JP2538624B2 - Brushless motor drive - Google Patents

Brushless motor drive

Info

Publication number
JP2538624B2
JP2538624B2 JP62284041A JP28404187A JP2538624B2 JP 2538624 B2 JP2538624 B2 JP 2538624B2 JP 62284041 A JP62284041 A JP 62284041A JP 28404187 A JP28404187 A JP 28404187A JP 2538624 B2 JP2538624 B2 JP 2538624B2
Authority
JP
Japan
Prior art keywords
voltage
phase
magnetic pole
armature
induced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62284041A
Other languages
Japanese (ja)
Other versions
JPH01126192A (en
Inventor
嘉伸 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP62284041A priority Critical patent/JP2538624B2/en
Publication of JPH01126192A publication Critical patent/JPH01126192A/en
Application granted granted Critical
Publication of JP2538624B2 publication Critical patent/JP2538624B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は各相の電機子巻線に誘起される誘起電圧に基
づいて回転子の位置を検出するようにしたブラシレスモ
ータの駆動装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention is directed to a brushless motor configured to detect the position of a rotor based on an induced voltage induced in an armature winding of each phase. Drive device.

(従来の技術) ブラシレスモータは、回転子側に配置した界磁磁極の
位置を検出し、これに応じて固定子側に配置した電機子
巻線の通断電を制御する構成である。斯かる構成におい
て界磁磁極の位置を検出する方式として、近年、回転子
の回転に伴い各相の電機子巻線に電圧が誘起されること
を利用するものが供されており、その従来例を第5図に
示した。ここで、1は直流電源、2はスイッチング素子
3をオンオフさせることにより三相の電機子巻線4u,4v,
4wの通断電を制御する出力回路、5は各相の電機子巻線
に誘起させる電圧を検出する誘起電圧検出回路、6は磁
極位置検出回路である。磁極位置検出回路6は、誘起電
圧検出回路5により検出された各相の誘起電圧の差に相
当する相間検出電圧を生成すると共に、その相間検出電
圧のゼロクロス点を検出することにより120゜ずつずれ
たパルス幅180゜(いずれも電気角)の磁極位置検出信
号を出力する。具体的に示すと、各相の電機子巻線の誘
起電圧は、回転子の界磁磁極7が回転することに伴い第
6図(A)〜(C)の通りとなり、従って各相間検出電
圧は同図(D)〜(F)に示す台形波となり、これらの
ゲロクロス点に基づきパルス化した磁極位置検出信号S
I,S II,S IIIは同図(G)〜(I)に示す通りとなる。
これらの磁極位置検出信号S I,S II,S IIIは論理回路8
に与えられ、ここで6個のスイッチング素子3を夫々オ
ンオフ制御するためのパルス幅120゜の通電タイミング
信号(同図(J)〜(O))が得られる。そして、この
通電タイミング信号に基づき制御回路9により前記出力
回路2の各スイッチング素子3がオンオフ制御される。
(Prior Art) A brushless motor is configured to detect the position of a field magnetic pole arranged on the rotor side and control the on / off switching of an armature winding arranged on the stator side according to the detected position. As a method for detecting the position of the field magnetic poles in such a configuration, there has recently been provided a method that utilizes the fact that a voltage is induced in the armature winding of each phase as the rotor rotates, and a conventional example thereof. Is shown in FIG. Here, 1 is a DC power supply, 2 is a three-phase armature winding 4u, 4v,
An output circuit 5 which controls the interruption and interruption of 4w, an induced voltage detection circuit 5 which detects a voltage induced in the armature winding of each phase, and a magnetic pole position detection circuit 6. The magnetic pole position detection circuit 6 generates a phase-to-phase detection voltage corresponding to the difference between the induced voltages of the respective phases detected by the induced voltage detection circuit 5, and detects the zero-cross point of the phase-to-phase detection voltage to shift by 120 °. It also outputs a magnetic pole position detection signal with a pulse width of 180 ° (both are electrical angles). Specifically, the induced voltage in the armature winding of each phase becomes as shown in FIGS. 6 (A) to 6 (C) as the field magnetic pole 7 of the rotor rotates. Are trapezoidal waves shown in (D) to (F) of the figure, and the magnetic pole position detection signal S is pulsed based on these gelocross points.
I, S II, and S III are as shown in (G) to (I) of FIG.
These magnetic pole position detection signals SI, S II, S III are the logic circuit 8
And the energization timing signals ((J) to (O) in the same figure) with a pulse width of 120 ° for controlling ON / OFF of the six switching elements 3 respectively are obtained. Then, based on this energization timing signal, the control circuit 9 controls on / off of each switching element 3 of the output circuit 2.

ところで、この種のモータにあっては、電機子電流が
増大するにつれその影響で空隙磁束が歪むため、電気的
中性軸が幾何学的中性軸から回転方向とは反対側に移動
するという電機子反作用が不可避である。しかるに、上
記従来構成では、相間検出電圧のゼロクロス点を基準に
通電タイミング信号を得るに過ぎないから、電機子電流
の増大に伴い、トルク発生に最適な時点からの通電タイ
ミング信号はずれが大きくなり、効率低下を招く上、最
悪の場合には整流不良に至る問題があった。
By the way, in this type of motor, as the armature current increases, the air gap magnetic flux is distorted due to the effect, so that the electrical neutral axis moves from the geometric neutral axis to the side opposite to the rotation direction. Armature reaction is inevitable. However, in the above-mentioned conventional configuration, since the energization timing signal is only obtained with reference to the zero-cross point of the interphase detection voltage, the energization timing signal from the optimum time point for torque generation becomes large with an increase in the armature current, In addition to causing a decrease in efficiency, there is a problem that in the worst case, rectification failure occurs.

斯る問題を解決するには、例えば特公昭61−59073号
公報に記載された技術も供されている。これは、2相分
の線間電圧及び相電流を検出して3相の線間起電力を演
算により求め、これらを夫々積分して3相の磁束波形を
求め、更にこの磁束波形を位相基準信号とし且つこれを
電機子電流の大きさに比例した信号として与えることに
より電機子反作用による影響を補正せんとするものであ
る。
To solve such a problem, for example, the technique described in Japanese Patent Publication No. 61-59073 is also provided. This is to detect the line voltage and phase current for two phases, calculate the three-phase line electromotive force, integrate each of these to find the three-phase magnetic flux waveform, and then use this magnetic flux waveform as the phase reference. The effect of the armature reaction is corrected by applying the signal as a signal and a signal proportional to the magnitude of the armature current.

(発明が解決しようとする問題点) 上述の構成では、位相基準信号が磁束波形であるか
ら、信号振幅が回転速度に依存せず低速度範囲において
も安定な制御が可能であり且つ電機子反作用による磁界
の歪があっても適切な整流をなしうるという利点があ
る。しかしながら上述の構成とすると、電圧・電流等の
検出要素が増大し且つそれらの信号を処理する回路が必
要になるため、全体として構成が複雑化することを避け
得ない。また、磁束波形を得るために線間起電力を積分
して位相を90゜ずらすようにしているため、急速な速度
変動に対して十分な追従性が得られないという欠点があ
る。
(Problems to be Solved by the Invention) In the above configuration, since the phase reference signal is the magnetic flux waveform, the signal amplitude does not depend on the rotation speed, and stable control is possible even in the low speed range, and the armature reaction There is an advantage that proper rectification can be performed even if there is distortion of the magnetic field due to. However, with the above-described configuration, the number of detection elements such as voltage and current increases, and a circuit for processing those signals is required. Therefore, it is inevitable that the configuration becomes complicated as a whole. Further, since the line electromotive force is integrated to shift the phase by 90 ° in order to obtain the magnetic flux waveform, there is a disadvantage that sufficient followability cannot be obtained even for rapid speed fluctuations.

本発明は上記事情に鑑みてなされたものであって、そ
の目的は、モータの回転速度に影響を受けずに安定的制
御を可能にし且つ電機子反作用による磁界の歪があって
も適切な整流をなし得ることは勿論のこと、構成の簡単
化及び速度変動に対する高速応答も可能にできるブラシ
レスモータの駆動装置を提供するにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to enable stable control without being affected by the rotation speed of a motor, and to appropriately commutate even if there is magnetic field distortion due to armature reaction. It is an object of the present invention to provide a drive device for a brushless motor, which is capable of simplifying the structure and capable of high-speed response to speed fluctuation.

[発明の構成] (問題点を解決するための手段) 本発明に係るブラシレスモータの駆動装置は、回転子
の回転に伴い各相の電機子巻線に誘起される電圧を検出
する誘起電圧検出手段と、電機子巻線に印加される電圧
と電機子電流とに比例するパルス高で且つ前記回転子の
回転速度に応じたパルス幅の基準電圧を発生する基準電
圧発生手段と、前記誘起電圧検出手段により検出された
各相の誘起電圧のうち任意の2相間の電位差に対応する
相間検出電圧と前記基準電圧とを比較することにより磁
極位置検出信号を出力する磁極位置検出手段と、この磁
極位置検出信号に基づいて通電タイミング信号を出力す
る制御手段と、この通電タイミング信号に基づいてスイ
ッチング素子がオンオフすることにより各相の電機子巻
線の通断電を制御する出力回路とを具備せる構成とした
ところに特徴を有するものである。
[Configuration of Invention] (Means for Solving Problems) A brushless motor drive device according to the present invention detects an induced voltage that detects a voltage induced in an armature winding of each phase as a rotor rotates. Means, reference voltage generating means for generating a reference voltage having a pulse height proportional to the voltage applied to the armature winding and the armature current and having a pulse width according to the rotation speed of the rotor, and the induced voltage Magnetic pole position detection means for outputting a magnetic pole position detection signal by comparing the reference voltage with the interphase detection voltage corresponding to the potential difference between any two phases among the induced voltages of each phase detected by the detection means, and the magnetic pole. Control means for outputting an energization timing signal based on the position detection signal and an output for controlling energization / disconnection of the armature winding of each phase by turning on / off the switching element based on the energization timing signal. Those having features was constructed to and a circuit.

(作用) 上記手段によれば、各相の誘起電圧差に対応する相間
検出電圧は台形波状となり、これと比較される基準電圧
は、電機子電流が増大するとこれに比例して増大する。
この結果、磁極位置検出手段から出力される磁極位置検
出信号ひいては通電タイミング信号は電機子電流の大き
さに比例して位相がずれるようになり、これにて電機子
反作用による影響が補正される。この場合、測定要素
は、各相の電機子巻線に誘起される誘起電圧と電機子電
流のみで済むから、構成が簡単になり、また積分動作を
行なわないから、高速応答も可能になる。しかも、電機
子巻線に印加される電圧が低くモータの回転速度が低下
するときには、誘起電圧ひいては相間検出電圧が低下す
るが、これに伴い基準電圧発生手段から出力される基準
電圧も電機子巻線に印加される電圧に比例して低下する
から、モータの回転速度の影響を受けることなく安定的
な制御が可能になる。
(Operation) According to the above means, the interphase detection voltage corresponding to the induced voltage difference of each phase has a trapezoidal wave shape, and the reference voltage to be compared with this increases in proportion to the increase of the armature current.
As a result, the magnetic pole position detection signal output from the magnetic pole position detection means, and hence the energization timing signal, are out of phase in proportion to the magnitude of the armature current, thereby correcting the influence of the armature reaction. In this case, since the measuring element only needs the induced voltage and the armature current induced in the armature winding of each phase, the structure is simplified, and since the integral operation is not performed, high speed response is also possible. Moreover, when the voltage applied to the armature winding is low and the motor rotation speed is low, the induced voltage and thus the phase-to-phase detection voltage are low, but the reference voltage output from the reference voltage generating means is also reduced accordingly. Since the voltage decreases in proportion to the voltage applied to the line, stable control is possible without being affected by the rotation speed of the motor.

(実施例) 以下本発明を3相4極、120゜通電方式のブラシレス
モータに適用した一実施例につき第1図乃至第4図を参
照して説明する。
(Embodiment) An embodiment in which the present invention is applied to a brushless motor of three-phase, four-pole, 120 ° energization system will be described with reference to FIGS. 1 to 4.

まず、全体的な回路構成につき述べる。ブラシレスモ
ータの固定子側にはY結線した3相の電機子巻線10u,10
v,10wが配置され、回転子側には永久磁石により構成し
た界磁磁極11が配置されている。一方、12は出力電圧可
変形の直流電源、13は6個のスイッチング素子14を3相
ブリッジ接続して構成した出力回路で、この出力回路13
の各スイッチング素子14をオンオフさせることにより前
記各相の電気素子巻線10u,10v,10wの通断電が制御され
る。電機子巻線10u〜10wの各相端子U,V,Wとグランドラ
インの間には各相毎に2個の抵抗15,16直列接続して構
成した3組の分圧回路により誘起電圧検出手段17が構成
され、これにて回転子ひいては界磁磁極11の回転に伴い
各相の電機子巻線10u〜10wに誘起される誘起電圧が所定
の分圧比で分圧され、これが各相毎に磁極位置検出手段
18に出力される。この磁極位置検出手段18では、分圧さ
れた各相の誘起電圧のうち任意の2相間(U−V相間,V
−W相間,W−U相間)の各電位差に対応する3種の相間
検出電圧が生成されると共に、その各相間検出電圧と後
に詳述する基準電圧発生手段19からの基準電圧Vr1,Vr2,
Vr3とが比較され、その比較結果に基づく磁極位置検出
信号SS I,S II,S IIIが論理回路20に出力される。これ
らの磁極位置検出信号S I〜S IIIは、第6図(G)〜
(I)に示したものと同様に、互いに120゜ずつずれた
幅180゜(いずれも電気角)のパルス信号であり、論理
回路20はこの位置検出信号S I〜S IIIに基づき従来と同
様に、出力回路13の各スイッチング素子14をオンオフ制
御するためのパルス幅120゜の通電タイミング信号を生
成してドライブ回路21に出力する。これら論理回路20及
びドライブ回路21は協働して制御手段22として機能する
もので、上記通電タイミング信号に基づき出力回路13の
各スイッチング素子14がオンオフすることにより各相の
電機子巻線10u〜10wの通断電が制御される。
First, the overall circuit configuration will be described. On the stator side of the brushless motor, Y-connected 3-phase armature windings 10u, 10
v and 10w are arranged, and a field pole 11 composed of a permanent magnet is arranged on the rotor side. On the other hand, 12 is a variable output voltage type DC power supply, and 13 is an output circuit configured by connecting six switching elements 14 in a three-phase bridge.
By turning on / off each of the switching elements 14, the on / off of the electric element windings 10u, 10v, 10w of each phase is controlled. Induced voltage is detected by three sets of voltage dividing circuits, which consist of two resistors 15 and 16 connected in series between each phase terminal U, V and W of the armature winding 10u to 10w and the ground line. Means 17 is configured, by which the induced voltage induced in the armature windings 10u to 10w of each phase according to the rotation of the rotor and by extension of the field magnetic pole 11 is divided at a predetermined division ratio, and this is divided for each phase. Magnetic pole position detection means
Output to 18. In the magnetic pole position detection means 18, between any two phases (U-V phases, V) among the divided induced voltages of each phase.
-W phase, W-U phase) three types of interphase detection voltages corresponding to each potential difference are generated, and the interphase detection voltages and the reference voltages Vr1, Vr2, from the reference voltage generating means 19 described later in detail.
Vr3 is compared, and magnetic pole position detection signals SSI, SII, SIII based on the comparison result are output to the logic circuit 20. These magnetic pole position detection signals SI to SIII are shown in FIG.
Similar to the one shown in (I), the pulse signals have a width of 180 ° (both are electrical angles) deviated from each other by 120 °, and the logic circuit 20 is based on the position detection signals SI to S III and is similar to the conventional one. , Generates an energization timing signal having a pulse width of 120 ° for controlling on / off of each switching element 14 of the output circuit 13, and outputs the energization timing signal to the drive circuit 21. The logic circuit 20 and the drive circuit 21 function as the control means 22 in cooperation with each other, and the switching elements 14 of the output circuit 13 are turned on and off based on the energization timing signal, so that the armature windings 10u to The disconnection of 10w is controlled.

さて、前記基準電圧発生手段19には直流電源12の母線
12a,12bから電機子巻線に印加される電圧に応じた電圧
信号Svと、電流検出器23から電機子電流に応じた電流信
号Siが与えられる。この基準電圧発生手段19の具体的構
成は第2図に示されており、ここで24は電圧信号SvをTT
Lレベルに変換するレベル変換回路、25は電流信号Siを
電流に比例した電圧に変換する電流−電圧変換回路、26
電圧信号Svと電流信号Siとの双方に比例する電圧を発生
する電圧発生回路である。27は制御手段22から受ける回
転速度信号を遅延させる遅延回路で、前記磁極位置検出
信号S I〜S IIIのパルス幅は回転速度に対応しているか
ら、この実施例の場合その制御手段22からの位置検出信
号S I〜S IIIを回転速度信号として利用している。28は
正負切換回路で、これは遅延させた磁極位置検出信号が
ハイレベルにあるときに電圧発生回路26の出力電圧を正
にして出力し、ローレベルにあるときにその出力電圧を
負にして出力する。この正負切換回路28からの出力電圧
は前記基準電圧Vr1,Vr2,Vr3として前記磁極位置検出手
段18に出力されるもので、回転速度信号のパルス幅は回
転子の回転速度に反比例しているから、結局、基準電圧
Vr1,Vr2,Vr3のパルス高は電機子巻線に印加される電圧
と電機子電流とに比例し且つパルス幅は回転速度に反比
例することになる。尚、磁極位置検出手段18においてU
−V相の相間検出電圧と比較される基準電圧は、基準電
圧発生手段19において磁極位置検出信号S IIに基づき生
成された基準電圧Vr2であり、V−W相の相間検出電圧
と比較される基準電圧は磁極位置検出信号S IIIに基づ
き生成された基準電圧Vr3で、W−U相の検出電圧差と
比較される基準電圧は磁極位置検出信号S Iに基づき生
成された基準電圧Vr1である。
Now, the reference voltage generating means 19 includes a bus of the DC power supply 12.
A voltage signal Sv corresponding to the voltage applied to the armature winding from 12a, 12b and a current signal Si corresponding to the armature current are given from the current detector 23. The concrete configuration of the reference voltage generating means 19 is shown in FIG. 2, in which 24 is the voltage signal Sv
A level conversion circuit for converting to the L level, 25 is a current-voltage conversion circuit for converting the current signal Si into a voltage proportional to the current, 26
It is a voltage generation circuit that generates a voltage proportional to both the voltage signal Sv and the current signal Si. 27 is a delay circuit for delaying the rotation speed signal received from the control means 22, and since the pulse widths of the magnetic pole position detection signals SI to S III correspond to the rotation speed, in this embodiment, the control means 22 The position detection signals SI to SIII are used as rotation speed signals. 28 is a positive / negative switching circuit, which outputs a positive output voltage of the voltage generation circuit 26 when the delayed magnetic pole position detection signal is at a high level, and outputs a negative output voltage when it is at a low level. Output. The output voltage from the positive / negative switching circuit 28 is output to the magnetic pole position detecting means 18 as the reference voltages Vr1, Vr2, Vr3, and the pulse width of the rotation speed signal is inversely proportional to the rotation speed of the rotor. , After all, the reference voltage
The pulse heights of Vr1, Vr2, Vr3 are proportional to the voltage applied to the armature winding and the armature current, and the pulse width is inversely proportional to the rotation speed. In the magnetic pole position detecting means 18, U
The reference voltage compared with the interphase detection voltage of the −V phase is the reference voltage Vr2 generated by the reference voltage generation means 19 based on the magnetic pole position detection signal S II, and is compared with the interphase detection voltage of the VW phase. The reference voltage is the reference voltage Vr3 generated based on the magnetic pole position detection signal S III, and the reference voltage that is compared with the W-U phase detection voltage difference is the reference voltage Vr1 generated based on the magnetic pole position detection signal SI.

次に上記構成の作用につき説明する。 Next, the operation of the above configuration will be described.

今、回転子が回転しているとすると、各相の電機子巻
線10u〜10wには第6図(A)〜(C)に示すような誘起
電圧が発生する。この誘起電圧は誘起電圧検出手段17に
より検出・分圧されて磁極位置検出手段18に与えられ、
ここで各相間の誘起電圧の差に対応する第6図(D)〜
(F)に示すような台形波状の相間検出電圧が生成され
る。一方、直流電源12から定格電圧が出力されていると
すると、基準電圧発生手段19のレベル変換回路24から
は、第3図(A)に示すように100%の電圧信号Svが出
力される。また、電機子電流が定格値にあるとすると、
電流−電圧変換回路25から第3図(B)に実線で示すよ
うに、100%の電流信号Siが出力される。すると、この
場合には電圧発生回路26からは第3図(C)に実線で示
すように100%の電流信号Siがそのまま出力される。ま
た、基準電圧発生手段19の遅延回路27には各相の磁極位
置検出信号S I〜S IIIを回転速度信号として与えられて
いる。これの1相分を示すと第3図(D)に示すように
なっており、これは遅延回路27にて同図(E)に示すよ
うに遅延されて各相毎に正負切換回路28に与えられる。
尚、以下の説明において各相の動作は時間的に電気角で
120゜ずれた関係にあるので、1相分についてのみ述べ
る。即ち、正負切換回路28では、回転速度信号がハイレ
ベルにあるとき、電圧発生回路26の電圧を正極性にて出
力し、逆に回転速度信号がローレベルにあるときには電
圧発生回路26の出力電圧を負極性として出力し、結局、
第3図(C)及び(D)に示す信号が与えられている場
合には、正負切換回路28から同図(F)に実線で示すよ
うな基準電圧が出力される。そして、磁極位置検出手段
18では、前述したように台形波状の3種の相間検出電圧
が生成されており、これが上記基準電圧Vr1〜Vr3と比較
され、基準電圧が相間検出電圧よりも高い期間において
ハイレベルとなり且つ逆に基準電圧が相間検出電圧より
も低い期間においてローレベルとなる磁極位置検出信号
S I〜S IIIが生成される。この様子を図示すると第3図
(G),(H)に実線で示すようになる。このようにし
て得られた磁極位置検出信号S I〜S IIIは制御手段22に
与えられ、ここではその信号に基づき第6図(J)〜
(O)に示すような電気角120゜幅の通電タイミング信
号が生成され、出力回路13の各スイッチング素子14がこ
の通電タイミング信号に基づきオンオフされて電機子巻
線10u〜10wの通断電が制御される。
Now, assuming that the rotor is rotating, induced voltages as shown in FIGS. 6A to 6C are generated in the armature windings 10u to 10w of the respective phases. This induced voltage is detected and divided by the induced voltage detecting means 17 and given to the magnetic pole position detecting means 18,
Here, FIG. 6 (D) -corresponding to the difference in the induced voltage between each phase.
A trapezoidal interphase detection voltage as shown in (F) is generated. On the other hand, if the rated voltage is output from the DC power source 12, the level conversion circuit 24 of the reference voltage generating means 19 outputs a 100% voltage signal Sv as shown in FIG. 3 (A). If the armature current is at the rated value,
As shown by the solid line in FIG. 3B, the current-voltage conversion circuit 25 outputs a 100% current signal Si. Then, in this case, the voltage generation circuit 26 outputs the 100% current signal Si as it is, as shown by the solid line in FIG. Further, the magnetic pole position detection signals SI to SIII of each phase are given to the delay circuit 27 of the reference voltage generating means 19 as rotation speed signals. One phase of this is shown in FIG. 3 (D), which is delayed by the delay circuit 27 as shown in FIG. 3 (E) to the positive / negative switching circuit 28 for each phase. Given.
In the following description, the operation of each phase is temporal in terms of electrical angle.
Since there is a 120 ° offset relationship, only one phase will be described. That is, the positive / negative switching circuit 28 outputs the voltage of the voltage generation circuit 26 with a positive polarity when the rotation speed signal is at the high level, and conversely, when the rotation speed signal is at the low level, the output voltage of the voltage generation circuit 26. Is output as a negative polarity, and in the end,
When the signals shown in FIGS. 3C and 3D are given, the positive / negative switching circuit 28 outputs the reference voltage as shown by the solid line in FIG. And magnetic pole position detection means
In 18, as described above, three types of trapezoidal waveform interphase detection voltages are generated, which are compared with the reference voltages Vr1 to Vr3, and become high level while the reference voltage is higher than the interphase detection voltage, and conversely. Magnetic pole position detection signal that becomes low level while the reference voltage is lower than the interphase detection voltage
SI to S III are generated. This state is illustrated by solid lines in FIGS. 3 (G) and 3 (H). The magnetic pole position detection signals SI to SIII thus obtained are given to the control means 22, and here, based on the signals, FIG. 6 (J) to FIG.
An energization timing signal having an electrical angle width of 120 ° as shown in (O) is generated, and each switching element 14 of the output circuit 13 is turned on / off based on the energization timing signal to disconnect the armature windings 10u to 10w. Controlled.

さて、このようにして回転子が定格状態で回転してい
る際には、定格値の電機子電流の影響により比較的大き
な電機子反作用が生ずる。ところが、本実施例では相間
検出電圧を一定のゼロクロス点と比較するのではなく、
電機子電流に比例する基準電圧と比較しているので、第
3図(G)に示す角度α分だけ位置検出信号の位相がず
れて電機子反作用による電気的中性軸のずれを補正する
ことができる。また、負荷トルクが減少して電機子電流
が例えば定格値の50%となったときには、電機子反作用
はその分減少する。ところが、本実施例では、このよう
になると電流信号Siの低下により電流−電圧変換回路25
の出力電圧が第3図(B)に破線で示すように50%出力
となり、基準電圧も同図(F),(G)に破線で示すよ
うにパルス高が半分になる。即ち、基準電圧のパルス高
は電機子電流に比例して低下する。このため、磁極位置
検出信号のゼロクロス点からのずれ角は、第3図(H)
にて示すように定格運転時のαよりも小さくなり、もっ
て電機子反作用による電気的中性軸のずれを適切に補正
し得る最適な通電タイミング信号を得ることができる。
Now, when the rotor is rotating in the rated state in this way, a relatively large armature reaction occurs due to the influence of the rated value of the armature current. However, in this embodiment, instead of comparing the interphase detection voltage with a constant zero-cross point,
Since the comparison is made with the reference voltage proportional to the armature current, the phase of the position detection signal is shifted by the angle α shown in FIG. 3 (G) to correct the shift of the electrical neutral axis due to the armature reaction. You can Further, when the load torque decreases and the armature current reaches, for example, 50% of the rated value, the armature reaction decreases accordingly. However, in this embodiment, in this case, the current-voltage conversion circuit 25
Output voltage is 50% as shown by the broken line in FIG. 3 (B), and the reference voltage is also half the pulse height as shown by the broken line in FIGS. 3 (F) and (G). That is, the pulse height of the reference voltage decreases in proportion to the armature current. Therefore, the deviation angle of the magnetic pole position detection signal from the zero cross point is shown in FIG.
As shown in (4), the value becomes smaller than α during the rated operation, so that it is possible to obtain the optimum energization timing signal that can appropriately correct the deviation of the electrical neutral axis due to the armature reaction.

一方、直流電源12の出力電圧ひいては電機子巻線10u
〜10wに印加される電圧が定格値の例えば50%となって
回転速度が定格値の略半分になっているとすると、各相
の電機子巻線10u〜10wに誘起される誘起電圧は定格運転
時の半分になり、結局、磁極位置検出手段19に与えられ
る相間検出電圧も半分になる。ところが本実施例では、
この場合、基準電圧発生手段19のレベル変換回路24の出
力電圧は、第4図(A)に示すように50%出力となり、
電機子電流が定格値のままであるとすると、電圧発生回
路26の出力も同図(C)に実線で示すように50%となっ
て、結局、基準電圧は電機子巻線10u〜10wに印加される
電圧に比例して同図(F)に実線で示すように第3図
(F)の場合の50%の値となる。従って、同図(G)及
び(H)に実線で示すように、相間検出電圧が第3図
(G)及び(H)の場合に比べて半分になったとして
も、これと同様に基準電圧も半分になるから、磁極位置
検出信号のずれ角は第3図の定格電圧が印加されている
第3図の場合と同様にαとなり、やはり電機子反作用を
適切に補正することができる。これにて、回転子の回転
速度に関わらず、即ち、低速回転時にあっても電機子反
作用を適切に補正して安定的な制御が可能になるもので
ある。尚、電機子巻線10u〜10wに印加される電圧が定格
時の半分になっている場合において、電機子電流も定格
値のやはり半分になったときには、第4図に破線で示し
たようになり、この場合にも第3図の場合と同様に、電
機子反作用が小さくなった分だけ磁極位置検出信号のず
れ角を小さくして電機子反作用を適切に補正することが
できる。
On the other hand, the output voltage of the DC power supply 12 and the armature winding 10u
Assuming that the voltage applied to ~ 10w is, for example, 50% of the rated value and the rotation speed is about half the rated value, the induced voltage induced in the armature windings 10u to 10w of each phase is the rated value. It is halved during operation, and eventually the interphase detection voltage applied to the magnetic pole position detection means 19 is also halved. However, in this embodiment,
In this case, the output voltage of the level conversion circuit 24 of the reference voltage generating means 19 becomes 50% output as shown in FIG.
Assuming that the armature current remains at the rated value, the output of the voltage generation circuit 26 will also be 50% as shown by the solid line in FIG. 7C, and eventually the reference voltage will be applied to the armature windings 10u to 10w. In proportion to the applied voltage, the value becomes 50% of that in the case of FIG. 3 (F) as shown by the solid line in FIG. Therefore, even if the interphase detection voltage becomes half as compared with the case of FIGS. 3 (G) and (H) as shown by the solid line in FIGS. Also, since the magnetic pole position detection signal has a deviation angle of α as in the case of FIG. 3 in which the rated voltage of FIG. 3 is applied, the armature reaction can be appropriately corrected. Thus, regardless of the rotation speed of the rotor, that is, even when the rotor rotates at a low speed, the armature reaction can be appropriately corrected and stable control can be performed. When the voltage applied to the armature windings 10u to 10w is half of the rated value and the armature current is also half of the rated value, as shown by the broken line in FIG. In this case as well, as in the case of FIG. 3, the armature reaction can be appropriately corrected by reducing the deviation angle of the magnetic pole position detection signal as the armature reaction becomes smaller.

しかも本実施例では、上述のように電機子反作用をそ
の程度に応じて且つ回転子の回転速度に関わらず適切に
補正できるのみならず、従来のように信号処理過程で積
分動作を行なわないから、高速応答を可能にできる。ま
た、測定要素は各相の電機子巻線10u〜10wの誘起電圧及
び電機子電流だけで済ますことができるので、全体の構
成を簡単化することもできる。
Moreover, in the present embodiment, as described above, not only can the armature reaction be appropriately corrected depending on the degree thereof and regardless of the rotation speed of the rotor, but the integration operation is not performed in the signal processing process as in the conventional case. Can enable fast response. Moreover, since the measurement element only needs the induced voltage and the armature current of the armature windings 10u to 10w of each phase, the entire configuration can be simplified.

尚、上記実施例では、各相の電機子巻線10u〜10wの誘
起電圧は各相端子U,V,Wから直接に検出するようにして
いるが、本発明はこれに限られず、例えば線間電圧等に
基づき検出するようにしてもよく、また必ずしも直流電
源12からの母線において電流を検出せずとも、線電流を
検出するようにしても良い。その他、全ての機能をいわ
ゆるハード的に達成せずとも、一部をマイクロコンピュ
ーターにより処理する当要旨を逸脱しない範囲内で種々
変形して実施することができるものである。
In the above embodiment, the induced voltage of the armature windings 10u to 10w of each phase is directly detected from each phase terminal U, V, W, but the present invention is not limited to this, for example, the wire The detection may be performed based on the inter-voltage or the like, or the line current may be detected without necessarily detecting the current in the bus from the DC power supply 12. In addition, it is possible to carry out various modifications without departing from the scope of the present invention in which some of the functions are processed by a microcomputer without achieving all the functions in a so-called hardware manner.

[発明の効果] 本発明は以上述べたように、各相の電機子巻線に誘起
される誘起電圧のうち任意の2相間の電位差に対応する
相間検出電圧を、電機子電流及び電機子電圧に比例する
パルス高で且つ回転速度に対応するパルス幅の基準電圧
と比較するようにしているから、電機子反作用を回転速
度に影響を受けずに安定的に補正することができ、しか
も構成の簡単化及び速度変動に対する応答の高速化を可
能にできるという優れた効果を奏するものである。
[Effects of the Invention] As described above, according to the present invention, the interphase detection voltage corresponding to the potential difference between any two phases among the induced voltages induced in the armature windings of each phase is calculated as the armature current and the armature voltage. The armature reaction can be stably corrected without being affected by the rotation speed because the comparison is made with the reference voltage having the pulse height proportional to the pulse width and the pulse width corresponding to the rotation speed. This has an excellent effect that simplification and speeding up of response to speed fluctuation can be realized.

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第4図は本発明の一実施例を示し、第1図は
全体のブロック図、第2図は基準電圧発生手段のブロッ
ク図、第3図は高速回転時における各部の電圧波形図、
第4図は低速回転時における第3図相当図、第5図は従
来例を示す第1図相当図、第6図は従来例における各部
の電圧波形図である。 図面中、10は電機子巻線、11は界磁磁極、13は出力回
路、14はスイッチング素子、17は誘起電圧検出手段、18
は磁極位置検出手段、19は基準電圧発生手段、22は制御
手段である。
1 to 4 show an embodiment of the present invention, FIG. 1 is an overall block diagram, FIG. 2 is a block diagram of a reference voltage generating means, and FIG. 3 is a voltage waveform of each part during high speed rotation. Figure,
FIG. 4 is a diagram corresponding to FIG. 3 at low speed rotation, FIG. 5 is a diagram corresponding to FIG. 1 showing a conventional example, and FIG. 6 is a voltage waveform diagram of each portion in the conventional example. In the drawing, 10 is an armature winding, 11 is a field magnetic pole, 13 is an output circuit, 14 is a switching element, 17 is an induced voltage detecting means, 18
Is a magnetic pole position detecting means, 19 is a reference voltage generating means, and 22 is a control means.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】固定子側に配置した各相の電機子巻線に、
回転子側に配置した界磁磁極の位置に応じて順次通電す
るようにしたものにおいて、前記回転子の回転に伴い前
記各相の電機子巻線に誘起される電圧を検出する誘起電
圧検出手段と、前記電機子巻線に印加される電圧と電機
子電流とに比例するパルス高で且つ前記回転子の回転速
度に応じたパルス幅の基準電圧を発生する基準電圧発生
手段と、前記誘起電圧検出手段により検出された各相の
誘起電圧のうち任意の2相間の電位差に対応する相間検
出電圧と前記基準電圧とを比較することにより磁極位置
検出信号を出力する磁極位置検出手段と、この磁極位置
検出信号に基づいて通電タイミング信号を出力する制御
手段と、この通電タイミング信号に基づいてスイッチン
グ素子がオンオフすることにより前記各相の電機子巻線
の通断電を制御する出力回路とを具備してなるブラシレ
スモータの駆動装置。
1. An armature winding for each phase arranged on the stator side,
Induction voltage detection means for detecting a voltage induced in the armature winding of each phase as the rotor rotates, in which current is sequentially supplied depending on the position of the field magnetic poles arranged on the rotor side. A reference voltage generating means for generating a reference voltage having a pulse height proportional to a voltage applied to the armature winding and an armature current and having a pulse width corresponding to a rotation speed of the rotor; and the induced voltage Magnetic pole position detection means for outputting a magnetic pole position detection signal by comparing the reference voltage with the interphase detection voltage corresponding to the potential difference between any two phases among the induced voltages of each phase detected by the detection means, and the magnetic pole. Control means for outputting an energization timing signal based on the position detection signal, and switching on / off of the switching element based on the energization timing signal controls the on / off switching of the armature winding of each phase. Brushless motor driving device comprising and an output circuit.
JP62284041A 1987-11-10 1987-11-10 Brushless motor drive Expired - Lifetime JP2538624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62284041A JP2538624B2 (en) 1987-11-10 1987-11-10 Brushless motor drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62284041A JP2538624B2 (en) 1987-11-10 1987-11-10 Brushless motor drive

Publications (2)

Publication Number Publication Date
JPH01126192A JPH01126192A (en) 1989-05-18
JP2538624B2 true JP2538624B2 (en) 1996-09-25

Family

ID=17673529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62284041A Expired - Lifetime JP2538624B2 (en) 1987-11-10 1987-11-10 Brushless motor drive

Country Status (1)

Country Link
JP (1) JP2538624B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2659737B2 (en) * 1988-01-28 1997-09-30 株式会社東芝 Drive device for brushless motor
JPH07123775A (en) * 1993-10-29 1995-05-12 Yamamoto Denki Kk Rotor position signal generator for sensorless brushless motor and driver for the same motor
WO2009004888A1 (en) * 2007-07-02 2009-01-08 Kabushiki Kaisha Yaskawa Denki Inverter and method for detecting output voltage of the same
GB201010443D0 (en) * 2010-06-22 2010-08-04 Aeristech Ltd Controller

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681543B2 (en) * 1985-02-20 1994-10-12 松下冷機株式会社 Position detection circuit for non-rectifier DC motor

Also Published As

Publication number Publication date
JPH01126192A (en) 1989-05-18

Similar Documents

Publication Publication Date Title
US4392099A (en) Starting system for brushless motor
KR880002475B1 (en) D.c. multi-phase bi-polar brushless motor
US6064175A (en) Sensorless three-phase brushless DC motor drive circuit
JPS6240085A (en) Brushless motor
JPH06165561A (en) Controller for synchronous motor
EA011737B1 (en) Electric motor
KR100288770B1 (en) Rectifier Circuit for Sensorless Three-Phase Bieldi Motors
JPS593120B2 (en) Chiyokuriyudendouki
US6232730B1 (en) Brushless motor driving circuit and a method of controlling the brushless motor driving circuit
US6469463B2 (en) Brushless motor and driving control device therefor
KR100292776B1 (en) Drive of brushless dc motor
US20100237810A1 (en) Method and controller for controlling an ipm motor
JP2538624B2 (en) Brushless motor drive
EP3484044B1 (en) 6-line 3-phase motor
US6969962B2 (en) DC motor drive circuit
JP2011024401A (en) Starting method and driving method for brushless motor, and driving device for the same
JP3424307B2 (en) Brushless DC motor
JP3309828B2 (en) Motor drive control device
JPS60237881A (en) Controlling method of motor
JP3552380B2 (en) Brushless motor drive
JPH0638580A (en) Drive circuit for dc brushless motor
JPS61191291A (en) Position detector of commutatorless dc motor
JP2002058279A (en) Drive control circuit of brushless motor
JPS62236349A (en) Dc motor
JPH0576272B2 (en)