接触巾が大きい程μが減
少することがわかる。特に接触巾を4mmにもするとμ=
0.084となり、この接触巾を振動波モータに適用すると
駆動力は非常に低下してしまう。逆に接触巾を0.5mm以
下にすれば、振動の無い場合に比較して、μは80%以上
の値を持つことができ、これはほぼ満足なμの値と考え
ることが出来る。
Table 1 shows the dynamic friction coefficient μ measured by changing the width of the contact portion 5-1 of the rotating side friction member 5. As is clear from the table, when no vibration is applied, μ = 0.33, which is independent of the contact width. However, when vibration is applied to the fixed side friction member 4, the state changes completely. That is, it can be seen that μ increases as the contact width increases. Especially when the contact width is 4 mm, μ =
If this contact width is applied to a vibration wave motor, the driving force will be significantly reduced. On the other hand, if the contact width is 0.5 mm or less, μ can have a value of 80% or more as compared with the case where there is no vibration, which can be considered as a substantially satisfactory value of μ.

この現象は、振動によって接触部に空気がはさみ込ま
れた結果、空気膜が潤滑剤の役目を果たしμを低下させ
るもので、接触巾が広い程その効果が大きいものと考え
られる。
This phenomenon is because the air film acts as a lubricant as a result of air being trapped in the contact portion due to vibration and reduces μ, and it is considered that the larger the contact width, the greater the effect.

さらに、接触巾が0.5mm以下になると、前述の吸着現
象が皆無になるということもこの実験で確められた。こ
の理由は明白ではないが、接触巾が0.5mmにも小さくな
ると、固定側摩擦部材(振動側)と回転側摩擦部材(被
振動側)が構造的にかなり異質になって、振動側の振動
に被振動側が引き込まれにくくなるためと想像される。
It was also confirmed in this experiment that the above-mentioned adsorption phenomenon disappears when the contact width becomes 0.5 mm or less. The reason for this is not clear, but when the contact width becomes as small as 0.5 mm, the fixed-side friction member (vibrating side) and the rotating-side friction member (vibrated side) become structurally dissimilar, and vibration on the vibrating side occurs. It is conceivable that the vibrated side will be less likely to be pulled in.

以上述べた様に接触巾を0.5mm以下の線状にすれば、
動摩擦係数μは、振動の無い場合にほぼ近い値(80%以
上)が得られる上に吸着現象も発生しなくなる。したが
ってこれを振動波モータの摩擦接触部に適用すれば駆動
力の大きい安定な振動波モータを得ることができる。
As mentioned above, if the contact width is set to 0.5 mm or less,
The dynamic friction coefficient μ is almost the same as when there is no vibration (80% or more), and the adsorption phenomenon does not occur. Therefore, if this is applied to the frictional contact portion of the vibration wave motor, a stable vibration wave motor having a large driving force can be obtained.

第1図および第2図は夫々本発明の実施例を示す図
で、第1図ではロータ(移動体)1の端部を細くして巾
0.5mm以下の線状の接触部3-1を得るようにしたものであ
る。第2図では振動体2の上部に巾の小さな突起を持た
せて、やはり巾0.5mm以下の線状の接触部3-2を得ている
ものである。
FIG. 1 and FIG. 2 are views showing an embodiment of the present invention, respectively. In FIG. 1, the end portion of the rotor (moving body) 1 is narrowed to have a width.
A linear contact portion 3-1 of 0.5 mm or less is obtained. In FIG. 2, a protrusion having a small width is provided on the upper portion of the vibrating body 2 to obtain a linear contact portion 3-2 having a width of 0.5 mm or less.

接触巾を0.5mm以下の線状にすると確実に駆動力の高
い、安定な振動波モータを得られるのであるが、一方、
新な問題も生ずる。それは、接触巾を0.5mm以下にもす
ると接触面圧が非常に大きくなり、これによって摩擦に
よる摩耗量が増大することである。このことは振動波モ
ータの耐久性、寿命を低下させる原因になる。第3図
は、この問題点を解決するために工夫した本発明の振動
波モータの実施例である。図に於て、ロータ1と振動体
2の摩擦接触部を、接触部3-3,3-4,3-5の様にそれぞれ
巾0.5mm以下の線状に複数本設けるものである。このよ
うにすれば、接触部1本あたりの面圧を下げることが出
来、耐久性が高く寿命の長い振動波モータを得ることが
できる。
If the contact width is set to 0.5 mm or less, a stable vibration wave motor with a high driving force can be reliably obtained.
New problems also arise. The reason is that if the contact width is set to 0.5 mm or less, the contact surface pressure becomes extremely large, which increases the amount of wear due to friction. This causes a reduction in the durability and life of the vibration wave motor. FIG. 3 shows an embodiment of the vibration wave motor of the present invention devised to solve this problem. In the figure, a plurality of frictional contact portions between the rotor 1 and the vibrating body 2 are provided linearly with a width of 0.5 mm or less like the contact portions 3-3, 3-4, 3-5. By doing so, the surface pressure per contact portion can be reduced, and a vibration wave motor having high durability and long life can be obtained.

〔発明の効果〕〔The invention's effect〕

振動波駆動装置の摩擦接触部を巾0.5mm以下にするこ
とによって本発明によれば、 (1)振動による動摩擦係数の低下を防いで駆動力の大
きな振動波駆動装置を得ることができる。
According to the present invention, the frictional contact portion of the vibration wave driving device has a width of 0.5 mm or less. According to the present invention, (1) it is possible to obtain a vibration wave driving device having a large driving force while preventing the dynamic friction coefficient from decreasing.

(2)吸着現象を防止することが出来、駆動装置の突然
の停止がなくなり、安定な振動波駆動装置を得ることが
できる。
(2) The adsorption phenomenon can be prevented, the drive device does not suddenly stop, and a stable vibration wave drive device can be obtained.

なお、摩擦接触部を巾0.5mm以下の複数の線状にすれ
ば、上記の(1),(2)の効果に加えて、接触部の面
圧が下がり、摩耗を減らして耐久性の高い長寿命の振動
波駆動装置を得ることができる。
If the frictional contact portion is formed into a plurality of linear lines with a width of 0.5 mm or less, in addition to the above effects (1) and (2), the surface pressure of the contact portion is reduced, wear is reduced and durability is high. It is possible to obtain a vibration wave driving device having a long life.

また、0.5mm以下の線巾となる線状突起部と接触する
相手面を回転運動の軸方向に対して直交する平面にして
いるので、線状突起部の接触位置が安定し、大きくずれ
ることがない。
Also, since the mating surface that comes into contact with the linear protrusion with a line width of 0.5 mm or less is a plane that is orthogonal to the axial direction of the rotational movement, the contact position of the linear protrusion is stable and can be greatly displaced. There is no.

【図面の簡単な説明】[Brief description of drawings]

第1図、第2図、第3図は夫々本発明の振動波駆動装置
の夫々異なる実施例を示す側断面図、第4図は本発明の
実験に用いた摩擦試験機の構成を示す図、第5図は従来
提案された振動波モータを示す側断面図である。 1……ロータ(移動体)、2……振動体 3-1,3-2,3-3,3-4,3-5……接触部
1, 2, and 3 are side sectional views showing respectively different embodiments of the vibration wave driving device of the present invention, and FIG. 4 is a diagram showing the constitution of the friction tester used in the experiment of the present invention. FIG. 5 is a side sectional view showing a conventionally proposed vibration wave motor. 1 ... Rotor (moving body), 2 ... Vibrator 3-1,3-2,3-3,3-4,3-5 ... Contact part

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】振動波を発生させて、該振動波により振動
体と該振動体に接触する接触体とを相対的に回転運動さ
せる振動波駆動装置において、前記振動体と前記接触体
との両者の接触部の一方を0.5mm以下の線巾となる線状
突起部に形成し、他方を回転運動の軸方向に対して直交
する平面にしたことを特徴とする振動波駆動装置。
1. A vibration wave drive device for generating a vibration wave and relatively rotating the vibration body and a contact body in contact with the vibration body by the vibration wave. An oscillatory wave drive device characterized in that one of the contact portions of the two is formed into a linear protrusion having a line width of 0.5 mm or less, and the other is a plane orthogonal to the axial direction of the rotational movement.
【請求項2】前記線巾0.5mm以下の線状の接触部を複数
本設けたことを特徴とする特許請求の範囲第1項記載の
振動波駆動装置。
2. The vibration wave drive device according to claim 1, wherein a plurality of linear contact portions having a line width of 0.5 mm or less are provided.
JP61281090A 1986-11-26 1986-11-26 Vibration wave drive Expired - Lifetime JP2543055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61281090A JP2543055B2 (en) 1986-11-26 1986-11-26 Vibration wave drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61281090A JP2543055B2 (en) 1986-11-26 1986-11-26 Vibration wave drive

Publications (2)

Publication Number Publication Date
JPS63136984A JPS63136984A (en) 1988-06-09
JP2543055B2 true JP2543055B2 (en) 1996-10-16

Family

ID=17634195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61281090A Expired - Lifetime JP2543055B2 (en) 1986-11-26 1986-11-26 Vibration wave drive

Country Status (1)

Country Link
JP (1) JP2543055B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69211880T2 (en) * 1991-04-02 1996-11-07 Matsushita Electric Ind Co Ltd Ultrasonic motor with a vibrating body and thereby moving body
JP3016617B2 (en) * 1991-05-08 2000-03-06 キヤノン株式会社 Vibration wave motor
JP3307020B2 (en) * 1992-10-19 2002-07-24 株式会社ニコン Ultrasonic motor
JP4724448B2 (en) * 2005-03-31 2011-07-13 キヤノン株式会社 Vibration wave driving device and apparatus provided with the vibration wave driving device
JP6511900B2 (en) * 2015-03-25 2019-05-15 セイコーエプソン株式会社 Piezoelectric drive device and drive method therefor, robot and drive method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122778A (en) * 1984-07-10 1986-01-31 Matsushita Electric Ind Co Ltd Piezoelectric motor
JPS61224883A (en) * 1985-03-29 1986-10-06 Canon Inc Vibration wave motor
JPS61224882A (en) * 1985-03-29 1986-10-06 Canon Inc Vibration wave motor

Also Published As

Publication number Publication date
JPS63136984A (en) 1988-06-09

Similar Documents

Publication Publication Date Title
US7215063B2 (en) Vibration element and vibration wave driving apparatus
JP2803939B2 (en) Vibration wave device
JP2543055B2 (en) Vibration wave drive
JP3327518B2 (en) Method of measuring damping characteristics of friction materials
JPH0532991B2 (en)
JPH02261073A (en) Ultrasonic motor
Ishii et al. A low-wear driving method of ultrasonic motors
JPS61196773A (en) Piezoelectric motor using roll
JPS6122778A (en) Piezoelectric motor
JPS6118370A (en) Piezoelectric motor
JPS5854878Y2 (en) Vibrator driven motor
JPH0744854B2 (en) Ultrasonic motor
JPS63124785A (en) Ultrasonic motor
JPS60174078A (en) Piezoelectric motor
JPH01177878A (en) Oscillatory wave motor
JP2754625B2 (en) Vibration actuator
JP2585996B2 (en) Ultrasonic motor
JPH03103083A (en) Ultrasonic motor
JPS62196080A (en) Ultrasonic motor
JPH01315281A (en) Progressive wave motor
JP2002281772A (en) Ultrasonic motor using static pressure application apparatus having non-linear characteristic
JPH05211783A (en) Ultrasonic motor
JPH04325885A (en) Oscillatory wave motor
KR100219137B1 (en) Stator with curved teeth end
KR200149142Y1 (en) Ultrasonic motor with duplication structure

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term