JP2535790B2 - Method for producing tungsten bronze and coating composite thereof - Google Patents
Method for producing tungsten bronze and coating composite thereofInfo
- Publication number
- JP2535790B2 JP2535790B2 JP6214439A JP21443994A JP2535790B2 JP 2535790 B2 JP2535790 B2 JP 2535790B2 JP 6214439 A JP6214439 A JP 6214439A JP 21443994 A JP21443994 A JP 21443994A JP 2535790 B2 JP2535790 B2 JP 2535790B2
- Authority
- JP
- Japan
- Prior art keywords
- tungsten bronze
- metal
- producing
- tungsten
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Compounds Of Iron (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、各種タングステンブロ
ンズおよびそれらを被覆してなる無機質系複合体の製造
方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to various tungsten bronzes and a method for producing an inorganic composite body obtained by coating them.
【0002】[0002]
【従来の技術】タングステンブロンズは一般式Mx WO
3 (0<x≦1)で表され、Mとしてアルカリ、アルカ
リ土類、希土類金属元素などからなる数多くのものが知
られている。これらのブロンズの代表的な製造法である
金属酸化物または金属タングステン酸塩、WO3 および
金属Wの混合物を反応させる方法は、高温でしかも長時
間の反応を必要する。例えば、希土類系ブロンズの製造
には1050℃で100時間以上を要する(Inorg. Che
m., 5,P758(1966) )。また、アルカリ金属系ブロンズ
を製造する場合には、分離除去の困難な金属タングステ
ンが未反応物として残留しやすいなどの問題点を有する
(“非化学量論的金属化合物”(金属物性基礎講座15)P
68(1975))。この他、金属ハロゲン酸塩、WO2 または
WおよびWO3 の混合物を原料とする高温反応法(70
0〜1050℃)も報告されているが(Inorg. Chem.,
7,P614(1968) )、副生成物として不安定なタングステ
ンオキシハライドが多量に発生すること、また原料にア
ルカリ土類金属のハロゲン酸塩を用いた場合には分離除
去の困難な正タングステン酸塩が一部生成してしまうな
どの問題点がある。一方、タングステンブロンズ被覆複
合体の製造法に関してはほとんど事例がなく僅かに無機
質系材料にナトリウムタングステンブロンズ(NaxWO
3 、0 .70<x<0.95)を被覆させる方法が提案されて
いる(特開平5-254843)。2. Description of the Related Art Tungsten bronze has the general formula M x WO
It is represented by 3 (0 <x ≦ 1), and as M, there are known many substances such as alkali, alkaline earth, and rare earth metal elements. The method of reacting a mixture of metal oxide or metal tungstate, WO 3 and metal W, which is a typical production method of these bronze, requires a high temperature and a long reaction time. For example, the production of rare earth bronze requires more than 100 hours at 1050 ° C (Inorg.
m., 5, P758 (1966)). In addition, in the case of producing an alkali metal bronze, there is a problem that metallic tungsten, which is difficult to separate and remove, easily remains as an unreacted material (“non-stoichiometric metal compound” (Basic Metal Property Course 15 ) P
68 (1975)). In addition, a high temperature reaction method using a metal halide, WO 2 or a mixture of W and WO 3 as a raw material (70
0-1050 ° C) has been reported (Inorg. Chem.,
7, P614 (1968)), a large amount of unstable tungsten oxyhalide is generated as a by-product, and orthotungstic acid which is difficult to separate and remove when an alkaline earth metal halide is used as a raw material. There is a problem that some salt is generated. On the other hand, there is almost no example of a method for manufacturing a tungsten bronze-coated composite, and sodium tungsten bronze (Na x WO
3, 0 .7 0 <x < 0.9 5) a method of coating has been proposed (JP-A-5-254843).
【0003】[0003]
【発明が解決しようとする課題】本発明は、従来法に見
られるような問題点を克服し、各種タングステンブロン
ズを容易に製造しうる方法とそれらタングステンブロン
ズの被覆無機質系複合体の製造方法を提供することを目
的とするものである。DISCLOSURE OF THE INVENTION The present invention overcomes the problems found in the conventional methods and provides a method for easily producing various tungsten bronzes and a method for producing a coated inorganic composite of these tungsten bronzes. It is intended to be provided.
【0004】[0004]
【課題を解決するための手段】本発明者らは、上記の従
来技術の問題点を解決すべく鋭意研究を重ねた結果、メ
タ型タングステン酸アンモニウムと水溶性の各種金属塩
を原料に用い、この混合水溶液の乾固物に水素還元処理
を行なうことによって上記目的を達成でき、前記問題点
を解決できることを見いだし本発明を完成するに至っ
た。Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems of the prior art, the present inventors have used meta-type ammonium tungstate and various water-soluble metal salts as raw materials, It was found that the above object can be achieved and the above problems can be solved by subjecting the dry solid matter of the mixed aqueous solution to hydrogen reduction, and the present invention has been completed.
【0005】すなわち、本発明によれば、(1)メタ型
タングステン酸アンモニウム(化学式(NH4 )6 H2
W12O40)と金属塩の混合水溶液の乾固物を水素還元
し、化学式Mx WO3 (式中、Mは金属元素を、またx
は不定比組成(0<x<1)を示す。)で表されるタン
グステンブロンズを生成させることを特徴とするタング
ステンブロンズの製造方法、(2)メタ型タングステン
酸アンモニウムと金属塩の混合水溶液を支持体に塗布、
乾燥後水素還元して該支持体表面にMx WO3 (式中、
Mは金属元素を、またxは不定比組成(0<x<1)を
示す。)で表されるタングステンブロンズの被覆層を形
成させることを特徴とするタングステンブロンズ被覆複
合体の製造方法、(3)金属塩がアルカリ、アルカリ土
類、希土類、銅、錫、銀、ニッケル、インジウム、鉛、
コバルト、鉄、マンガン、亜鉛、カドミウムおよび水銀
から選ばれた金属の、水溶性のタングステン酸塩、塩化
水素酸塩、臭化水素酸塩、硝酸塩および炭酸塩から選ば
れることを特徴とする(1)項記載のタングステンブロ
ンズ並びに(2)項記載のタングステンブロンズ被覆複
合体の製造方法、および(4)支持体が炭素質材料、ジ
ルコニア質材料、マグネシア質材料、珪酸質材料、カ−
バイド材料、アルミナ質材料、チタニア質材料および耐
食・耐熱金属材料から選ばれることを特徴とする(2)
又は(3)項記載のタングステンブロンズ被覆複合体の
製造方法が提供される。That is, according to the present invention, (1) meta-type ammonium tungstate (chemical formula (NH 4 ) 6 H 2
W 12 O 40 ) and a metal salt are mixed with each other to give a dry solid which is hydrogenated to give a chemical formula M x WO 3 (where M is a metal element and x is a metal element).
Indicates a non-stoichiometric composition (0 <x <1). ), A method for producing a tungsten bronze characterized by producing a tungsten bronze, (2) applying a mixed aqueous solution of ammonium metatungstate and a metal salt to a support,
After drying, it is reduced with hydrogen and M x WO 3 (wherein
M represents a metal element, and x represents a nonstoichiometric composition (0 <x <1). (3) A method for producing a tungsten bronze-coated composite, which comprises forming a coating layer of tungsten bronze represented by (3), wherein (3) the metal salt is alkali, alkaline earth, rare earth, copper, tin, silver, nickel, indium. ,lead,
It is characterized in that it is selected from water-soluble tungstates, hydrochlorates, hydrobromides, nitrates and carbonates of metals selected from cobalt, iron, manganese, zinc, cadmium and mercury (1 ) And the method for producing the tungsten bronze-coated composite according to (2), and (4) the support is a carbonaceous material, a zirconia-based material, a magnesia-based material, a siliceous material, or a carrous material.
Characterized by being selected from a binder material, an alumina material, a titania material, and a corrosion-resistant / heat-resistant metal material (2)
Alternatively, there is provided a method for producing a tungsten bronze-coated composite according to item (3).
【0006】本発明におけるタングステンブロンズは、
既知の方法により調製したメタ型タングステン酸アンモ
ニウム水溶液にそのメタ型タングステン酸アンモニウム
1/12モルに対してxモルに相当する金属塩の水溶液
を添加し、この混合水溶液を好ましくは80〜250℃
で乾固した後、加熱下水素還元することによって製造さ
れる。水素還元は好ましくは300〜700℃で供給水
素ガスに対して不活性ガスまたは水蒸気を添加すること
により水素の還元力が調節された状態で行われる。上記
混合水溶液中のメタ型タングステン酸アンモニウムのお
およその濃度はWO3 として好ましくは0. 1〜5mm
ol/mlより好ましくは1〜3mmol/ml、同じ
く金属塩水溶液は金属イオンとして0.01〜5mmo
l/mlより好ましくは0.1〜3mmol/ml程度
である。これらの濃度はいずれも限定されたものではな
いがメタ型タングステン酸アンモニウムの金属塩に対す
る添加量が液中の金属イオン/WO3 のモル比として好
ましくは0.005〜0.98、より好ましくは0.0
1〜0.95となるようにする。なお、この混合水溶液
を調製する際、粉末状の金属塩を直接メタ型タングステ
ン酸アンモニウム水溶液に添加してもよいが、混合の簡
便性などの点から水溶液添加がより好ましい。また前記
混合水溶液の乾固は、好ましくは80〜250℃、より
好ましくは80〜170℃で行われる。加熱温度が低す
ぎると水分が一部残存してしまい、また加熱温度が高す
ぎると分解反応が起こりWO3 などが生成してしまう。
本発明における好ましい金属塩は、アルカリ、アルカリ
土類、希土類、銅、錫、銀、ニッケル、インジウム、
鉛、コバルト、鉄、マンガン、亜鉛、カドミウム、水銀
などの金属元素からなる水溶性のタングステン酸塩、ハ
ロゲン酸塩、硝酸塩および炭酸塩などが挙げられる。こ
れらの金属塩の陰イオン成分は、還元処理操作の際、ア
ンモニウム塩(NH4 Cl(昇華性)、NH4 Br(昇
華性)、NH4 NO3 など)、HCl、HBr、NOx
およびCO2 などとなって反応系外に出てしまうので生
成固相中に残留する恐れはない。一方、供給水素ガス濃
度については、不活性ガス添加の場合、300〜500
℃の還元温度では水素濃度を約50vol %以下、好まし
くは20vol %以下、500〜700℃では約10vol
%以下、好ましくは5vol %以下にそれぞれ制御して供
給すれば分離除去の困難な金属WやW3 Oなどの副生は
避けられる。また、水蒸気添加の場合は、300〜70
0℃の還元温度に対して水素ガス中の水蒸気量を約15
vol %以下に制御して供給すれば同様に金属WやW3 O
などの副生は避けられる。不活性ガス添加の場合の不活
性ガスとしてはヘリウム、アルゴンおよび窒素ガスなど
があげられる。その含有量は、いずれも上記水素ガス濃
度になるように添加すればよい。The tungsten bronze in the present invention is
To an aqueous solution of ammonium metatungstate prepared by a known method, an aqueous solution of a metal salt corresponding to x mol relative to 1/12 mol of ammonium metatungstate is added, and this mixed aqueous solution is preferably 80 to 250 ° C.
It is manufactured by subjecting the product to dryness under reduced pressure and then reducing with hydrogen while heating. Hydrogen reduction is preferably performed at 300 to 700 ° C. in a state where the reducing power of hydrogen is adjusted by adding an inert gas or steam to the supplied hydrogen gas. The approximate concentration of meta-type ammonium tungstate in the mixed aqueous solution as WO 3 is preferably 0.1 to 5 mm.
1 to 3 mmol / ml, more preferably 0.01 to 5 mmo as metal ions in the metal salt aqueous solution.
It is preferably about 0.1 to 3 mmol / ml, more preferably 1 / ml. Although the concentration of each of these is not limited, the amount of the meta-type ammonium tungstate added to the metal salt is preferably 0.005 to 0.98, more preferably the molar ratio of metal ion / WO 3 in the liquid. 0.0
It should be 1 to 0.95. In addition, when preparing this mixed aqueous solution, a powdery metal salt may be added directly to the aqueous meta-type ammonium tungstate solution, but addition of the aqueous solution is more preferable from the viewpoint of easiness of mixing and the like. Drying of the mixed aqueous solution is preferably carried out at 80 to 250 ° C, more preferably 80 to 170 ° C. If the heating temperature is too low, some water will remain, and if the heating temperature is too high, a decomposition reaction will occur and WO 3, etc. will be produced.
Preferred metal salts in the present invention are alkali, alkaline earth, rare earth, copper, tin, silver, nickel, indium,
Examples thereof include water-soluble tungstates, halogenates, nitrates and carbonates composed of metal elements such as lead, cobalt, iron, manganese, zinc, cadmium and mercury. The anion components of these metal salts are ammonium salts (NH 4 Cl (sublimable), NH 4 Br (sublimable), NH 4 NO 3 etc.), HCl, HBr, NO x during the reduction treatment operation.
Also, there is no danger of remaining in the generated solid phase since it will be emitted from the reaction system as CO 2 and CO 2 . On the other hand, the concentration of the supplied hydrogen gas is 300 to 500 in the case of adding the inert gas.
The hydrogen concentration is about 50 vol% or less, preferably 20 vol% or less at the reduction temperature of ℃, about 10 vol% at 500-700 ℃.
%, Preferably 5 vol% or less, the by-products such as metal W and W 3 O, which are difficult to separate and remove, can be avoided. Further, in the case of adding steam, it is 300 to 70.
The amount of water vapor in hydrogen gas is about 15 with respect to the reduction temperature of 0 ° C.
If the supply is controlled to less than vol%, the same will be achieved for metal W and W 3 O.
By-products such as can be avoided. Examples of the inert gas in the case of adding the inert gas include helium, argon and nitrogen gas. The content may be added so that the hydrogen gas concentration is the above.
【0007】次に、タングステンブロンズ被覆複合体の
製造について述べる。上記タングステンブロンズの製造
の場合と同様にメタ型タングステン酸アンモニウム水溶
液に所定量の金属塩水溶液を添加して作成した混合水溶
液を浸漬などの方法により支持体材料に塗布後、好まし
くは80〜250℃で乾燥し同様の水素還元処理を行え
ばよい。この場合の、メタ型タングステン酸アンモニウ
ムおよび金属塩の好ましい水溶液濃度、また好ましい水
溶性の金属塩は上記のタングステンブロンズの製造の場
合と同様である。この混合水溶液の塗布量は板材の場
合、例えば単位cm2 当り好ましくは0.001 〜0.05m
l、より好ましくは0.003 〜0.03mlである。また、炭
素繊維布などの細構造をとるものに対しては好ましく
は、0.003 〜0.3 ml、より好ましくは0.005 〜0.2 m
lである。一方、支持体として用いる材料は、少なくと
も700℃以下の温度で耐熱、耐水素還元および耐アル
カリ性を有する材料であれば板材、棒材はもちろんのこ
と細構造をとる織布や多孔質材料でも不都合なことはな
い。本発明方法により得られるタングステンブロンズ被
覆複合体において、タングステンブロンズの被覆層は、
複合体の用途に合わせて薄いものから厚いものまで任意
の厚さとすることができる。被覆層の厚さは、好ましく
は約0.1μmから10μmの範囲であるが、これに制
限されるものではない。Next, the production of the tungsten bronze-coated composite will be described. As in the case of the above-mentioned production of tungsten bronze, a mixed aqueous solution prepared by adding a predetermined amount of an aqueous metal salt solution to an aqueous solution of ammonium metatungstate is applied to the support material by a method such as dipping, preferably at 80 to 250 ° C. Then, the same hydrogen reduction treatment may be performed. In this case, the preferable aqueous solution concentrations of the meta-type ammonium tungstate and the metal salt, and the preferable water-soluble metal salt are the same as those in the above-mentioned production of tungsten bronze. In the case of a plate material, the coating amount of this mixed aqueous solution is, for example, preferably 0.001 to 0.05 m per unit cm 2.
1 and more preferably 0.003 to 0.03 ml. Further, for those having a fine structure such as carbon fiber cloth, preferably 0.003 to 0.3 ml, more preferably 0.005 to 0.2 m.
It is l. On the other hand, the material used as the support is not limited to a plate material, a rod material, or a woven cloth or a porous material having a fine structure as long as it is a material having heat resistance, hydrogen reduction resistance and alkali resistance at a temperature of 700 ° C. or lower. There is no such thing. In the tungsten bronze-coated composite obtained by the method of the present invention, the coating layer of tungsten bronze is:
It can be of any thickness, from thin to thick, depending on the application of the composite. The thickness of the coating layer is preferably in the range of about 0.1 μm to 10 μm, but is not limited thereto.
【0008】[0008]
【実施例】次に本発明を実施例に基づきさらに詳細に説
明する。 実施例1 アンモニア水(2 〜4wt %)とタングステン酸(H2 W
O4 )より調製したメタ型タングステン酸アンモニウム
水溶液(液中のWO3 濃度;2mmol/ml)5mlと代表的
なアルカリ金属であるカリウムの5種類の塩(メタ型タ
ングステン酸カリウム、塩化カリウム、臭化カリウム、
硝酸カリウムおよび炭酸カリウム)の水溶液(液中のカ
リウムイオン濃度はいずれも2mmol/ml)1.35mlを
用い、液中のK/WO3 モル比が0. 27になるように
それぞれ混合調製した各水溶液(約5ml )を150℃の
乾燥器中で乾固させ、前記5種類の塩に対応する乾固物
2.27g、2.13g、2.22g、2.19g、
2.12gをそれぞれ得た。これらの乾固物を白金ボ−
トにとり550℃下石英反応管(径25mm)中2. 5vol
%(アルゴン中)の水素ガスを約350ml /min の流量で
供給し3時間の還元処理を行った。こうして前記5種類
の乾固物に対応する目的の生成物(カリウムタングステ
ンブロンズ)をそれぞれ1.96g、1.94g、1.
95g、1.94g、1.93g得た。得られた固体生
成物をX線回折、X線元素分析および化学分析により調
べた結果、いずれもKx WO3 (x= 0. 27 )で表さ
れるHexagonal型のカリウムタングステンブロンズのみ
で、これらの中にアンモニウム成分はもちろんのこと添
加金属塩の陰イオン成分も全く検出されなかった。な
お、上記供給ガスの代わりに水蒸気を10vol %添加し
た水素ガスを用いた還元処理でもほとんど同様な結果が
えられた。Next, the present invention will be described in more detail with reference to examples. Example 1 Ammonia water (2 to 4 wt%) and tungstic acid (H 2 W)
5 ml of an aqueous solution of ammonium metatungstate (WO 3 concentration in the liquid; 2 mmol / ml) prepared from O 4 ) and 5 kinds of salts of potassium, which is a typical alkali metal (potassium metatungstate, potassium chloride, odor) Potassium iodide,
1.35 ml of an aqueous solution of potassium nitrate and potassium carbonate (both potassium ion concentrations in the solution are 2 mmol / ml) were mixed and prepared so that the K / WO 3 molar ratio in the solution was 0.27. (About 5 ml) was dried in a drier at 150 ° C. to obtain 2.27 g, 2.13 g, 2.22 g, 2.19 g of dried products corresponding to the above 5 kinds of salts.
2.12 g each was obtained. These dry solids were
2.5 vol in a quartz reaction tube (diameter 25 mm) at 550 ° C
% (In argon) hydrogen gas was supplied at a flow rate of about 350 ml / min to carry out a reduction treatment for 3 hours. Thus, the desired products (potassium tungsten bronze) corresponding to the above-mentioned five kinds of dry solids were respectively 1.96 g, 1.94 g, 1.
95 g, 1.94 g and 1.93 g were obtained. The obtained solid product was examined by X-ray diffraction, X-ray elemental analysis and chemical analysis. As a result, it was found that only Hexagonal type potassium tungsten bronze represented by K x WO 3 (x = 0.27) was used. Not only the ammonium component but also the anion component of the added metal salt was not detected. Almost the same result was obtained by the reduction treatment using hydrogen gas added with 10 vol% of steam instead of the above-mentioned supply gas.
【0009】実施例2 上記実施例1のカリウム塩の代わりにアルカリ土類金属
の塩化物2種類(BaC2・2 H2 O、Sr Cl2・6 H2
O)および希土類金属の塩化物2種類(La Cl3・7 H
2 O、Nd Cl3・6 H2 O)の水溶液2mlを用い、液
中の金属イオンのWO3 成分に対するモル比が0. 1
(アルカリ土類系)および0. 2(希土類系)になるよ
うに調製し、これらの乾固物を実施例1と同様な方法で
水素還元処理(加熱温度;475 ℃、水素濃度(アルゴン
中);20vol %、時間;3 時間)し、前記の2種類のア
ルカリ土類金属の塩化物および2種類の希土類金属の塩
化物にそれぞれ対応するタングステンブロンズ1.97
g、1.93g、2.08g、2.09gを得た。得ら
れた固体生成物はいずれもタングステンブロンズ単相
で、これらの中にアンモニウムや塩素成分は全く検出さ
れなかった。生成ブロンズ組成; BaxWO3(x=0.1) 、
SrxWO3(x=0.1) 、LaxWO3(x=0.2) 、NdxWO
3(x=0.2)。なお、この希土類系のように原料の混合水溶
液中の塩素イオン量がアンモニウムイオン量よりも過剰
な場合には、NH4 Clと共にHClが一部生成した。[0009] Example 2 the alkaline earth chlorides two metals in place of the potassium salt of Example 1 (BaC 2 · 2 H 2 O, Sr Cl 2 · 6 H 2
O) and chloride two rare earth metals (La Cl 3 · 7 H
2 O, Nd Cl 3 .6 H 2 O) in an aqueous solution of 2 ml and the molar ratio of metal ion to WO 3 component in the solution is 0.1.
(Alkaline earth type) and 0.2 (rare earth type), and dried products of these were subjected to hydrogen reduction treatment (heating temperature: 475 ° C., hydrogen concentration (in argon) in the same manner as in Example 1. ); 20 vol%, time; 3 hours) and tungsten bronze 1.97 corresponding to the above-mentioned two kinds of alkaline earth metal chlorides and two kinds of rare earth metal chlorides, respectively.
g, 1.93 g, 2.08 g, 2.09 g were obtained. The obtained solid products were all single-phase tungsten bronze, and no ammonium or chlorine components were detected in them. Bronze composition produced: Ba x WO 3 (x = 0.1),
Sr x WO 3 (x = 0.1), La x WO 3 (x = 0.2), Nd x WO
3 (x = 0.2). When the amount of chlorine ions in the mixed aqueous solution of the raw materials was more than the amount of ammonium ions as in the case of the rare earth type, HCl was partially formed together with NH 4 Cl.
【0010】実施例3 上記実施例1のカリウム塩水溶液の代わりにニッケル、
銅および錫の塩化物水溶液2mlを用い、液中の金属イ
オンとWO3 成分のモル比がニッケルと銅の場合は0.
06、錫の場合は0. 21になるように調製し、それら
の乾固物を実施例1と同様な方法で水素還元(加熱温
度;475℃、水素濃度( アルゴン中);10vol%、時間;3時
間)し、前記のニッケル、銅および錫に対応する生成物
1.87g、1.88g、2.05gをそれぞれ得た。
得られた固体生成物はいずれもタングステンブロンズ単
相でこれらの中にアンモニウムや塩素成分は全く検出さ
れなかった。生成ブロンズ組成; NixWO3 (x=0.06
)、CuxWO3 (x=0.06 )、SnxWO3 (x=0.21
)。Example 3 Nickel was used instead of the aqueous potassium salt solution of Example 1 above.
When 2 ml of an aqueous solution of copper and tin chloride was used and the molar ratio of the metal ion and the WO 3 component in the solution was nickel and copper, it was 0.1.
In the case of tin, it was adjusted to 0.21, and the dried solids thereof were reduced with hydrogen in the same manner as in Example 1 (heating temperature; 475 ° C., hydrogen concentration (in argon); 10 vol%, time). 3 hours) to obtain 1.87 g, 1.88 g, and 2.05 g of the above-mentioned products corresponding to nickel, copper, and tin, respectively.
The obtained solid products were all single phases of tungsten bronze, and no ammonium or chlorine components were detected in them. Product bronze composition: Ni x WO 3 (x = 0.06
), Cu x WO 3 (x = 0.06), Sn x WO 3 (x = 0.21)
).
【0011】実施例4 上記実施例1と同様な方法で調製したメタ型タングステ
ン酸アンモニウムとカリウム塩の混合水溶液それぞれに
支持体として黒鉛繊維布(厚さ0.4mm 、縦15mm、横4
0mm)3枚を浸漬(含浸量0.05ml/cm2 )、1
50℃で乾燥後、550℃下石英反応管(径25mm)中
2. 5vol %(アルゴン中)の水素ガスを約350ml/
min の流量で供給し2時間の還元処理を行った。得られ
た試料を同様に分析したところ、いずれも固相としてK
x WO3 (x=0.27 )で表されるHexagonal型のカリウ
ムタングステンブロンズのみが生成していた(被覆量2
5mg/cm2 )。これらの試料を走査型電子顕微鏡で
観察したところいずれもカリウムタングステンブロンズ
の微結晶(粒径0.5 μm以下)からなる被膜層の形成が
観察された。また、支持体として黒鉛繊維布の代わりに
ほぼ同じ寸法のイットリア安定化ジルコニア板およびハ
ステロイ系の耐食、耐熱合金板を用いて同様の操作を行
い水素還元処理後の生成物を分析、観察したところ、ほ
ぼ同様の結果が得られた。Example 4 Graphite fiber cloth (thickness 0.4 mm , length 15 mm , width 4) was prepared as a support for each mixed aqueous solution of ammonium metatungstate and potassium salt prepared by the same method as in Example 1 above.
0 mm ) 3 pieces dipped (impregnation amount 0.05 ml / cm 2 ), 1
After drying at 50 ° C, 2.5 vol% (in argon) of hydrogen gas in a quartz reaction tube (diameter 25 mm) at about 550 ° C, about 350 ml /
It was supplied at a flow rate of min and reduction treatment was performed for 2 hours. When the obtained samples were analyzed in the same manner, K
Only the Hexagonal type potassium tungsten bronze represented by x WO 3 (x = 0.27) was formed (coverage 2
5 mg / cm 2 ). When these samples were observed with a scanning electron microscope, formation of a coating layer made of fine crystals of potassium tungsten bronze (particle size: 0.5 μm or less) was observed. Also, instead of the graphite fiber cloth as a support, yttria-stabilized zirconia plate and Hastelloy-based corrosion-resistant, heat-resistant alloy plate having almost the same dimensions were subjected to the same operation to analyze and observe the product after hydrogen reduction treatment. , And almost the same result was obtained.
【0012】[0012]
【発明の効果】本発明は、簡単に製造または入手できる
メタ型タングステン酸アンモニウムと水溶性の各種金属
塩を原料とし、この混合水溶液の乾固物を700℃以下
の温度で水素濃度を適当に制御して供給する操作のみで
Mx WO3 (Mはアルカリ、アルカリ土類、希土類など
の金属元素、0<x<1)で表される種々のタングステ
ンブロンズを短時間で製造することができる。本発明に
より、例えば燃料電池等の電極触媒、有機合成触媒およ
びエレクトロクロミック材料などで好結果が報告されて
いるタングステンブロンズの製造が容易となる。また、
本発明においては上記と同様の操作を支持体上で行なう
ことにより板材、棒材はもちろんのこと細構造をとる織
布や多孔質材料の表面にも種々のタングステンブロンズ
被膜を形成させることができる。こうして得られた複合
体は、電解装置や燃料電池の電極材料および有機合成の
触媒材料などの製造に好適である。INDUSTRIAL APPLICABILITY The present invention uses, as raw materials, easily produced or available meta-type ammonium tungstate and various water-soluble metal salts. Various tungsten bronzes represented by M x WO 3 (M is a metal element such as alkali, alkaline earth and rare earth, 0 <x <1) can be produced in a short time only by controlling and supplying. . INDUSTRIAL APPLICABILITY The present invention facilitates the production of tungsten bronze, which has been reported to be successful in electrode catalysts for fuel cells and the like, organic synthesis catalysts and electrochromic materials. Also,
In the present invention, various tungsten bronze coatings can be formed not only on the plate material and the rod material but also on the surface of the woven cloth or porous material having a fine structure by performing the same operation as above on the support. . The composite thus obtained is suitable for the production of electrode materials for electrolytic devices and fuel cells, and catalyst materials for organic synthesis.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/80 C04B 41/87 A 41/87 35/80 L (72)発明者 熊谷 俊弥 茨城県つくば市東1丁目1番 工業技術 院物質工学工業技術研究所内 (72)発明者 水田 進 茨城県つくば市東1丁目1番 工業技術 院物質工学工業技術研究所内 (56)参考文献 特開 平5−254843(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C04B 35/80 C04B 41/87 A 41/87 35/80 L (72) Inventor Toshiya Kumagai Ibaraki Prefecture Tsukuba City Higashi 1-1, Industrial Technology Institute, Institute of Materials Engineering and Industrial Technology (72) Inventor Susumu Susumu, Susumu Mizuta Ibaraki Prefecture, Tsukuba City East 1-1, Industrial Technology Institute, Institute of Materials Engineering (56) Reference JP-A-5-254843 (JP, A)
Claims (4)
学式(NH4 )6 H2 W12O40)と金属塩の混合水溶液
の乾固物を水素還元し、化学式Mx WO3 (式中、Mは
金属元素を、またxは不定比組成(0<x<1)を示
す。)で表されるタングステンブロンズを生成させるこ
とを特徴とするタングステンブロンズの製造方法。1. A dry product of a mixed aqueous solution of meta-type ammonium tungstate (chemical formula (NH 4 ) 6 H 2 W 12 O 40 ) and a metal salt is hydrogen-reduced to give a chemical formula M x WO 3 (wherein, M is A method for producing a tungsten bronze, which comprises producing a tungsten bronze represented by a metal element and x by a non-stoichiometric composition (0 <x <1).
属塩の混合水溶液を支持体に塗布、乾燥後水素還元して
該支持体表面にMx WO3 (式中、Mは金属元素を、ま
たxは不定比組成(0<x<1)を示す。)で表される
タングステンブロンズの被覆層を形成させることを特徴
とするタングステンブロンズ被覆複合体の製造方法。2. A mixed aqueous solution of ammonium metatungstate and a metal salt is applied to a support, dried and hydrogen reduced to give M x WO 3 (wherein M is a metal element and x is a metal oxide) on the surface of the support. A method for producing a tungsten bronze-coated composite body, which comprises forming a tungsten bronze coating layer represented by a nonstoichiometric composition (indicating 0 <x <1).
類、銅、錫、銀、ニッケル、インジウム、鉛、コバル
ト、鉄、マンガン、亜鉛、カドミウムおよび水銀から選
ばれた金属の、水溶性のタングステン酸塩、塩化水素酸
塩、臭化水素酸塩、硝酸塩および炭酸塩から選ばれるこ
とを特徴とする請求項1記載のタングステンブロンズ並
びに請求項2記載のタングステンブロンズ被覆複合体の
製造方法。3. A water-soluble tungsten whose metal salt is a metal selected from alkali, alkaline earth, rare earth, copper, tin, silver, nickel, indium, lead, cobalt, iron, manganese, zinc, cadmium and mercury. 3. The method for producing a tungsten bronze-coated composite according to claim 1, wherein the tungsten bronze is selected from the group consisting of acid salts, hydrochloric acid salts, hydrobromic acid salts, nitrates and carbonates.
料、マグネシア質材料、珪酸質材料、カ−バイド材料、
アルミナ質材料、チタニア質材料および耐食・耐熱金属
材料から選ばれることを特徴とする請求項2又は請求項
3記載のタングステンブロンズ被覆複合体の製造方法。4. A support having a carbonaceous material, a zirconia-based material, a magnesia-based material, a siliceous material, a carbide material,
The method for producing a tungsten bronze-coated composite according to claim 2 or 3, wherein the material is selected from an alumina-based material, a titania-based material, and a corrosion-resistant / heat-resistant metal material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6214439A JP2535790B2 (en) | 1994-09-08 | 1994-09-08 | Method for producing tungsten bronze and coating composite thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6214439A JP2535790B2 (en) | 1994-09-08 | 1994-09-08 | Method for producing tungsten bronze and coating composite thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0873223A JPH0873223A (en) | 1996-03-19 |
JP2535790B2 true JP2535790B2 (en) | 1996-09-18 |
Family
ID=16655799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6214439A Expired - Lifetime JP2535790B2 (en) | 1994-09-08 | 1994-09-08 | Method for producing tungsten bronze and coating composite thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2535790B2 (en) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19916403C1 (en) * | 1999-04-06 | 2000-10-12 | Hahn Meitner Inst Berlin Gmbh | Process for the production of thin, poorly soluble coatings |
WO2002096559A1 (en) * | 2001-05-31 | 2002-12-05 | Australian Nuclear Science & Technology Organisation | Inorganic ion exchangers for removing contaminant metal ions from liquid streams |
JP4096205B2 (en) * | 2003-10-20 | 2008-06-04 | 住友金属鉱山株式会社 | Infrared shielding material fine particle dispersion, infrared shielding body, method for producing infrared shielding material fine particles, and infrared shielding material fine particles |
US20150153478A1 (en) | 2007-04-18 | 2015-06-04 | Sumitomo Metal Mining Co., Ltd. | Electroconductive particle, visible light transmitting particle-dispersed electrical conductor and manufacturing method thereof, transparent electroconductive thin film and manufacturing method thereof, transparent electroconductive article that uses the same, and infrared-shielding article |
JP5234237B2 (en) * | 2004-08-31 | 2013-07-10 | 住友金属鉱山株式会社 | Transparent conductive film and method for producing the same, transparent electrode, infrared absorption reflection film, antifogging film, and electromagnetic shielding film |
US8980135B2 (en) | 2004-08-31 | 2015-03-17 | Sumitomo Metal Mining Co., Ltd. | Electroconductive particle, visible light transmitting particle-dispersed electrical conductor and manufacturing method thereof, transparent electroconductive thin film and manufacturing method thereof, transparent electroconductive article that uses the same, and infrared-shielding article |
JP5019761B2 (en) * | 2005-05-27 | 2012-09-05 | 旭化成株式会社 | Fuel cell electrode catalyst and method for producing the same |
JP5034272B2 (en) * | 2006-03-06 | 2012-09-26 | 住友金属鉱山株式会社 | Tungsten-containing oxide fine particles, method for producing the same, and infrared shielding body using the same |
JP4948007B2 (en) * | 2006-03-22 | 2012-06-06 | 住友精密工業株式会社 | Discharge cell for ozone generator |
JP5581208B2 (en) | 2007-07-18 | 2014-08-27 | データレース リミテッド | Laser sensitive coating formulation |
WO2010046285A2 (en) * | 2008-10-23 | 2010-04-29 | Basf Se | Heat absorbing additives |
US9267042B2 (en) | 2008-10-27 | 2016-02-23 | Datalase Ltd. | Coating composition for marking substrates |
US8470212B2 (en) | 2008-11-13 | 2013-06-25 | Sumitomo Metal Mining Co., Ltd. | Infrared shielding nanoparticle, its manufacturing method, infrared shielding nanoparticle dispersion using the same, and infrared shielding base material |
US8268202B2 (en) * | 2009-07-07 | 2012-09-18 | Basf Se | Potassium cesium tungsten bronze particles |
KR20110136274A (en) * | 2010-06-14 | 2011-12-21 | (주) 씨에프씨테라메이트 | Inorganic compounds having photochromic and near infrared absorption poperties and manufacturing methods thereof |
US10450471B2 (en) | 2012-07-11 | 2019-10-22 | Sumitomo Metal Mining Co., Ltd. | Method for producing heat-ray shielding dispersion body, heat-ray shielding dispersion body, and heat-ray shielding body |
CN103467094A (en) * | 2013-09-05 | 2013-12-25 | 桂林理工大学 | Low-temperature sinterable microwave dielectric ceramic Cu3WO6 and preparation method thereof |
CN104944471A (en) * | 2015-05-25 | 2015-09-30 | 北京航空航天大学 | Tungsten doped bronze powder having high infrared shielding property and synthesis method of doped tungsten bronze powder |
BR112018068660B1 (en) | 2016-03-16 | 2023-02-23 | Sumitomo Metal Mining Co., Ltd | NEAR INFRARED PROTECTIVE MATERIAL FINE PARTICLES, NEAR INFRARED PROTECTIVE MATERIAL FINE PARTICLE DISPERSION LIQUID, AND METHODS FOR PRODUCING NEAR INFRARED PROTECTIVE MATERIAL FINE PARTICLE AND NEAR INFRARED PROTECTIVE MATERIAL FINE PARTICLE DISPERSION LIQUID INFRARED |
JP6825619B2 (en) | 2016-03-16 | 2021-02-03 | 住友金属鉱山株式会社 | Near-infrared shielding material Fine particle dispersion, near-infrared shielding body and combined structure for near-infrared shielding, and their manufacturing method |
IL274587B (en) | 2017-11-13 | 2022-08-01 | Sumitomo Metal Mining Co | Surface-treated infrared absorbing fine particles, surface-treated infrared absorbing fine powder, infrared absorbing fine particle dispersion liquid using the surface-treated infrared absorbing fine particles, infrared absorbing fine particle dispersion body and method for producing them |
JP6911721B2 (en) | 2017-11-14 | 2021-07-28 | 住友金属鉱山株式会社 | Infrared absorber |
JP7342861B2 (en) | 2018-05-11 | 2023-09-12 | 住友金属鉱山株式会社 | Surface treated infrared absorbing fine particle dispersion and infrared absorbing transparent base material |
CN113039159B (en) | 2018-09-27 | 2023-11-24 | 住友金属矿山株式会社 | Fine particle dispersion of infrared absorbing material and method for producing same |
JP7292586B2 (en) | 2019-01-21 | 2023-06-19 | 住友金属鉱山株式会社 | Surface-treated infrared-absorbing fine particles, surface-treated infrared-absorbing fine-particle powder, infrared-absorbing fine-particle dispersion using the surface-treated infrared-absorbing fine particles, infrared-absorbing fine-particle dispersion, and infrared-absorbing substrate |
KR102036253B1 (en) | 2019-04-22 | 2019-10-24 | 황태경 | Environment-friendly Heating Shielding Film Using Non-radioactive Stable Isotope and Manufacturing Method Thereof |
US11352699B2 (en) * | 2019-05-23 | 2022-06-07 | University Of Connecticut | Tungsten bronze thin films and method of making the same |
CN113842911B (en) * | 2020-06-28 | 2023-08-29 | 中国石油化工股份有限公司 | Tungsten bronze catalyst and catalyst composition for producing biomass-based ethylene glycol |
CN114751456A (en) * | 2022-04-25 | 2022-07-15 | 内蒙古科技大学 | Preparation method and application of nanocrystalline tungsten bronze |
-
1994
- 1994-09-08 JP JP6214439A patent/JP2535790B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0873223A (en) | 1996-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2535790B2 (en) | Method for producing tungsten bronze and coating composite thereof | |
US8764887B2 (en) | Methods for electrochemically induced cathodic deposition of crystalline metal-organic frameworks | |
US4402815A (en) | Electrodes containing nickel alloys as electrocatalysts | |
US6712950B2 (en) | Electrochemical synthesis of ammonia | |
HU188660B (en) | Process for production of cathalizator containing cooper oxid and aluminium-oxid | |
US20230001402A1 (en) | Iridium-based amorphous electrocatalyst and synthesis of same | |
EP2870277A1 (en) | Apparatus and method of producing metal in a nasicon electrolytic cell | |
JP5220771B2 (en) | Catalyst for electrochemical reduction of oxygen | |
CN110721717A (en) | Porous flaky tungsten nitride/carbon composite material and preparation method and application thereof | |
US6881308B2 (en) | Electrochemical synthesis of ammonia | |
KR20190072582A (en) | A process for producing a catalyst containing an intermetallic compound and a catalyst prepared by the process | |
US3801490A (en) | Pyrochlore electrodes | |
US4294608A (en) | Catalytic alloys | |
CA1134903A (en) | Electrode having mixed metal oxide catalysts | |
US3117023A (en) | Method of making a non-corroding electrode | |
US4042483A (en) | Electrolysis cell electrode and method of preparation | |
PL178811B1 (en) | Electrode for use in electrochemical processes | |
WO2023139040A1 (en) | Mixed platinum ruthenium oxide and electrodes for the oxygen evolution reaction | |
WO2018146928A1 (en) | Electrolysis anode | |
US4279713A (en) | Method of catalyzing the evolution of gaseous hydrogen | |
JPH0676216B2 (en) | Method for producing tungsten bronze and composite thereof | |
Shmychkova et al. | Physicochemical properties of PbO 2 modified with nickel ions | |
US4010091A (en) | Novel electrode for electrolysis cell | |
Guterman et al. | Borohydride synthesis of the Pt x-Ni/C electrocatalysts and investigation of their activity in the oxygen electroreduction reaction | |
Pfennig et al. | Surface-attached [(NC) 5Fe (CN) Pt (NH3) 4 (NC) Fe (CN) 5] 4-: a study in the electrochemical and photochemical control of surface morphology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |