JP2542386B2 - Power flow monitoring method - Google Patents

Power flow monitoring method

Info

Publication number
JP2542386B2
JP2542386B2 JP62152841A JP15284187A JP2542386B2 JP 2542386 B2 JP2542386 B2 JP 2542386B2 JP 62152841 A JP62152841 A JP 62152841A JP 15284187 A JP15284187 A JP 15284187A JP 2542386 B2 JP2542386 B2 JP 2542386B2
Authority
JP
Japan
Prior art keywords
power
equipment
facility
target value
power flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62152841A
Other languages
Japanese (ja)
Other versions
JPS63316625A (en
Inventor
孝夫 小俣
義剛 西脇
守 方
卯一郎 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Hitachi Ltd
Mitsubishi Electric Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Hitachi Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc, Hitachi Ltd, Mitsubishi Electric Corp filed Critical Toshiba Corp
Priority to JP62152841A priority Critical patent/JP2542386B2/en
Publication of JPS63316625A publication Critical patent/JPS63316625A/en
Application granted granted Critical
Publication of JP2542386B2 publication Critical patent/JP2542386B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、電力系統の設備を保護するために、設備
を流れる潮流が過大とならないように監視する電力設備
の潮流監視方法に関するものである。
Description: TECHNICAL FIELD [0001] The present invention relates to a power flow monitoring method for power equipment, which protects the equipment of a power system so that the power flow flowing through the equipment does not become excessive.

〔従来技術〕[Prior art]

従来、この種の電力設備の潮流監視方法として、図に
示すものがあつた。図において、1,2は母線である。3,
4,5は、母線1,2を結ぶ電力設備で、送電線や変圧器にあ
たる。X1,X2,X3は、この電力設備3〜5のインピーダン
スである。Ka1,Ka2,Ka3,は、電力設備3〜5は固有の設
備容量Ka1,Ka2,Ka3をもち、その目標値をKb1,Kb2,Kb3
示すと、Ka1>Kb1,Ka2>Kb2,Ka3>Kb3の関係がある。ま
た、P1,P2,P3は、個々の電力設備3〜5を流れる潮流、
PTは、電力設備3〜5を流れる総合的な潮流である。
Conventionally, as a power flow monitoring method of this kind of electric power equipment, there is one shown in the figure. In the figure, 1 and 2 are bus bars. 3,
4,5 are electric power facilities that connect the bus lines 1 and 2 and correspond to power transmission lines and transformers. X 1 , X 2 and X 3 are impedances of the power equipments 3 to 5. K a1, K a2, K a3 , the power equipment 3-5 has a unique installed capacity K a1, K a2, K a3 , when indicating the target value K b1, K b2, K b3 , K a1 > K b1 , K a2 > K b2 , K a3 > K b3 . In addition, P 1 , P 2 , and P 3 are tidal currents flowing through the individual electric power equipments 3 to 5,
P T is the total flow that flows through the power equipment 3-5.

一般には、個々の電力設備3〜5を流れる潮流P1〜P3
は、計測値として与えられないことが多く、総合した潮
流PTを用いて監視を行う。潮流PTと比較するための設備
総合の許容値としては、各電力設備3〜5に固有の設備
容量Ka1,Ka2,Ka3の和を用いていた。潮流PTと比較する
ための設備総合の目標値としては、各電力設備3〜5に
固有の目標値Kb1,Kb2,Kb3の和を用いていた。即ち|PT|
がKa1+Ka2+Ka3より大きくなれば、過負荷とし、小さ
ければ正常としていた。又|PT|が、Kb1+Kb2+Kb3より
大きくなれば目標値超過とし、小さければ、正常として
いた。
Generally, the tidal currents P 1 to P 3 that flow through the individual electric power facilities 3 to 5
Is often not given as a measured value, and is monitored using the integrated power flow P T. The sum of the facility capacities K a1 , K a2 , and K a3 peculiar to each power facility 3 to 5 was used as the total facility tolerance for comparison with the power flow P T. The sum of the target values K b1 , K b2 , and K b3 specific to each of the power facilities 3 to 5 was used as the target value of the overall facility for comparison with the power flow P T. That is | P T |
Was greater than K a1 + K a2 + K a3 , it was overloaded, and smaller was normal. If | P T | is larger than K b1 + K b2 + K b3 , the target value is exceeded, and if it is smaller, it is normal.

従来の電力設備の潮流監視方法は、以上のように設備
の制限値として、固有の設備容量の他に、固有の目標値
をもつため、監視に用いる制限値のデータ数が増えると
いう欠点があつた。
As described above, the conventional power flow monitoring method has a drawback that the number of data of the limit value used for monitoring increases because the limit value of the facility has a unique target value in addition to the unique facility capacity. It was

〔発明の概要〕[Outline of Invention]

この発明は、上記のような従来のものの欠点を除去す
るためになされたもので、制限値として、設備固有の設
備容量だけを用いて設備総合の目標値監視を行うことに
より、制限値のデータ数を減らすことができる電力設備
の潮流監視方法を提供することを目的とする。
The present invention is made to eliminate the above-mentioned drawbacks of the conventional ones, and the limit value data is obtained by performing the total target value monitoring of the facility using only the facility capacity specific to the facility as the limit value. It is an object of the present invention to provide a power flow monitoring method for electric power equipment, the number of which can be reduced.

〔発明の実施例〕Example of Invention

以下、この方式の一実施例を示す。設備総合の潮流PT
と比較する目標値として、以下に示す値のうち、小さい
方を設備総合の目標値とする。
An example of this method will be described below. Total equipment flow P T
As the target value to be compared with, the smaller one of the following values is set as the target value for the overall equipment.

いま、電力設備3〜5を流れる潮流P1〜P3のうち、電
力設備5を流れる潮流P3が最大であるとすると、電力設
備5が停止したものと仮定して、電力設備5が停止する
前に流れていた潮流P1+P2+P3が電力設備3と電力設備
4に分流して流れる予想潮流を求める。上記仮定は電力
系統の各設備の潮流過負荷に対して適用可能である。電
力設備3を流れる予想潮流が、電力設備3の固有の設備
容量Ka1(自己の設備容量)と同じとすると、設備総合
の潮流Pは次のように表わされる。
Now, among the tide P 1 to P 3 through the power equipment 3-5, if the tide P 3 through the power equipment 5 and the maximum, on the assumption that the power system 5 is stopped, power equipment 5 is stopped The expected power flow, which is the current flow P 1 + P 2 + P 3 that had flowed before the splitting, is split into the power equipment 3 and the power equipment 4 and obtained. The above assumption can be applied to the power flow overload of each equipment of the power system. Assuming that the expected power flow flowing through the power equipment 3 is the same as the unique equipment capacity K a1 of the power equipment 3 (own equipment capacity), the overall power flow P of the equipment is expressed as follows.

同様に電力設備4を流れる予想潮流が、電力設備4の
固有の設備容量Ka2(自己の設備容量)と同じとする
と、設備総合の潮流Pは、次のように表わされる。
Similarly, assuming that the expected power flow flowing through the power facility 4 is the same as the unique facility capacity K a2 of the power facility 4 (own facility capacity), the facility total power flow P is expressed as follows.

以上、Ka1,Ka2,X1,X2を用いて表わされる(1)式と
(2)式の|P|のうち、小さい方を設備総合の目標値と
する。
As described above, the smaller one of | P | in the equations (1) and (2) represented by using K a1 , K a2 , X 1 , and X 2 is set as the target value for the overall equipment.

このようにして求めた設備総合の目標値で、計測PT
監視すれば、最大潮流を分担している例えば電力設備5
が停止した場合でも、残りの個々の電力設備3,4に、過
負荷が発生しないように、設備総合の目標値の監視を、
設備固有の設備容量Ka1,Ka2,Ka3だけを用いて、行うこ
とができる。
If the measured P T is monitored with the target value of the total equipment obtained in this way, for example, the electric power equipment 5
Even if the power supply stops, the target value of the overall equipment is monitored so that overload does not occur in the remaining individual power equipment 3 and 4.
This can be performed by using only the facility capacity K a1 , K a2 , K a3 specific to the facility.

なお、上記実施例では、母線間を結ぶ電力設備が、3
コの場合について説明したが、2コ又は4コ以上の電力
設備で母線間が結ばれている場合でも、設備総合の目標
値を下式とすることにより、適用できる。
It should be noted that in the above embodiment, the number of electric power facilities connecting the buses is three.
Although the case has been described, even if the busbars are connected by two or four or more electric power facilities, the target value of the overall facility can be applied by the following formula.

ただし、iは、最大の潮流を分担する設備以外の設備
を示す。
However, i indicates equipment other than the equipment that shares the maximum power flow.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、停止したものと仮
定した最大潮流を分担している電力設備以外の電力設備
ごとに、自己の設備容量と等しい潮流が自己の電力設備
に流れたものと仮定した場合における設備総合の潮流
を、自己の設備容量と上記停止したものと仮定した電力
設備以外の電力設備のインピーダンスに基づいて演算す
るとともに、上記停止したものと仮定した電力設備以外
の電力設備ごとに演算した設備総合の潮流のなかで最も
小さい潮流を設備総合の目標値として設定し、その設定
した目標値を越える潮流が設備総合に流れたとき過負荷
が発生したものとするように構成したので、各電力設備
ごとの潮流を計測しなくても、何れかの電力設備で過負
荷が発生した旨を判定することができるとともに、最大
潮流を分担している電力設備が仮に停止しても、その他
の電力設備に過負荷が発生するのを防止することができ
る効果がある。
As described above, according to the present invention, for each power equipment other than the power equipment sharing the maximum power flow assumed to have stopped, a power flow equal to its own capacity flows to its own power equipment. The power flow of the overall equipment in the case of assumption is calculated based on the own equipment capacity and the impedance of the power equipment other than the power equipment assumed to be stopped, and the power equipment other than the power equipment assumed to be stopped Set the smallest power flow of the total equipment flow calculated for each as the total equipment target value, and assume that an overload occurs when a power flow exceeding the set target value flows to the overall equipment Therefore, it is possible to determine that an overload has occurred in any of the power facilities without measuring the power flow for each power facility, and the power flow sharing the maximum power flow. Stopping facilities if there is an effect that it is possible to prevent the overload is generated in other power equipment.

【図面の簡単な説明】[Brief description of drawings]

図は監視対象の電力設備の構成を示す接続図である。 1,2……母線、3〜5……電力設備、X1〜X3……インピ
ーダンス。
The figure is a connection diagram showing the configuration of the power equipment to be monitored. 1, 2 ...... bus, 3-5 ...... power equipment, X 1 ~X 3 ...... impedance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小俣 孝夫 東京都千代田区内幸町1丁目1番3号 東京電力株式会社技術開発本部開発研究 所総合自動化研究室内 (72)発明者 西脇 義剛 東京都府中市東芝町1番地 株式会社東 芝府中工場内 (72)発明者 方 守 日立市大みか町5丁目2番1号 株式会 社日立製作所大みか工場内 (72)発明者 後藤 卯一郎 神戸市兵庫区和田崎町1丁目1番2号 三菱電機株式会社制御製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takao Omata 1-3-3 Uchisaiwaicho, Chiyoda-ku, Tokyo Tokyo Electric Power Co., Inc. Research & Development Headquarters Research Center Development Automation Laboratory (72) Inventor Yoshiwaki Nishiwaki Fuchu, Tokyo Toshiba Town No. 1 in Toshiba Fuchu Factory (72) Inventor Mamoru 52-1 Omika-cho, Hitachi City Stock Company Hitachi Ltd. Omika Factory (72) Inventor Uichiro Goto Wadazaki-cho, Hyogo-ku, Kobe 1-1-2, Mitsubishi Electric Corporation Control Factory

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】予め、過負荷の判定に用いる設備総合の目
標値を設定する際、母線間に接続されている複数の電力
設備のうち、最大潮流を分担している電力設備が停止し
たものと仮定する一方、その停止したものと仮定した電
力設備以外の少なくとも1つ以上の電力設備ごとに、自
己の設備容量と等しい潮流が自己の電力設備に流れたも
のと仮定した場合における上記設備総合の潮流を、自己
の設備容量と上記停止したものと仮定した電力設備以外
の電力設備のインピーダンスに基づいて演算するととも
に、上記停止したものと仮定した電力設備以外の電力設
備ごとに演算した設備総合の潮流のなかで最も小さい潮
流を設備総合の目標値として設定し、その設定した目標
値を越える潮流が設備総合に流れたとき過負荷が発生し
たものと判定する電力設備の潮流監視方法。
1. When the target value of the total equipment used for overload determination is set in advance, among the plurality of electric power equipment connected between the busbars, the electric power equipment sharing the maximum power flow is stopped. On the other hand, for each of at least one or more power equipment other than the power equipment assumed to have stopped, it is assumed that a tidal current equal to its own equipment capacity has flowed to its own power equipment. Of the total power flow for each power facility other than the power facility assumed to have stopped, as well as its own capacity and the impedance of power facilities other than the power facility assumed to have stopped. Set the smallest of the tidal currents as the target value for the overall equipment, and determine that an overload has occurred when a tidal current that exceeds the set target value flows through the overall equipment. Trend monitoring method of power equipment.
JP62152841A 1987-06-19 1987-06-19 Power flow monitoring method Expired - Lifetime JP2542386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62152841A JP2542386B2 (en) 1987-06-19 1987-06-19 Power flow monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62152841A JP2542386B2 (en) 1987-06-19 1987-06-19 Power flow monitoring method

Publications (2)

Publication Number Publication Date
JPS63316625A JPS63316625A (en) 1988-12-23
JP2542386B2 true JP2542386B2 (en) 1996-10-09

Family

ID=15549299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62152841A Expired - Lifetime JP2542386B2 (en) 1987-06-19 1987-06-19 Power flow monitoring method

Country Status (1)

Country Link
JP (1) JP2542386B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761121A (en) * 2011-04-28 2012-10-31 上海市电力公司 Calculation method for power grid load

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761121A (en) * 2011-04-28 2012-10-31 上海市电力公司 Calculation method for power grid load

Also Published As

Publication number Publication date
JPS63316625A (en) 1988-12-23

Similar Documents

Publication Publication Date Title
CN103918150A (en) Protection control system and merging unit
JPS6061835A (en) Power source control system
JP2542386B2 (en) Power flow monitoring method
JP2000010671A (en) Power supplying device using peripheral equipment connector
JP3938159B2 (en) Digital protection / control system
JPS6019814B2 (en) automatic switching device
RU2562916C2 (en) Method and device for protection zones selection in assembly with multiple busbars
JPS62109150A (en) Bus control circuit
JP2985368B2 (en) Monitoring device for analog current input circuit
JPS58103826A (en) Controller for dc transmission system
JPH0759253A (en) Protective controller for generator in business power plant
JPS63316628A (en) Method of monitoring overload of power system
JP2953891B2 (en) Digital bus protection device
JPH01170154A (en) Supervisory alarm information transmitting device for exchange
JPS61106027A (en) System stabilizer
JPS60148321A (en) Defect detecting system of electric system
JPS60255020A (en) System stabilizer
JPS61106028A (en) System stabilizer
JPS5852279B2 (en) Jidou Kanshi Hoshiki
JPS6364135B2 (en)
JPS58139634A (en) Device for protecting branch reactor
JPH0574293B2 (en)
JPS63117617A (en) One phase grounding failure detection relay system
JPS6292724A (en) Distribution system controller
JPS6252539B2 (en)