JP2011024401A - Starting method and driving method for brushless motor, and driving device for the same - Google Patents

Starting method and driving method for brushless motor, and driving device for the same Download PDF

Info

Publication number
JP2011024401A
JP2011024401A JP2009183843A JP2009183843A JP2011024401A JP 2011024401 A JP2011024401 A JP 2011024401A JP 2009183843 A JP2009183843 A JP 2009183843A JP 2009183843 A JP2009183843 A JP 2009183843A JP 2011024401 A JP2011024401 A JP 2011024401A
Authority
JP
Japan
Prior art keywords
voltage
commutation
phase
speed
phase commutation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009183843A
Other languages
Japanese (ja)
Inventor
Takeji Tokumaru
武治 得丸
Tsuneji Tsukuni
恒二 津国
Taaki Ichise
多章 市瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIKE CORP E
E-BIKE CORP
Original Assignee
BIKE CORP E
E-BIKE CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIKE CORP E, E-BIKE CORP filed Critical BIKE CORP E
Priority to JP2009183843A priority Critical patent/JP2011024401A/en
Publication of JP2011024401A publication Critical patent/JP2011024401A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To attain stable start with high starting torque and accelerating performance according to load fluctuations, and to always achieve control without out-of-step while having quick speed followability at rapid acceleration and rapid deceleration after start. <P>SOLUTION: A counter-electromotive voltage induced in a stator winding along with the rotation of a rotor is controlled by detecting the counter-electromotive voltage in a position to provide commutation timing to determine a commutation timing. The commutation timing is detected at the phase where the counter-electromotive voltage turns positive and at the phase where the counter-electromotive voltage turns negative, and the timing is treated as the commutation timing. The commutation timing is measured in an acceleration state after start and at a position having a large amplitude of the counter-electromotive voltage, the commutation timing is measured in a large counter-electromotive voltage state even at start so that flexible start under various load conditions is realized through commutation control by measuring voltage. Out-of-step at rapid acceleration and rapid deceleration after start is also prevented. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ブラシレスモータの始動方法および駆動方法に関し、特にセンサレスで始動・駆動する方法で、ステータの転流タイミングを最適に制御できるようにしたブラシレスモータの始動、駆動方法とその装置に関する。  The present invention relates to a starting method and a driving method of a brushless motor, and more particularly to a starting method and a driving method of a brushless motor, and an apparatus thereof, which can optimally control the commutation timing of a stator by a sensorless starting and driving method.

従来、この種のセンサレス駆動法は、例えば特許2722750号に記述されるように、運転中のモータのステータ巻き線に生ずる逆起電圧からゼロクロス点と呼ばれるステータ巻き線上をロータの磁極が変化する位置を測定しておこなう。ゼロクロス点はロータの速度に依存しない不動の位置であることからこの位置を測定し、さらにこの位置からロータが電気角で30度相当回転した最適の転流タイミングの位置をロータ回転速度から推定して転流する方法が取られている。また、始動時においては、同期モータあるいはステッピングモータとして、予め設定した周波数と電圧で強制転流し、逆起電圧が十分発生する回転領域まで負荷とバランスを保ちながら徐々に加速する方法が一般に用いられる。  Conventionally, this type of sensorless driving method is, for example, as described in Japanese Patent No. 2722750, a position where the magnetic pole of the rotor changes on a stator winding called a zero cross point from a counter electromotive voltage generated in the stator winding of a motor during operation. To measure. Since the zero cross point is a stationary position that does not depend on the rotor speed, this position is measured, and from this position, the optimum commutation timing position where the rotor has rotated by an electrical angle of 30 degrees is estimated from the rotor rotational speed. The method of commutation is taken. Further, at the time of start-up, as a synchronous motor or a stepping motor, a method of forcibly commutating at a preset frequency and voltage and gradually accelerating while maintaining a load and balance until a rotation region where a back electromotive voltage is sufficiently generated is generally used. .

特許2722750号Japanese Patent No. 2722750

始動初期には逆起電力が小さくまた不安定なため予めプログラムした強制転流を行うので、負荷条件が始動時に変化する応用では柔軟に対応することが出来なかった。また始動後も、ロータの急加速や急減速などで電気角が急激に変化する場合には、回転速度の測定による電気角30°に相当するタイミングの推定誤差が大きくなって最悪の場合は脱調に至るといった課題があった。たとえば電動車両の駆動用モータでは、平地・上り坂・くだり坂発進や荷物荷重などの様々な負荷条件で安定した始動が必須であり、始動後も危険回避のための急加速・急減速性能が必要である。また安全性を損なう脱調のリスクがあってはならない。このように電動車両への応用は最も困難な領域である。  Since the back electromotive force is small and unstable at the initial stage of the start, pre-programmed forced commutation is performed, so that it cannot be flexibly handled in an application in which the load condition changes at the start. In addition, if the electrical angle changes abruptly due to the rapid acceleration or deceleration of the rotor even after starting, the estimated error of the timing corresponding to the electrical angle of 30 ° due to the measurement of the rotational speed becomes large, and it is removed in the worst case. There was a problem of reaching the key. For example, a drive motor for an electric vehicle requires a stable start under various load conditions such as starting on flat ground, uphill, downhill, and load, and even after starting, it has rapid acceleration / deceleration performance to avoid danger. is necessary. There should be no risk of step-out that compromises safety. Thus, application to electric vehicles is the most difficult area.

本発明はこのような点に鑑みてなされたもので、第一の目的は負荷変動に応じて高い起動トルクと加速性能の安定した始動を実現すること、第二の目的は始動後にあって急加速・急減速で高い追従性を持ち、どんな場合にも脱調のない制御を実現することにある。  The present invention has been made in view of the above points. The first object is to realize a stable start-up with high starting torque and acceleration performance according to load fluctuations, and the second object is a quick start after the start. The aim is to realize high-trackability with acceleration / deceleration and control without step-out in any case.

本発明の請求項1は、ロータの回転に従ってステータ巻き線に誘起する逆起電圧を、直接転流タイミングを与える位置で測定して転流制御することを特徴とする。転流タイミングはロータ磁極がS磁極からN磁極に変化する場合と、N磁極からS磁極に変化する方向の二つがあり、ロータの回転方向に従って交互に発生する。この二つをそれぞれ逆起電圧がプラスに変化する位相をP位相とし、マイナスに変化する位相をN位相とし、それぞれの転流判定電圧をP位相転流判定電圧、N位相転流反転電圧として、ロータの回転に従って誘起する逆起電圧を測定して、逆起電圧がP位相転流判定電圧以上、或いはN位相転流判定電圧以下になったところで転流する。Claim 1 of the present invention is characterized in that commutation control is performed by measuring a counter electromotive voltage induced in a stator winding in accordance with rotation of a rotor at a position where direct commutation timing is provided. There are two commutation timings when the rotor magnetic pole changes from the S magnetic pole to the N magnetic pole, and when the rotor magnetic pole changes from the N magnetic pole to the S magnetic pole, and are alternately generated according to the rotation direction of the rotor. The phase where the back electromotive force voltage changes to positive is the P phase, the phase where it changes negative is the N phase, and the respective commutation determination voltages are the P phase commutation determination voltage and the N phase commutation inversion voltage. The counter electromotive voltage induced according to the rotation of the rotor is measured, and the commutation occurs when the counter electromotive voltage is equal to or higher than the P phase commutation determination voltage or equal to or lower than the N phase commutation determination voltage.

これを図1に示すが、従来のようにゼロクロス点を測定して推定するのでなく転流タイミング位置を直接検出するので、ゼロクロス点検出の場合のように転流タイミングまでの遅れ時間を推定する必要が無く、脱調の危険の殆どない確実な転流を実現できる。また、逆起電圧の大きな振幅の位置で測定できるので、逆起電圧の小さな速度領域で特に有効な制御が可能になる。  Although this is shown in FIG. 1, since the commutation timing position is directly detected instead of measuring and estimating the zero cross point as in the prior art, the delay time to the commutation timing is estimated as in the case of the zero cross point detection. There is no need, and reliable commutation can be realized with almost no danger of step-out. In addition, since measurement can be performed at a position where the back electromotive voltage has a large amplitude, particularly effective control can be performed in a speed region where the back electromotive voltage is small.

請求項2は、上記に述べた逆起電圧の大きな位置で転流タイミングを測定することで可能になった手段で、始動の最初の駆動から逆起電圧を参照して転流制御することを特徴とする始動方法である。一般に最適の転流タイミングはゼロクロス点の位置から電気角で約30°の位置にあって逆起電圧の最大振幅の約50%の値のところにある。さらに後述するように、駆動電流から得られる発生トルクの不連続を許容すれば、転流タイミングを測定するための逆起電圧は振幅の最大値近傍まで許容できる。従って、始動時にあっても十分大きな逆起電圧で転流タイミングを検出することが可能になる。
転流判定電圧は、始動の駆動力で誘起する逆起電圧より小さな値でなければならないが、この条件は検出するのに十分な大きさの起電圧を発生する初期駆動電力を与えることでもあって、それぞれの応用に適する範囲で大きな初期駆動力を与えた上で、負荷変動を考慮して実験的に転流判定電圧の最適値を決定する。
Claim 2 is a means made possible by measuring the commutation timing at a position where the back electromotive voltage is large as described above, and performing commutation control with reference to the back electromotive voltage from the first driving of starting. This is a characteristic starting method. Generally, the optimum commutation timing is at a position about 30 ° in electrical angle from the position of the zero cross point, and is at a value of about 50% of the maximum amplitude of the back electromotive force. Further, as will be described later, if the discontinuity of the generated torque obtained from the drive current is allowed, the back electromotive voltage for measuring the commutation timing can be allowed up to the vicinity of the maximum value of the amplitude. Therefore, the commutation timing can be detected with a sufficiently large counter electromotive voltage even at the time of starting.
The commutation determination voltage must be smaller than the counter electromotive voltage induced by the starting driving force, but this condition is also to provide an initial driving power that generates an electromotive voltage large enough to be detected. Then, after giving a large initial driving force within a range suitable for each application, the optimum value of the commutation determination voltage is experimentally determined in consideration of load fluctuations.

本発明の請求項3は、ロータの回転速度に従って転流判定電圧を決定して実施する方法で、更に最適の転流タイミングの転流を実現する。逆起電圧は電気角とロータ回転速度の関数であり、更にモータの構造ごとに異なる。最も簡単には、それぞれのモータで定義される逆起電圧定数から電気角30°の位置の転流タイミングの逆起電圧の値を算出して転流判定電圧とする。実際にはモータの構造と通電制御回路の動作遅延などに影響されるので、何点かの代表速度を選んで転流タイミングでの逆起電圧を実測して内挿して求めるか、それぞれの速度範囲ではその代表値を測定して設定する方法がよい。速度が頻繁に変化する応用では後者の手段が実質的である。この駆動方法の駆動装置が請求項6であり、この詳細は後述の実施例で示す。  According to the third aspect of the present invention, a commutation determination voltage is determined in accordance with the rotational speed of the rotor, and the commutation determination voltage is determined. The back electromotive force is a function of the electrical angle and the rotor rotational speed, and further varies depending on the motor structure. Most simply, the value of the counter electromotive voltage at the commutation timing at an electrical angle of 30 ° is calculated from the counter electromotive voltage constant defined by each motor and used as the commutation determination voltage. Actually, it is affected by the motor structure and the operation delay of the energization control circuit, etc., so select the representative speed at several points and measure the back electromotive force at the commutation timing and interpolate to obtain it. In the range, it is preferable to measure and set the representative value. In applications where the speed changes frequently, the latter measure is substantial. The driving device of this driving method is claim 6, and details thereof will be described in an embodiment described later.

本発明の理解を容易にするため基本的なモータの動作について説明する。図2は一般的なブラシレスモータの駆動回路の構成で、ステータのU相、V相、W相にインバータ回路を介して電流を与える。各相の端子電圧から逆起電圧を参照して位置検出回路でロータのゼロクロス点を検出すると共に、速度計数回路でロータの回転速度を計数して転流タイミングを決定する。図3にこの転流タイミングと通電ステップを示し、横軸はロータの回転を電気角で表わす。各相に対する通電は(ニ)に示すようにU相→V相、U相→W相,V相→W相の順序に▲1▼から▲6▼のステップを繰り返す。各相に誘起する逆起電圧は、ロータの磁極が切り替わる位置とステータのU相巻き線との相対位置を電気角θとするとU相に発生する逆起電圧の成分は(ホ)に示すように下式で近似できる。
Eu ∝ 回転速度×SINθ
V相、W相についても同様でそれぞれ120°位相が異なる。θ=0はU相巻き線上をロータの磁極が切り替わる位置で、逆起電圧はここでゼロ電位をクロスするので、ゼロクロス点と呼ばれる。
In order to facilitate understanding of the present invention, basic motor operation will be described. FIG. 2 shows the configuration of a general brushless motor drive circuit, in which current is applied to the U phase, V phase, and W phase of the stator via an inverter circuit. The position detection circuit detects the rotor zero-cross point with reference to the back electromotive voltage from the terminal voltage of each phase, and the rotor speed is counted by the speed counting circuit to determine the commutation timing. FIG. 3 shows the commutation timing and the energization step, and the horizontal axis represents the rotation of the rotor in electrical angle. For energization of each phase, steps (1) to (6) are repeated in the order of U phase → V phase, U phase → W phase, and V phase → W phase as shown in (d). The counter electromotive voltage induced in each phase is as shown in (e), where the electrical angle θ is the relative position between the position where the magnetic pole of the rotor switches and the U phase winding of the stator is the electrical angle θ. Can be approximated by the following equation.
Eu 回 転 Rotational speed x SINθ
The same applies to the V phase and the W phase, and the phases are different by 120 °. θ = 0 is a position where the magnetic pole of the rotor switches on the U-phase winding, and the back electromotive voltage crosses the zero potential here, so it is called a zero cross point.

通電による発生トルクは、例えばU相→V相の通電では下記で示せる。
Tuv ∝ 通電電流×COS(θ−60°)
トルクが最大となるθ=60°の前後30°の位置で転流させれば最大効率の駆動が得られる。即ち、電気角30°が理想の転流タイミング点である。このようにして理想的な転流制御が行われた場合に図3の(ト)に示すように最大効率のトルク線が得られる。実際には、図3の(ヘ)に示すように、各相の端子電圧は、例えば転流ステップ▲6▼ではW→V相が通電されU相は通電電流が無いので、Vd/2を中心にして(ホ)の逆起電圧が重畳する。この電圧がVd/2をクロスする位置を検出してゼロクロス点とする。この位置を基準にしてロータ回転速度から電気角の進み角30度を推定して転流し転流ステップ▲1▼が実行される。
The torque generated by energization can be expressed as follows, for example, in the U-phase → V-phase energization.
Tuv ∝ Energizing current x COS (θ-60 °)
If the commutation is performed at a position of 30 ° before and after θ = 60 ° at which the torque is maximized, driving with maximum efficiency can be obtained. That is, an electrical angle of 30 ° is an ideal commutation timing point. When ideal commutation control is performed in this way, the maximum efficiency torque line is obtained as shown in FIG. Actually, as shown in (f) of FIG. 3, the terminal voltage of each phase is, for example, in the commutation step (6), the W → V phase is energized and the U phase has no energization current. The back electromotive force of (e) is superimposed at the center. A position where this voltage crosses Vd / 2 is detected and set as a zero cross point. Based on this position, the electrical angle lead angle of 30 degrees is estimated from the rotor rotational speed, and the commutation step (1) is executed.

以上はモータが定常回転しているときの制御であるが、始動時にはロータは速度ゼロから始動するのでゼロクロス点近傍の逆起電圧は非常に小さい。特にゼロクロス点を示すゼロ電位なのか速度が小さいために生じるゼロ電位なのかを区別できない。また、始動時にはゼロクロス点を過ぎた位置から始動することもある。更にゼロクロス点が検出できたとしても、ロータの回転速度も不定なので電気角30°相当のタイミングを推定することも困難である。これらの原因が従来の始動方法においてプログラム方式の強制転流に頼らざるを得なかった理由である。  The above is the control when the motor is in steady rotation. At the time of starting, the rotor starts from zero speed, so the counter electromotive voltage near the zero cross point is very small. In particular, it cannot be distinguished whether it is a zero potential indicating a zero cross point or a zero potential generated due to a low speed. Moreover, at the time of starting, it may start from the position after the zero cross point. Even if the zero-cross point can be detected, it is difficult to estimate the timing corresponding to the electrical angle of 30 ° because the rotational speed of the rotor is indefinite. These causes are the reason why the conventional starting method has to rely on the forced commutation of the program method.

一方、本発明はゼロクロス点の検出を行うことなく、ロータが停止位置から電気角で30度相当以上移動して加速されて有意な逆起電力が発生した位置の逆起電圧を測定して転流タイミングを決定するので、上述の従来法にあった原因を一挙に解決する。始動初期の、停止から加速状態にある時の逆起電力の振る舞いは次のように説明できる。定常状態で回転の角速度をωとすると
逆起電力 ∝ ω×SINωt ωt=θ(電気角)
始動時の加速状態ではωが時間に比例するから、ω→ωt、ωt→ω=θとし、さらに、ロータの停止位置の電気角をθとしてこの位置から始動すると
逆起電力 ∝ √(ωθ)×SIN(θ+θ) と表せる。
ここで θ+θが小さい範囲、即ちサイン関数を一次直線で近似できる範囲では
逆起電力 ∝ √(ωθ)×(θ+θ
=√ω×(θ1.5+θθ0.5) と表せる。
On the other hand, the present invention measures the back electromotive force at a position where a significant back electromotive force is generated by accelerating the rotor by moving more than 30 degrees in electrical angle from the stop position without detecting the zero cross point. Since the flow timing is determined, the causes of the conventional method described above are solved at once. The behavior of the back electromotive force when the engine is in the acceleration state from the stop at the beginning of the start can be explained as follows. If the angular velocity of rotation is ω in a steady state, back electromotive force ∝ ω × SINωt ωt = θ (electrical angle)
Since ω is proportional to time in the acceleration state at the time of starting, ω → ω 0 t, ωt → ω 0 t 2 = θ, and further, when starting from this position with the electrical angle of the rotor stop position being θ x It can be expressed as power ∝√ (ω 0 θ) × SIN (θ + θ x ).
Here, in the range where θ + θ x is small, that is, the range in which the sine function can be approximated by a linear line, back electromotive force ∝√ (ω 0 θ) × (θ + θ x )
= √ω 0 × (θ 1.5 + θ x θ 0.5 )

図4はこの結果を図示したもので、ロータがゼロクロス点の前θx1から始動する場合、逆起電圧はゼロからマイナスに振れてゼロクロスの位置を通るがこの間をマスクしてゼロクロス点を選択的に検出することはほとんど不可能である。θx2から始動した場合には当然ゼロクロス点はなく検知できない。一方、どちらもゼロクロス点以降の逆起電力は、加速状態にあるため急峻で電気角の増加とともに1.5乗で増大する。この先の転流タイミングの電気角で30°まで加速されて有意な逆起電圧が期待できることがわかる。
始動の位置が上記のゼロクロス近傍でなく更にずれた場合も、以下の図5で説明するように、更に大きな電気角まで転流タイミングとして許容できるので、始動の加速を待って有意に逆起電圧が増大した位置で転流タイミングを検出することが可能である。つまり、始動の通電から逆起電圧を確実に把握することが可能になり、始動から逆起電圧を利用した転流制御を可能にして、安定に制御された始動加速を実現している。
FIG. 4 illustrates this result. When the rotor starts from θ x1 before the zero cross point, the back electromotive voltage swings from zero to minus and passes through the zero cross position, but this time is masked to selectively select the zero cross point. It is almost impossible to detect. Of course the zero-crossing point, if you start from θ x2 can not be detected without. On the other hand, in both cases, the back electromotive force after the zero cross point is steep and is steep and increases by the power of 1.5 as the electrical angle increases. It can be seen that a significant counter electromotive voltage can be expected by accelerating to 30 ° by the electrical angle at the previous commutation timing.
Even when the starting position is not in the vicinity of the above-mentioned zero cross but further deviated, as described in FIG. 5 below, the commutation timing can be allowed up to a larger electrical angle. It is possible to detect the commutation timing at a position where is increased. That is, it is possible to reliably grasp the back electromotive voltage from the start energization, enabling commutation control using the back electromotive voltage from the start, and realizing a stably controlled start acceleration.

図5は逆起電圧と発生トルクの関係で、理想の転流タイミングからずれてA点で転流した場合を示す。このようなずれは始動前のロータ停止位置の測定が不十分な場合や、始動時のロータの回転速度の推定が適切でない場合、或いは始動後にあっても急加速や急減速した場合に典型的に起こる。ここで転流タイミングが何らかの原因でずれて理想転流点に対し電気角で30°以上ずれてA点にきたとする。ここで転流して駆動相がW相→V相の通電からU相→V相移ってW相でゼロクロス点を検出しようとしても、A点はすでにW相のゼロクロス点を過ぎてしまうので、従来法ではゼロクロス点を検出できず、転流タイミングを逃してTUVがそのまま継続されて負トルク、即ち脱調の現象に至る。一方、本発明ではゼロクロス点を過ぎて図示したようにマイナスに変化した状態を検知し、さらにマイナスに変化してマイナスのピーク位置の電気角90°の近傍までずれても転流タイミングとして検出する。そしてこの間のTUVは順方向のトルクなので、脱調を起こすことなく順方向の転流の加速が継続される。即ち、何らかの原因で電気角の大きな変化があっても、逆起電圧が転流判定電圧を超える大きさを持つ限り、トルクの不連続は生じるものの脱調の危険を回避して順方向加速を保つことができる。これはまた、始動時のロータの初期位置の誤差を吸収するものであり、更に初期駆動力をあげることは逆起電圧をさらに上げて転流タイミング検出に有利な方向なので、十分な初期駆動を与えることを可能にする。始動後の運転状態において急加速、急減速があっても、転流判定電圧を超える逆起電圧が誘起している限り脱調のリスクは殆ど無く制御でき、安全性の要求される電動車両にも最適に応用できる。FIG. 5 shows the case of commutation at point A, deviating from the ideal commutation timing due to the relationship between the back electromotive force and the generated torque. Such a deviation is typical when the rotor stop position measurement before starting is insufficient, when the estimation of the rotational speed of the rotor at the time of starting is not appropriate, or when sudden acceleration or sudden deceleration occurs after starting To happen. Here, it is assumed that the commutation timing deviates for some reason and deviates by 30 ° or more in electrical angle from the ideal commutation point and comes to point A. Even if an attempt is made to detect the zero cross point in the W phase by switching from the energization of the W phase to the V phase and the U phase to the V phase to detect the zero cross point, the point A has already passed the zero cross point of the W phase. In the method, the zero cross point cannot be detected, the commutation timing is missed, and the TUV is continued as it is, resulting in a negative torque, that is, a step-out phenomenon. On the other hand, in the present invention, a state where the zero cross point is passed and the state is changed to negative as shown in the figure is detected, and even if the state is changed to negative and is shifted to the vicinity of the electrical angle of 90 ° at the negative peak position, it is detected as the commutation timing. . Since TUV is a forward torque during this period, acceleration of forward commutation is continued without causing step-out. That is, even if there is a large change in the electrical angle for some reason, as long as the back electromotive voltage exceeds the commutation determination voltage, torque discontinuity will occur but forward acceleration will be avoided to avoid the risk of step-out. Can keep. This also absorbs the error of the initial position of the rotor at the time of starting, and further increasing the initial driving force is a direction advantageous for detecting the commutation timing by further increasing the back electromotive voltage. Make it possible to give. Even if there is sudden acceleration / deceleration in the driving state after starting, as long as the back electromotive voltage exceeding the commutation judgment voltage is induced, there is almost no risk of step-out, and it can be controlled by an electric vehicle that requires safety. Can be applied optimally.

本発明を電動バイクに適用した実施例を図6の機能ブロック図を用いて説明する。1は48Vのバッテリでインバータ回路2を介してブラシレスモータ(以下モータという)3に電力を与える。モータ3はステータ巻線が51極、ロータ磁極が48極24ポールペアで、ステータは車軸に固定され、ロータが車輪の一部になる直接駆動方式である。定格電圧48V、定格電流20Aで最大回転速度は400RPM、逆起電圧係数は0.1V/RPMである。車輪直径は50cmで、車輪の一回転で約1.5mの移動に相当し、400RPMで時速36kmである。5はインバータ回路のスイッチング素子のドライバ回路である。An embodiment in which the present invention is applied to an electric motorcycle will be described with reference to the functional block diagram of FIG. Reference numeral 1 denotes a 48V battery that supplies power to a brushless motor (hereinafter referred to as a motor) 3 through an inverter circuit 2. The motor 3 is a direct drive system in which the stator winding is 51 poles, the rotor magnetic pole is 48 poles and 24 pole pairs, the stator is fixed to the axle, and the rotor is a part of the wheel. At a rated voltage of 48 V, a rated current of 20 A, the maximum rotation speed is 400 RPM, and the counter electromotive voltage coefficient is 0.1 V / RPM. The wheel diameter is 50 cm, which corresponds to a movement of about 1.5 m per rotation of the wheel, and is 36 RPM per hour at 400 RPM. Reference numeral 5 denotes a driver circuit for a switching element of the inverter circuit.

6は、外部からの始動、加速、減速の運転指令信号8を受けて、モータの三相巻き線の端子電圧を抵抗分割した逆起電圧信号7と、シャント抵抗からなる電流検出器4の通電電流信号とを入力してインバータ回路2のスイッチング素子をオンオフ制御する通電制御回路である。通電制御回路6は動作周波数16Mhzのモータコントロール回路内蔵の8bitマイクロコンピュータで構成する。モータの駆動電圧は48ボルトなので巻き線の端子電圧は1/10に抵抗分割して逆起電圧信号8として通電制御回路6に入力する。従って転流タイミング検出時の逆起電圧信号は
V=逆起電圧+2.4V 但し パルス幅変調信号がオンの時 (1)
で2.4Vを中心に重畳している。
6 receives an operation command signal 8 for starting, acceleration and deceleration from the outside and energizes the back electromotive force signal 7 obtained by resistance-dividing the terminal voltage of the three-phase winding of the motor and the current detector 4 including a shunt resistor. This is an energization control circuit that inputs a current signal and controls on / off of the switching element of the inverter circuit 2. The energization control circuit 6 is composed of an 8-bit microcomputer with a built-in motor control circuit having an operating frequency of 16 MHz. Since the driving voltage of the motor is 48 volts, the terminal voltage of the winding is resistance-divided into 1/10 and input to the energization control circuit 6 as a back electromotive voltage signal 8. Therefore, the counter electromotive voltage signal at commutation timing detection is
V = back electromotive voltage + 2.4V However, when pulse width modulation signal is on (1)
Is superimposed on 2.4V.

運転指令信号8は運転制御回路6aに入力され、始動指令をロータ初期位置検出回路6bに送り、加減速指令をデューティ比指令信号に変換してパルス幅変調回路6eに送る。始動指令を与えられたロータ初期位置検出回路6bは通電相分配回路6cにモータに駆動トルクを生じない程度の短パルスを巻き線毎に通電する指令を与え、通電に同期して電流検出器4の通電電流信号を測定して、各巻き線の通電電流の大小からロータ位置を決定し始動通電相を決定する。この情報が始動通電開始指令となり、通電相分配回路6cに返されて、パルス幅変調回路6e、ドライバ回路5、インバータ回路2を介してモータ3の通電を開始する。上記通電相分配回路6cは同時に通電相情報と通電タイミング信号を転流タイミング判定回路6dに与え、次の通電相への転流タイミングを検出する。  The operation command signal 8 is input to the operation control circuit 6a, the start command is sent to the rotor initial position detection circuit 6b, the acceleration / deceleration command is converted into a duty ratio command signal, and sent to the pulse width modulation circuit 6e. The rotor initial position detection circuit 6b to which the start command is given gives a command to the energized phase distribution circuit 6c to energize each winding with a short pulse that does not generate a driving torque to the motor, and the current detector 4 synchronizes with the energization. The energizing current signal is measured, the rotor position is determined from the magnitude of the energizing current of each winding, and the starting energized phase is determined. This information becomes a start energization start command, is returned to the energization phase distribution circuit 6c, and energization of the motor 3 is started via the pulse width modulation circuit 6e, the driver circuit 5, and the inverter circuit 2. The energized phase distribution circuit 6c simultaneously supplies energized phase information and energization timing signal to the commutation timing determination circuit 6d, and detects the commutation timing to the next energized phase.

転流タイミング判定回路6dは、パルス幅変調回路6eからのパルス幅変調信号と通電相分配回路6cからの通電タイミングと通電相情報とを持つタイミング信号Tによって制御され、逆起電圧信号7を受けて転流タイミングを検出する相を選択する相選択回路6d1と、選択された相の転流タイミング判断に使われる転流判定電圧を発生する転流判定電圧発生回路6d3と、この両方の信号が入力されて転流タイミングを決定する比較回路6d2で構成される。6d4はタイミング信号Tを計測する速度計数回路である。6d3の転流判定電圧発生回路は、6d4の回転速度によって決まるP位相転流判定電圧と、N位相転流判定電圧をテーブルとしてもち、それぞれを切り替えて出力する。比較回路6d2は前記式(1)に示した値を参照するので、パルス幅変調信号のオンのタイミング、即ちモータが通電されている状態に同期して転流タイミングを検出するようにする。
このようにして、転流タイミング判定回路6dが次の転流タイミングを検出すると、これが通電相分配回路6cに送られて次の転流相の通電が開始される。
下表は、本実施例で使った転流判定電圧のテーブルである。

Figure 2011024401
The commutation timing determination circuit 6d is controlled by the timing signal T having the pulse width modulation signal from the pulse width modulation circuit 6e, the energization timing and energization phase information from the energization phase distribution circuit 6c, and receives the back electromotive voltage signal 7. The phase selection circuit 6d1 for selecting the phase for detecting the commutation timing, the commutation determination voltage generation circuit 6d3 for generating the commutation determination voltage used for determining the commutation timing of the selected phase, and both of these signals. The comparison circuit 6d2 is inputted and determines the commutation timing. 6d4 is a speed counting circuit for measuring the timing signal T. The 6d3 commutation determination voltage generation circuit has a P phase commutation determination voltage and an N phase commutation determination voltage determined by the rotational speed of 6d4 as a table, and switches and outputs them. Since the comparison circuit 6d2 refers to the value shown in the equation (1), the commutation timing is detected in synchronization with the ON timing of the pulse width modulation signal, that is, the state where the motor is energized.
In this way, when the commutation timing determination circuit 6d detects the next commutation timing, this is sent to the energized phase distribution circuit 6c, and energization of the next commutation phase is started.
The table below is a table of commutation determination voltages used in this example.
Figure 2011024401

図7はこの実施例の動作例で、始動時のU相、V相、W相の端子電圧を実測したものである。▲1▼と▲2▼は人が乗車しない無負荷の始動時でそれぞれP位相から転流した場合、N位相から転流した場合の測定例である。始動の最初の約10msの間に観測される短パルスは各相に電流を流して電流値の大小からロータ位置を検出した時のものである。▲1▼はU相→W相が選択され、▲2▼はU相→V相が選択されて始動の通電が始まっている。それぞれV相、W相に24Vを仮想中点として逆起電圧が観測され、前者は逆起電圧が増大する位相で、後者は逆起電圧が減少する位相で転流タイミングが判定されて、次の転流ステップに移行している。始動通電は▲1▼が約13ms▲2▼が約6msの間行われている。この違いは、両者の始動時のロータ停止位置が異なっていたためと考えられる。▲3▼は人が乗車した高負荷の始動の場合の測定例である。ロータ位置検出後、W相→U相を始動通電してV相で逆起電圧を観測して転流タイミングを検出している。この場合は高負荷の始動のため始動通電から最初の転流まで約40msを要している。これらの例から明らかなように、最初の停止位置の違い、負荷の大きさの違いなどの始動時の外部変動要因は、転流タイミングに反映されて吸収され、様々な変動要因に対しても極めてスムーズな始動を実現できていることがわかる。FIG. 7 shows an example of the operation of this embodiment, in which the U-phase, V-phase, and W-phase terminal voltages at the start are measured. (1) and (2) are measurement examples in the case of commutation from the P phase and commutation from the N phase at the time of no-load start when no person is on board. The short pulses observed during the first approximately 10 ms of the start are those when the rotor position is detected from the magnitude of the current value by passing a current through each phase. In (1), the U phase → W phase is selected, and in (2), the U phase → V phase is selected, and the start-up energization has begun. The counter electromotive voltage is observed with 24V as the virtual midpoint for the V phase and the W phase, respectively. The former is the phase in which the counter electromotive voltage increases, and the latter is the phase in which the counter electromotive voltage decreases. It has moved to the commutation step. Starting energization is performed for (1) for about 13 ms and (2) for about 6 ms. This difference is considered to be because the rotor stop position at the start of the two was different. {Circle over (3)} is an example of measurement in the case of a high load start where a person gets on. After the rotor position is detected, the start-up energization is performed from the W phase to the U phase, the counter electromotive voltage is observed in the V phase, and the commutation timing is detected. In this case, it takes about 40 ms from the start energization to the first commutation because of the high load start. As is clear from these examples, external fluctuation factors at the start, such as differences in the initial stop position and load magnitude, are reflected in the commutation timing and absorbed. It can be seen that an extremely smooth start can be realized.

転流判定電圧と転流タイミングの説明図Illustration of commutation judgment voltage and commutation timing ブラシレスモータ駆動装置の動作説明図Operation explanatory diagram of brushless motor drive device ブラシレスモータの駆動の信号波形説明図Illustration of signal waveform for driving brushless motor 始動時の逆起電圧の振る舞いの説明図Illustration of back electromotive force behavior at start-up 転流タイミングのずれの説明図Illustration of deviation of commutation timing 本発明の実施例を示すブロック図The block diagram which shows the Example of this invention 実施例の動作波形の説明図Explanatory diagram of operation waveforms of the embodiment

1. バッテリー
2. インバータ回路
3. ブラシレスDCモータ
4. 電流検出回路
5. ドライバ回路
6. 通電制御回路
6a. 運転制御回路
6b. ロータ初期位置検出回路
6c. 通電相分配回路
6d. 転流タイミング判定回路
6d1.相選択回路
6d2.比較回路
6d3.転流判定電圧生成回路
6d4.速度計数回路
6c. パルス幅変調回路
7. 逆起電圧信号
8. 運転指令信号
1. Battery 2. Inverter circuit 3. 3. Brushless DC motor 4. Current detection circuit Driver circuit 6. Energization control circuit 6a. Operation control circuit 6b. Rotor initial position detection circuit 6c. Energized phase distribution circuit 6d. Commutation timing determination circuit 6d1. Phase selection circuit 6d2. Comparison circuit 6d3. Commutation determination voltage generation circuit 6d4. Speed counting circuit 6c. 6. Pulse width modulation circuit 7. Back electromotive voltage signal Operation command signal

Claims (6)

直流電源に複数のスイッチング素子をブリッジ接続してなるインバータ回路を介して接続されたブラシレスモータを、上記インバータ回路の通電制御により駆動せしめる方法において、上記通電制御は、ステータ巻き線に誘起する逆起電圧がゼロクロス点電位を越えて増加する方向のP位相転流判定電圧と、ゼロクロス点電位を越えて減少する方向のN位相転流判定電圧とを備え、ロータの回転で生ずる逆起電圧がP位相転流目標電圧以上に達した時点と、ロータの回転で生ずる逆起電圧がN位相転流判定電圧以下に達した時点を転流タイミングとして、上記複数のスイッチング素子を順次切り替え制御するようにしたことを特徴とするブラシレスモータの駆動方法。  In a method of driving a brushless motor connected via an inverter circuit formed by bridge-connecting a plurality of switching elements to a DC power source by the energization control of the inverter circuit, the energization control is a counter electromotive force that is induced in a stator winding. A P phase commutation determination voltage in a direction in which the voltage increases beyond the zero cross point potential and an N phase commutation determination voltage in a direction in which the voltage decreases beyond the zero cross point potential. The plurality of switching elements are sequentially switched and controlled with a commutation timing that is a time point when the phase commutation target voltage is reached or more and a back electromotive voltage generated by the rotation of the rotor reaches an N phase commutation determination voltage or less. A method for driving a brushless motor. ブラシレスモータの始動方法にあって、上記通電制御は、ロータの停止位置の測定から始動の通電相を決定するとともに、始動電力を通電して誘起する逆起電圧が上記P位相転流判定電圧以上に、あるいはN位相転流判定電圧以下に達した時点を検出して上記始動電力を転流することを特徴とする請求項1のブラシレスモータの始動方法。  In the brushless motor start method, the energization control determines the energization phase of the start from the measurement of the rotor stop position, and the back electromotive voltage induced by energizing the start power is equal to or higher than the P phase commutation determination voltage. 2. The method of starting a brushless motor according to claim 1, wherein the starting power is commutated by detecting a time point when the voltage reaches the N phase commutation determination voltage or less. 上記通電制御は、あらかじめ、ロータのそれぞれの回転速度に対して、逆起電圧が増大する方向と減少する方向でロータがステータ巻き線に対して電気角で30度相当の転流タイミング位置で生起する逆起電圧の値の、逆起電圧が増大する方向の値を速度依存のP位相転流判定電圧とし、逆起電圧が減少する方向の値を速度依存のN位相転流判定電圧とし、更にロータが停止もしくは低速度の逆起電圧検出限界以下のロータ速度における速度依存のP位相転流判定電圧と速度依存のN位相転流判定電圧を、それぞれ上記測定で有意に測定可能な最低速度で得られる値として、逆起電圧が上記速度依存のP位相転流目標電圧以上に達した時点、あるいは上記速度依存のN位相転流判定電圧以下に達した時点を転流タイミングとして、上記複数のスイッチング素子を順次切り替え制御するようにしたことを特徴とする請求項1と請求項2のブラシレスモータの駆動方法。The energization control is performed in advance at the commutation timing position corresponding to 30 degrees in electrical angle with respect to the stator winding in the direction in which the counter electromotive voltage increases and decreases in each rotation speed of the rotor. The value of the counter electromotive voltage in the direction in which the counter electromotive voltage increases is the speed-dependent P phase commutation determination voltage, and the value in the direction in which the counter electromotive voltage decreases is the speed dependent N phase commutation determination voltage, Further, the minimum speed at which the speed-dependent P-phase commutation determination voltage and the speed-dependent N-phase commutation determination voltage at the rotor speed below the limit of detection of the counter electromotive voltage of the low speed or the low speed can be significantly measured by the above measurement, respectively. As a value obtained in the above, the time when the back electromotive voltage reaches the speed dependent P phase commutation target voltage or more, or the time when the back electromotive voltage reaches the speed dependent N phase commutation determination voltage or less is used as the commutation timing. of Claim 1 and a driving method of a brushless motor according to claim 2, characterized in that so as to sequentially switch controls the switching element. 速度依存
上記通電制御は、上記速度依存のP位相転流判定電圧と速度依存のN位相転流反転電圧を任意の速度制御領域の平均の値とし、各速度制御領域ではその領域の速度依存のP位相転流判定電圧と速度依存のN位相反転電圧で転流タイミングを検出して判定することを特徴とする請求項3のブラシレスモータの駆動方法。
In the speed-dependent energization control, the speed-dependent P-phase commutation determination voltage and the speed-dependent N-phase commutation inversion voltage are average values of arbitrary speed control regions. 4. The method of driving a brushless motor according to claim 3, wherein the commutation timing is detected and determined by a P-phase commutation determination voltage and a speed-dependent N-phase inversion voltage.
直流電源に複数のスイッチング素子をブリッジ接続してなるインバータ回路と、これの出力端にステータ巻き線が接続されたブラシレスモータと、ステータ巻き線に接続されて巻き線に誘起する逆起電力を入力として上記インバータ回路の複数のスイッチング素子をオンオフ制御する通電制御回路とを具備したブラシレスモータ駆動装置において、上記駆動装置は、P位相転流判定電圧とN位相転流判定電圧を生成する転流判定電圧生成回路と、この出力端に接続されてP位相転流判定電圧とN位相転流判定電圧をロータの回転方向とステータ巻き線の通電方向とで決定される順序で転流タイミングに同期して切り換えて出力する転流判定電圧出力回路と、この出力端とステータ巻き線とに接続されて、ステータ巻き線に誘起する逆起電圧が上記P位相転流判定電圧以上あるいはN位相転流判定電圧以下に達したとき転流指令を送出する転流判定比較回路とを備え、上記転流指令によって上記複数のスイッチング素子を順次切り換えるように構成したことを特徴とするブラシレスモータの駆動装置。An inverter circuit formed by connecting a plurality of switching elements to a DC power supply, a brushless motor having a stator winding connected to the output end thereof, and a counter electromotive force that is connected to the stator winding and induced in the winding is input. In the brushless motor driving device comprising an energization control circuit that controls on / off of a plurality of switching elements of the inverter circuit, the driving device generates a P-phase commutation determination voltage and an N-phase commutation determination voltage. The P-phase commutation determination voltage and the N-phase commutation determination voltage connected to the output terminal in synchronization with the commutation timing in the order determined by the rotation direction of the rotor and the energization direction of the stator winding. Is connected to the output terminal and the stator winding, and the counter electromotive voltage induced in the stator winding is A commutation judgment comparison circuit for sending a commutation command when the P phase commutation judgment voltage is reached or below the N phase commutation judgment voltage, and the plurality of switching elements are sequentially switched by the commutation command. A brushless motor drive device characterized in that it is configured. 上記通電制御回路は、転流タイミング信号を計数してロータの回転速度を測定する速度計数回路を備え、上記転流判定電圧生成回路は上記速度計数回路の出力に接続されて、ロータ回転速度から決まる上記速度依存のP位相転流判定電圧と上記速度依存のN位相転流判定電圧を出力する手段となして上記転流判定電圧出力回路に入力したことを特徴とする請求項5のブラシレスモータの駆動装置。The energization control circuit includes a speed counting circuit that counts the commutation timing signal and measures the rotational speed of the rotor, and the commutation determination voltage generation circuit is connected to an output of the speed counting circuit, and from the rotor rotational speed, 6. The brushless motor according to claim 5, wherein said speed-dependent P-phase commutation determination voltage and said speed-dependent N-phase commutation determination voltage are output to said commutation determination voltage output circuit as means for outputting. Drive device.
JP2009183843A 2009-07-16 2009-07-16 Starting method and driving method for brushless motor, and driving device for the same Pending JP2011024401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009183843A JP2011024401A (en) 2009-07-16 2009-07-16 Starting method and driving method for brushless motor, and driving device for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009183843A JP2011024401A (en) 2009-07-16 2009-07-16 Starting method and driving method for brushless motor, and driving device for the same

Publications (1)

Publication Number Publication Date
JP2011024401A true JP2011024401A (en) 2011-02-03

Family

ID=43633933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009183843A Pending JP2011024401A (en) 2009-07-16 2009-07-16 Starting method and driving method for brushless motor, and driving device for the same

Country Status (1)

Country Link
JP (1) JP2011024401A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144276A1 (en) * 2011-04-22 2012-10-26 サンデン株式会社 Motor control device
JP2015226450A (en) * 2014-05-30 2015-12-14 ローム株式会社 Motor drive device
JP2019041495A (en) * 2017-08-25 2019-03-14 株式会社荏原製作所 Sensorless drive device of dynamo-electric machine such as switched reluctance motor and electric generator, and rotary system including sensorless drive device and dynamo-electric machine
CN114039513A (en) * 2021-11-11 2022-02-11 江苏科技大学 Method and system for judging forward wind and backward wind of fan
CN115615594A (en) * 2022-12-19 2023-01-17 西安航天精密机电研究所 Method for testing starting torque margin of H-shaped dynamic pressure bearing motor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06276783A (en) * 1993-03-15 1994-09-30 Toshiba Corp Inverter device
JPH0823695A (en) * 1994-07-06 1996-01-23 Fujitsu General Ltd Method for controlling motor
JPH11146685A (en) * 1997-11-10 1999-05-28 Mitsubishi Electric Corp Controller of dc brushless motor
JP2002359991A (en) * 2001-03-29 2002-12-13 Matsushita Electric Ind Co Ltd Method and apparatus for controlling brushless motor
JP2004364359A (en) * 2003-06-02 2004-12-24 Nissan Motor Co Ltd Dc brushless electric motor controller
JP2008005632A (en) * 2006-06-22 2008-01-10 Matsushita Electric Ind Co Ltd Motor drive device, motor drive method and disk drive device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06276783A (en) * 1993-03-15 1994-09-30 Toshiba Corp Inverter device
JPH0823695A (en) * 1994-07-06 1996-01-23 Fujitsu General Ltd Method for controlling motor
JPH11146685A (en) * 1997-11-10 1999-05-28 Mitsubishi Electric Corp Controller of dc brushless motor
JP2002359991A (en) * 2001-03-29 2002-12-13 Matsushita Electric Ind Co Ltd Method and apparatus for controlling brushless motor
JP2004364359A (en) * 2003-06-02 2004-12-24 Nissan Motor Co Ltd Dc brushless electric motor controller
JP2008005632A (en) * 2006-06-22 2008-01-10 Matsushita Electric Ind Co Ltd Motor drive device, motor drive method and disk drive device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144276A1 (en) * 2011-04-22 2012-10-26 サンデン株式会社 Motor control device
JP2012228127A (en) * 2011-04-22 2012-11-15 Sanden Corp Motor controller
CN103493362A (en) * 2011-04-22 2014-01-01 三电有限公司 Motor control device
US9246420B2 (en) 2011-04-22 2016-01-26 Sanden Corporation Motor control device
JP2015226450A (en) * 2014-05-30 2015-12-14 ローム株式会社 Motor drive device
JP2019041495A (en) * 2017-08-25 2019-03-14 株式会社荏原製作所 Sensorless drive device of dynamo-electric machine such as switched reluctance motor and electric generator, and rotary system including sensorless drive device and dynamo-electric machine
CN114039513A (en) * 2021-11-11 2022-02-11 江苏科技大学 Method and system for judging forward wind and backward wind of fan
CN114039513B (en) * 2021-11-11 2023-12-19 江苏科技大学 Judgment method and judgment system for forward and reverse wind of fan
CN115615594A (en) * 2022-12-19 2023-01-17 西安航天精密机电研究所 Method for testing starting torque margin of H-shaped dynamic pressure bearing motor

Similar Documents

Publication Publication Date Title
EP1263125B1 (en) Drive control apparatus and method of alternating current motor
US6879129B2 (en) Brushless motor control method and controller
EP1965490B1 (en) Apparatus and method for driving synchronous motor
JP3636340B2 (en) Power converter for AC rotating machine
KR100791814B1 (en) Control Method of Sensorless BLDC Motor
JP4067949B2 (en) Motor control device
EP3540933B1 (en) Method for driving sensorless motor
JP4406552B2 (en) Electric motor control device
JP5643496B2 (en) Brushless motor drive device and electric vehicle using brushless motor
US20060279242A1 (en) Method for effecting the power-optimal control of bldc motors
JP2011024401A (en) Starting method and driving method for brushless motor, and driving device for the same
KR101225165B1 (en) Method to control starting of sensorless Permanent Magnet Synchronous Motor
CN110476348B (en) Method for detecting magnetic field position of motor
JP2004336876A (en) Three-phase voltage type-inverter device and method of detecting three-phase ac current phase of three-phase voltage-type inverter device
JP6102768B2 (en) Motor control device
JP3518901B2 (en) Driving method and driving device for brushless DC motor
KR20180082128A (en) Apparatus and method for controlling a start of BLDC motor using detection of phase voltage
JP5405224B2 (en) Motor driving device and method for determining relative position of rotor provided in motor
JP6440355B2 (en) Method and apparatus for synchronizing rotor speed with stator rotating magnetic field
JP5087411B2 (en) Motor drive device
KR20150031356A (en) Apparatus and method for compensating reference voltage in bldc motor control system
JP2009011014A (en) Inverter controller, electric compressor, and home electrical equipment
JPH09154294A (en) Driving of brushless dc motor
JP2017034767A (en) Sensorless drive method for three-phase brushless motor
JP3296636B2 (en) Driving method of brushless DC motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120710

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140624