JP2541392B2 - Clad steel manufacturing method - Google Patents

Clad steel manufacturing method

Info

Publication number
JP2541392B2
JP2541392B2 JP3094738A JP9473891A JP2541392B2 JP 2541392 B2 JP2541392 B2 JP 2541392B2 JP 3094738 A JP3094738 A JP 3094738A JP 9473891 A JP9473891 A JP 9473891A JP 2541392 B2 JP2541392 B2 JP 2541392B2
Authority
JP
Japan
Prior art keywords
welding
rolling
joined
composite slab
penetration depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3094738A
Other languages
Japanese (ja)
Other versions
JPH04305383A (en
Inventor
幸夫 小沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3094738A priority Critical patent/JP2541392B2/en
Publication of JPH04305383A publication Critical patent/JPH04305383A/en
Application granted granted Critical
Publication of JP2541392B2 publication Critical patent/JP2541392B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Metal Rolling (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、接合部性能の優れた
クラッド鋼材を工業的に安定して製造する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for industrially stably producing a clad steel material having excellent joint performance.

【0002】[0002]

【従来技術とその課題】近年、供給が安定していて成形
性,溶接性,コスト等の面からも非常に有利な炭素鋼
(C含有量:0.01〜0.30重量%の鋼等)を基材とし、こ
れに異種金属合わせ材(例えばSUS304等)を重ね
合わせたクラッド鋼材の需要が、厚鋼板,薄鋼板,鋼
管,平鋼等の種類を問わず増加する傾向を見せている。
2. Description of the Related Art In recent years, carbon steel (C content: 0.01 to 0.30% by weight of steel, etc.), which has a stable supply and is very advantageous in terms of formability, weldability, cost, etc., is used as a base material. However, there is a tendency that the demand for a clad steel material in which a dissimilar metal composite material (for example, SUS304 or the like) is superposed on this, regardless of the type of thick steel plate, thin steel plate, steel pipe, flat steel, or the like.

【0003】従来、上記クラッド鋼材を製造する手段の
代表的なものとして、基材と合わせ材(以降“合材”と
呼ぶ)とを重ね合わせてから接合すべき面の四周を空気
抜き孔を除いて溶接・封入した後、これに軽圧下の冷間
圧延又はプレスを施して接合面間に存在する空気を追い
出し、更に空気抜き孔の溶接・密封を行って複合スラブ
を組み立てた後、これを加熱・圧延してクラッド成品と
する方法が知られていた(特公昭57−26870号公
報,特公昭59−11394号公報等参照)。
Conventionally, as a typical means for producing the above-mentioned clad steel material, the base material and the laminated material (hereinafter referred to as "composite material") are superposed, and the four circumferences of the surfaces to be joined are excluding air vent holes. After welding and encapsulating it, cold rolling or pressing it under light pressure to expel the air existing between the joint surfaces, and then welding and sealing the air vent holes to assemble the composite slab and then heat it. A method of rolling into a clad product has been known (see Japanese Patent Publication No. 57-26870, Japanese Patent Publication No. 59-11394, etc.).

【0004】しかしながら、この方法では複合スラブ組
み立て時の空気抜きのために多大な設備(冷間圧延設
備,プレス設備等)を必要とするほか、得られる複合ス
ラブの接合すべき面の状態(真空度)が空気抜き孔を溶
接・密封する際の個人的な技術差等によって不完全なも
のとなり、加熱・圧延時での界面剥離,成品接合面での
剥離や超音波欠陥(超音波検査で検出される欠陥)等が
発生しやすいとの問題があった。
However, this method requires a large amount of equipment (cold rolling equipment, press equipment, etc.) for venting air at the time of assembling the composite slab, and the surface of the obtained composite slab to be joined (vacuum degree). ) Becomes incomplete due to individual technical differences when welding / sealing the air vent hole, resulting in interfacial peeling during heating / rolling, peeling at the product joint surface and ultrasonic defects (detected by ultrasonic inspection). There is a problem in that it is easy to generate defects.

【0005】もっとも、上記方法を適用する場合に、接
合すべき面の間に空気吸収材(例えばジルコニウム又は
ジルカロイ等)を介在させておいて加熱時における該箇
所の真空度確保を強化しようとの提案(特公昭59−3
0517号)もなされたが、空気吸収材自体が比較的高
価なためにコストへの悪影響が無視できない上、設備の
問題や空気抜き孔溶接・密封技術のバラツキに関する前
記問題は残されたままであったことから、実用上の効果
は十分と言えなかった。
However, when the above method is applied, an air absorbing material (for example, zirconium or zircaloy) is interposed between the surfaces to be joined so as to strengthen the degree of vacuum at that portion during heating. Proposal (Japanese Patent Publication Sho 59-3
No. 0517) was also made, but the adverse effect on the cost cannot be ignored because the air absorbing material itself is relatively expensive, and the above-mentioned problems regarding equipment problems and variations in air vent hole welding / sealing technology remained. Therefore, the practical effect was not sufficient.

【0006】これに対して、各素材金属の接合すべき面
を清浄化して重ね合わせると共に、重ね合わせ面(接合
すべき面)の四周を電子ビ−ム溶接やレ−ザ−ビ−ム溶
接等の高エネルギ−ビ−ム溶接にて密封することにより
熱間接合圧延用複合スラブを組み立てる方法がある(特
公昭55−6498号公報参照)。周知の如く、通常、
高エネルギ−ビ−ム溶接は真空室内で行なわれるので、
上記複合スラブの組み立て法に従い重ね合わせ面の四周
を高エネルギ−ビ−ムビ−ム溶接によって密封すれば、
接合すべき面は必然的に高真空に保たれ、空気抜きのた
めの冷間圧延設備やプレス設備を必要としないばかり
か、空気抜き孔の溶接・密封作業も不要となる。
On the other hand, the surfaces to be joined of the respective material metals are cleaned and superposed, and the four circumferences of the superposed surfaces (the surfaces to be joined) are electron beam welded or laser beam welded. There is a method of assembling a composite slab for hot-bonding and rolling by sealing it by high energy beam welding (see Japanese Patent Publication No. 55-6498). As we all know,
Since high energy beam welding is performed in a vacuum chamber,
According to the method of assembling the composite slab described above, if the four laps of the superposed surfaces are sealed by high energy beam beam welding,
The surfaces to be joined are inevitably kept in a high vacuum, and not only cold rolling equipment and press equipment for air venting are required, but also welding and sealing operations for air venting holes are unnecessary.

【0007】ところが、高エネルギ−ビ−ム溶接を適用
した複合スラブであっても次のような問題が指摘され
た。即ち、熱間圧延に供するために複合スラブを加熱す
ると、その際の熱応力によって溶接部に破断が生じ接合
すべき面の気密性維持ができない場合があり、所望の接
合強度が得られないとの問題である。そこで、このよう
な不都合を防止しようとの観点から、前記特公昭55−
6498号に係わる提案においても「複合スラブの密封
溶接部強度を左右する溶込み深さを特定量以上確保する
こと」が必須の条件となっている。
However, the following problems have been pointed out even with a composite slab to which high energy beam welding is applied. That is, when the composite slab is heated in order to be subjected to hot rolling, the thermal stress at that time may cause the fracture of the welded portion and the airtightness of the surfaces to be joined may not be maintained, and the desired joining strength cannot be obtained. Is a problem. Therefore, from the viewpoint of preventing such inconvenience, the Japanese Patent Publication No.
In the proposal related to No. 6498, "to secure a penetration depth that exceeds the specified amount that affects the strength of the sealed weld portion of the composite slab" is an essential condition.

【0008】しかし、複合スラブ組み立て時の密封溶接
は異材溶接であるので熱起電力が発生しやすく、更に残
留磁気が存在することも考えられるものであるが、電子
ビ−ムやレ−ザ−ビ−ム等はこれらに影響されて曲がり
を生じやすく、そのため溶接部が図4の如くに偏向し必
要な溶込み深さが確保されにくいとの問題があった。し
かも、接合圧延の実際作業では、複合スラブ加熱時の熱
応力だけではなく、圧延時の変形応力によっても破壊さ
れないだけの更に十分な溶込み深さを確保しないと、安
定した接合部性能が確保できないことが明らかとなっ
た。従って、実際上、必要な溶込み深さを確保すること
が困難な前記「特公昭55−6498号として提案され
た方法」も工業的には十分満足できるものとは言えなか
った。
However, since the hermetic sealing welding at the time of assembling the composite slab is a dissimilar material welding, thermoelectromotive force is apt to be generated, and it is also considered that there is residual magnetism, but the electron beam and the laser are also present. The beam and the like are apt to be bent due to these influences, and therefore the welded portion is deflected as shown in FIG. 4 and it is difficult to secure a necessary penetration depth. Moreover, in the actual work of joining and rolling, stable joining performance is ensured unless a sufficient penetration depth is secured so that it is not broken by not only the thermal stress at the time of heating the composite slab but also the deformation stress at the time of rolling. It became clear that it was not possible. Therefore, in practice, the above-mentioned "method proposed as JP-B-55-6498", in which it is difficult to secure the necessary penetration depth, cannot be said to be sufficiently satisfactory industrially.

【0009】このようなことから、本発明が目的とした
のは、接合部性能の優れたクラッド鋼材を煩雑な手数や
格別に高価な設備を必要とすることなく安定かつ安価に
製造し得る手段を確立することであった。
In view of the above, the object of the present invention is to provide a means for stably and inexpensively producing a clad steel material having excellent joint performance, without the need for complicated steps and particularly expensive equipment. Was to establish.

【0010】[0010]

【課題を解決するための手段】本発明者は、上記目的を
達成すべく鋭意研究を重ねた結果、次のような知見を得
ることができた。 (A) 成品クラッド鋼材の接合部性能を高位に安定化させ
るには“複合スラブ加熱時の熱応力による溶接部破断対
策”に加えて“接合圧延時の変形応力による溶接部破断
で気密性が破られることへの対策”が必要である。即
ち、接合圧延法によって所望性能の積層複合金属材を安
定製造するは、熱応力による溶接部破断への対策は勿論
重要であるが、これと共に接合圧延の初期パス(圧延に
より接合が進展するまでの間)で生じる変形応力に耐え
るだけの溶接部強度(溶込み深さ)を複合スラブに確保
しておくことが重要な要素となる。しかるに、接合すべ
き面の真空封入が容易である高エネルギ−ビ−ム溶接を
密封手段として適用する場合には、前述したように十分
な溶込み深さを確保することができないが、接合すべき
面の単なる密封のための仮付けにのみ高エネルギ−ビ−
ム溶接を適用すると共に、その後これを真空室から取り
出し、加熱・接合圧延を実施する前に十分な溶込み深さ
が容易に得られる溶接手段(例えば大気中等でのア−ク
溶接等)で本溶接すれば、接合すべき面の真空封入が容
易である上、接合部性能を高位に安定化させるのに必要
な所定の密封溶接部溶込み深さの確保も簡単かつ確実に
行えるようになる。また、この場合には、長時間にわた
り真空室を使用する必要もなくなり、コスト的にも有利
となる。
The present inventor has obtained the following knowledge as a result of earnest studies to achieve the above object. (A) In order to stabilize the joint performance of the product clad steel at a high level, in addition to "Countermeasures against weld fracture due to thermal stress during composite slab heating", "Airtightness due to weld fracture due to deformation stress during joint rolling""Measures against being broken" are necessary. That is, in order to stably produce a laminated composite metal material with desired performance by the joining rolling method, it is of course important to take measures against weld fracture due to thermal stress, but at the same time, the initial pass of joining rolling (until the joining progresses due to rolling) It is an important factor to secure sufficient weld strength (penetration depth) in the composite slab to withstand the deformation stress that occurs during (between). However, when high energy beam welding, which facilitates vacuum sealing of the surfaces to be joined, is used as the sealing means, it is not possible to secure a sufficient penetration depth as described above, but joining is performed. High energy beam only for temporary attachment for mere sealing of the power surface
Welding means (for example, arc welding in the atmosphere, etc.) that can easily obtain a sufficient penetration depth before applying heat welding and rolling while taking out this from the vacuum chamber. If the main welding is performed, it is easy to seal the surfaces to be joined in a vacuum, and it is also possible to easily and reliably secure the predetermined sealed weld penetration depth necessary for stabilizing the joint performance to a high level. Become. Further, in this case, it is not necessary to use the vacuum chamber for a long time, which is advantageous in cost.

【0011】(B) また、接合圧延による溶接部の塑性変
形による応力状態は圧延初期パスにおける接合進展度合
と密接な関係があり、接合が早く進めば圧延時の溶接部
破断の問題は軽減される。従って、例えば特公昭59−
11394号公報等で提案されている「複合スラブの接
合面間にNi箔等の金属箔媒接材を挿入して圧延プロセス
において接合すべき面間の接合を促進する手法」を活用
すれば、圧延初期での素材の速やかな接合が促されて圧
延による溶接部の塑性変形が無理なく進行することとな
り、溶接部にかかる剪断応力が小さくなるので、密封溶
接部の所要溶込み深さも軽減される。更に、合材の種類
によってはクラッド接合部に拡散による合金層が形成さ
れて界面の剥離強度が低下することがあるが、金属箔媒
接材の挿入によりこのような不都合も防止でき、加工度
の高い部材に適用できる高品位のクラッド材の製造が可
能となる。
(B) Further, the stress state due to the plastic deformation of the welded portion due to the joint rolling has a close relation with the degree of joint progress in the initial rolling pass, and the problem of fracture of the welded portion during rolling can be alleviated if the joint progresses quickly. It Therefore, for example, Japanese Patent Publication No. 59-
By utilizing the "method of accelerating the joining between the surfaces to be joined in the rolling process by inserting a metal foil medium contacting material such as Ni foil between the joining surfaces of the composite slab" proposed in Japanese Patent No. 11394, etc., The prompt joining of the materials at the beginning of rolling promotes the plastic deformation of the welded portion due to rolling, and the shear stress applied to the welded portion is reduced, so the required penetration depth of the sealed welded portion is also reduced. It Furthermore, depending on the type of mixture, an alloy layer may be formed in the clad joint due to diffusion and the peel strength at the interface may be reduced. It is possible to manufacture a high-quality clad material that can be applied to high-quality members.

【0012】本発明は、上記知見事項等を基にして完成
されたものであり、「接合圧延によりクラッド鋼材を製
造する際、 まず接合すべき面を清浄化した複数の素材金
属間にNi箔等の金属箔から成る媒接材を挿入して重ね合
わせると共に、 その接合すべき面の四周を真空中での高
エネルギ−ビ−ム溶接で仮付けして密封し、 次いで前記
四周の本溶接を行って所定の溶接部溶込み深さが確保さ
れた複合スラブとした後、 この複合スラブを熱間又は温
間で接合圧延することによって、 接合部性能の優れたク
ラッド鋼材を安定に低コストで製造し得るようにした
点」に大きな特徴を有している。
The present invention has been completed based on the above findings and the like. "When manufacturing a clad steel material by joint rolling, first, Ni foils are formed between a plurality of material metals whose surfaces to be joined are cleaned. Insert a medium contact material made of metal foil, etc., and stack them together, and temporarily seal the four sides of the surfaces to be joined by high energy beam welding in a vacuum to seal them, and then perform the main welding of the four sides. After performing the above process to form a composite slab with a predetermined weld penetration depth, hot- or warm-bonding the composite slab to stably bond clad steel with excellent joint performance at low cost. It has a major feature in that it can be manufactured in.

【0013】ここで、媒接材として使用する金属箔はNi
箔のみに限定されるものではなく、素材の種類その他の
条件に応じて公知のもの(例えば特公昭59−1139
4号公報参照)等の中から適宜選択すれば良い。また、
高エネルギ−ビ−ム溶接とは、真空室内で電子ビ−ム,
レ−ザ−ビ−ム等の高エネルギ−ビ−ムを照射して実施
される溶接を総称したものであることは言うまでもな
い。この高エネルギ−ビ−ム溶接は真空度確保に主眼を
おいた仮付け溶接であるので、溶込み深さは浅くても差
支えはない。例えば、図1は、ステンレス鋼を合材とし
た複合スラブ(基材は炭素鋼)の電子ビ−ム仮付け溶接
での「真空度確保に必要な溶込み深さ」の調査結果を示
すグラフであるが、この図1からも仮付け溶接では非常
に少ない溶込み深さであっても構わないことが確認でき
る。本溶接としては、十分な溶込み深さが容易に得られ
る通常の大気中でのア−ク溶接(例えばMIG溶接等)
が適当である。そして、本溶接では“加熱時の熱応力”
及び“圧延時の変形応力”によっても破断しない強度が
溶接部に付与される溶込み深さを確保する必要があり、
これは合材の板厚,常温での合材又は基材の幅,常温で
の合材又は基材の長さ,クラッド比,圧延ロ−ル径,圧
延時の1パス当りの圧下量等を考慮した実験デ−タ等に
基づいて算出すれば良い。
Here, the metal foil used as the medium contact material is Ni
The material is not limited to foil, but is well known depending on the type of material and other conditions (for example, Japanese Patent Publication No. 59-1139).
(See Japanese Patent Publication No. 4)) and the like. Also,
High energy beam welding means electron beam in a vacuum chamber,
Needless to say, it is a generic term for welding performed by irradiating a high energy beam such as a laser beam. Since this high-energy beam welding is a temporary welding that focuses on ensuring the degree of vacuum, there is no problem even if the penetration depth is shallow. For example, FIG. 1 is a graph showing the result of investigation of "penetration depth required to secure vacuum degree" in electron beam tack welding of a composite slab made of stainless steel (base material is carbon steel). However, it can be confirmed from FIG. 1 that the penetration depth may be very small in tack welding. As the main welding, arc welding (for example, MIG welding) in normal atmosphere where a sufficient penetration depth can be easily obtained
Is appropriate. In the main welding, "thermal stress during heating"
And it is necessary to secure a penetration depth that gives strength to the welded part that does not break even by "deformation stress during rolling".
This is the thickness of the composite material, the width of the composite material or base material at room temperature, the length of the composite material or base material at room temperature, the clad ratio, the rolling roll diameter, the rolling amount per pass during rolling, etc. It may be calculated based on experimental data or the like in consideration of.

【0014】続いて、本発明を実施例によって説明す
る。
Next, the present invention will be described with reference to examples.

〔炭素鋼母材〕[Carbon steel base material]

炭素含有量:0.05重量%, 寸法:250mm厚×2200mm幅×4000mm長。 〔ステンレス鋼合材〕 材質:SUS304, 寸法:30mm厚×2200mm幅×4000mm長。 〔Ni箔媒接材〕 材質:純Ni, 厚さ:0.1mm 。 Carbon content: 0.05% by weight, dimensions: 250 mm thickness x 2200 mm width x 4000 mm length. [Stainless steel mixture] Material: SUS304, Dimensions: 30mm thickness x 2200mm width x 4000mm length. [Ni foil medium contact material] Material: pure Ni, thickness: 0.1 mm.

【0015】なお、複合スラブの組み立てに際しては、
まず母材及び合材の接合面を研磨し清浄化した後、その
接合面間にNi箔を挿入し、真空室(真空度10-2〜10-5To
rr)で電子ビ−ム照射による接合面四周の仮付け溶接を
実施して接合面の真空密封を行った。この仮付け溶接で
の溶込み深さは5mmであった。
When assembling the composite slab,
First, the joint surfaces of the base material and the composite material are polished and cleaned, then Ni foil is inserted between the joint surfaces, and the vacuum chamber (vacuum degree 10 -2 to 10 -5 To
rr), the bonding surface was vacuum-sealed by performing temporary welding on the four circumferences of the bonding surface by electron beam irradiation. The penetration depth in this tack welding was 5 mm.

【0016】次いで、真空室に給気して大気雰囲気とし
た後、MIG溶接によって仮付けした溶接部の本溶接を
実施した。この本溶接後の溶込み深さは25mmであっ
た。そして、上述のように組み立てられた複合スラブを
1250℃に加熱後、ロ−ル径が1000mmの圧延機に
て接合圧延し、厚さ:20mm+2.5mm のクラッド鋼板を製
造した。
Next, after the air was supplied to the vacuum chamber to create an air atmosphere, main welding of the welded portion temporarily attached by MIG welding was performed. The penetration depth after this main welding was 25 mm. Then, the composite slab assembled as described above was heated to 1250 ° C., and was then joint-rolled with a rolling machine having a roll diameter of 1000 mm to produce a clad steel plate having a thickness of 20 mm + 2.5 mm.

【0017】得られたクラッド鋼板は超音波検査歩留が
100%で、接合界面の剪断強度が37kgf/mm2 と言う
高い値を示した。
The obtained clad steel sheet had an ultrasonic inspection yield of 100% and a high shear strength of 37 kgf / mm 2 at the joint interface.

【0018】実施例 2 次に示す炭素鋼母材,ステンレス鋼合材,Ni箔媒接材を
準備し、図3の如き複合スラブに組み立てた。 〔炭素鋼母材〕 炭素含有量:0.05重量%, 寸法:100mm厚×2200mm幅×4000mm長。 〔ステンレス鋼合材〕 材質:SUS304, 寸法:30mm厚×2150mm幅×3950mm長。 〔Ni箔媒接材〕 材質:純Ni, 厚さ:0.1mm 。
Example 2 The following carbon steel base material, stainless steel composite material and Ni foil medium contact material were prepared and assembled into a composite slab as shown in FIG. [Carbon steel base material] Carbon content: 0.05% by weight, dimensions: 100 mm thickness x 2200 mm width x 4000 mm length. [Stainless steel mixture] Material: SUS304, Dimensions: 30mm thickness x 2150mm width x 3950mm length. [Ni foil medium contact material] Material: pure Ni, thickness: 0.1 mm.

【0019】なお、複合スラブの組み立てに際しては、
まず母材及び合材の接合面を研磨し清浄化した後、その
接合面間にNi箔を挿入し、真空室(真空度10-2〜10-5To
rr)で電子ビ−ム照射による接合面四周の仮付け溶接を
実施して接合面の真空密封を行った。この仮付け溶接で
の溶込み深さは5mmであった。
When assembling the composite slab,
First, the joint surfaces of the base material and the composite material are polished and cleaned, then Ni foil is inserted between the joint surfaces, and the vacuum chamber (vacuum degree 10 -2 to 10 -5 To
rr), the bonding surface was vacuum-sealed by performing temporary welding on the four circumferences of the bonding surface by electron beam irradiation. The penetration depth in this tack welding was 5 mm.

【0020】次いで、真空室に給気して大気雰囲気とし
た後、MIG溶接によって仮付けした溶接部の本溶接を
実施した。この本溶接後の溶込み深さは28mmであっ
た。そして、上述のように組み立てられた複合スラブを
1250℃に加熱後、ロ−ル径が1000mmの圧延機に
て接合圧延し、厚さ:12mm+2.5mm のクラッド鋼板を製
造した。
Next, after the air was supplied to the vacuum chamber to create an air atmosphere, main welding of the welded portion temporarily attached by MIG welding was performed. The penetration depth after this main welding was 28 mm. The composite slab assembled as described above was heated to 1250 ° C., and was then joint-rolled with a rolling machine having a roll diameter of 1000 mm to produce a clad steel plate having a thickness of 12 mm + 2.5 mm.

【0021】得られたクラッド鋼板は超音波検査歩留が
100%で、接合界面の剪断強度が35kgf/mm2 と言う
高い値を示した。
The obtained clad steel sheet had an ultrasonic inspection yield of 100% and a high shear strength of 35 kgf / mm 2 at the joint interface.

【0022】[0022]

【効果の総括】以上に示した如く、本発明によれば、接
合部性能の優れたクラッド鋼材を容易かつ安価に、しか
も安定して製造することが可能となるなど、産業上極め
て有用な効果がもたらされる。
[Summary of Effects] As described above, according to the present invention, it is possible to produce a clad steel material having excellent joint performance easily, inexpensively, and stably, which is an extremely useful effect in industry. Is brought about.

【図面の簡単な説明】[Brief description of drawings]

【図1】複合スラブ組み立て時における仮付け溶接での
必要溶込み深さを示したグラフである。
FIG. 1 is a graph showing a required penetration depth in tack welding during assembly of a composite slab.

【図2】実施例での複合スラブ組み立て状況を示した模
式図である。
FIG. 2 is a schematic diagram showing a composite slab assembly state in an example.

【図3】別の実施例での複合スラブ組み立て状況を示し
た模式図である。
FIG. 3 is a schematic diagram showing an assembled state of a composite slab in another example.

【図4】高エネルギ−ビ−ム溶接でのビ−ム偏向状況を
示した模式図である。
FIG. 4 is a schematic view showing a beam deflection state in high energy beam welding.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B23K 15/00 505 B23K 15/00 505 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B23K 15/00 505 B23K 15/00 505

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 接合圧延によるクラッド鋼材の製造にお
いて、まず接合すべき面を清浄化した複数の素材金属間
に金属箔から成る媒接材を挿入して重ね合わせると共
に、その接合すべき面の四周を真空中での高エネルギ−
ビ−ム溶接で仮付けして密封し、次いで前記四周の本溶
接を行って所定の溶接部溶込み深さが確保された複合ス
ラブとした後、この複合スラブを熱間又は温間で接合圧
延することを特徴とするクラッド鋼材の製造方法。
1. In the production of a clad steel material by joint rolling, first, a medium contact material made of a metal foil is inserted and superposed between a plurality of material metals whose surfaces to be joined are cleaned, and the surfaces to be joined are joined together. High energy in a vacuum on four laps
After temporarily attaching by beam welding and sealing, and then performing the main welding of the four rounds to form a composite slab in which a predetermined weld penetration depth is secured, the composite slab is joined hot or warm. A method for producing a clad steel material, which comprises rolling.
JP3094738A 1991-04-01 1991-04-01 Clad steel manufacturing method Expired - Lifetime JP2541392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3094738A JP2541392B2 (en) 1991-04-01 1991-04-01 Clad steel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3094738A JP2541392B2 (en) 1991-04-01 1991-04-01 Clad steel manufacturing method

Publications (2)

Publication Number Publication Date
JPH04305383A JPH04305383A (en) 1992-10-28
JP2541392B2 true JP2541392B2 (en) 1996-10-09

Family

ID=14118458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3094738A Expired - Lifetime JP2541392B2 (en) 1991-04-01 1991-04-01 Clad steel manufacturing method

Country Status (1)

Country Link
JP (1) JP2541392B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665395B2 (en) * 2003-12-25 2011-04-06 住友金属工業株式会社 Welding positioning device
CN101947571B (en) * 2010-09-06 2012-08-08 杨自芬 Manufacturing method of compound steel
CN102179405B (en) * 2011-01-27 2013-01-02 东北大学 Method for preventing interface of stainless steel compound plate subjected to vacuum composite rolling from being oxidized
CN103878176A (en) * 2014-03-12 2014-06-25 森港机械刀片有限公司 Method for compositing tool steel and stainless steel through vacuum hot rolling
CN105710542B (en) * 2014-12-01 2019-03-26 鞍钢股份有限公司 A method of avoid medium and high carbon steel composite welding crackle from generating
CN106345809B (en) * 2016-10-28 2018-07-03 鞍钢未来钢铁研究院有限公司 A kind of assembly method using vacuum complex technique production super-thick steel plate
CN106890850A (en) * 2017-03-03 2017-06-27 河钢股份有限公司 A kind of vacuum hot rolling method of composite metal plate
CN109420837B (en) * 2017-08-25 2020-10-27 鞍钢股份有限公司 Method for preventing welding cracks of high-carbon steel vacuum electron beam welding
CN107511397B (en) * 2017-09-15 2019-11-08 舞阳钢铁有限责任公司 A kind of vacuum hot rolling method of AB type composite plate
CN113145645A (en) * 2021-05-11 2021-07-23 西安建筑科技大学 Metal-based layered composite material with interlayer and preparation method thereof
CN113909299A (en) * 2021-09-08 2022-01-11 舞阳钢铁有限责任公司 Production method of stainless steel composite board
CN114653764A (en) * 2022-02-22 2022-06-24 山东钢铁集团日照有限公司 Method for producing single-sided heterogeneous composite steel plate by hot rolling method
CN114505343B (en) * 2022-03-16 2023-11-24 山东钢铁集团日照有限公司 Preparation method of composite board assembly capable of ensuring smooth biting of rolling and rolling method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556498A (en) * 1979-06-25 1980-01-17 Kobe Steel Ltd Highly conductive copper alloy for electricity
JPS61226192A (en) * 1985-03-29 1986-10-08 Nippon Kokan Kk <Nkk> Production of clad metal plate
JPS61269988A (en) * 1985-05-27 1986-11-29 Nippon Kokan Kk <Nkk> Manufacture of clad metallic plate
JPS62214882A (en) * 1986-03-14 1987-09-21 Nippon Kokan Kk <Nkk> Production of clad metallic plate
JPS6352784A (en) * 1986-08-21 1988-03-05 Nippon Kokan Kk <Nkk> Manufacture of clad metal plate

Also Published As

Publication number Publication date
JPH04305383A (en) 1992-10-28

Similar Documents

Publication Publication Date Title
JP2541392B2 (en) Clad steel manufacturing method
US5579988A (en) Clad reactive metal plate product and process for producing the same
JP2672182B2 (en) Joining method for steel-based materials and aluminum-based materials
JPH0335886A (en) Manufacture of titanium clad material
JPH01283367A (en) Production of target for sputtering
JPH08141754A (en) Manufacture of titanium clad steel plate and titanium clad steel plate
JP2514858B2 (en) Manufacturing method of clad steel plate
JPH0558837B2 (en)
JPS59206183A (en) Production of titanium or titanium alloy clad steel
JP2658612B2 (en) Manufacturing method of composite slab for hot rolling
KR20010028935A (en) A method for cladding Stainless steel and Titanium
JPS6039477B2 (en) Manufacturing method of clad steel plate
JPH0452181B2 (en)
JPS6351795B2 (en)
JP2877283B2 (en) Honeycomb manufacturing method
JPH09108858A (en) Manufacture of dissimilar metal joint of zr and stainless steel
JP2823411B2 (en) Diffusion bonding member manufacturing method
JP3323605B2 (en) Manufacturing method of copper clad steel sheet
JPH069907B2 (en) Method for producing composite material composed of graphite and metal
JPH11245063A (en) Jointing method of titanium cladded steel plate
JPS6293089A (en) Production of clad steel
JPH0350634B2 (en)
JPH05177363A (en) Production of copper clad steel products
JPS6245485A (en) Production of clad metallic sheet
JPH05169281A (en) Manufacture of tantalum/copper/stainless steel (carbon steel) clad