JP2535735B2 - Non-contact type position signal automatic generation method for three-dimensional coordinate detection - Google Patents

Non-contact type position signal automatic generation method for three-dimensional coordinate detection

Info

Publication number
JP2535735B2
JP2535735B2 JP62045280A JP4528087A JP2535735B2 JP 2535735 B2 JP2535735 B2 JP 2535735B2 JP 62045280 A JP62045280 A JP 62045280A JP 4528087 A JP4528087 A JP 4528087A JP 2535735 B2 JP2535735 B2 JP 2535735B2
Authority
JP
Japan
Prior art keywords
axis
pair
frame
subject
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62045280A
Other languages
Japanese (ja)
Other versions
JPS63212806A (en
Inventor
一男 丸山
幸司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO KOGYO DAIGAKUCHO
Original Assignee
TOKYO KOGYO DAIGAKUCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO KOGYO DAIGAKUCHO filed Critical TOKYO KOGYO DAIGAKUCHO
Priority to JP62045280A priority Critical patent/JP2535735B2/en
Publication of JPS63212806A publication Critical patent/JPS63212806A/en
Application granted granted Critical
Publication of JP2535735B2 publication Critical patent/JP2535735B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、物体の形状寸法を表わす三次元座標を一対
の顕微鏡の測距的位置移動により光学的に非接触にて測
定する非接触型三次元座標検出方法に関し、特に、顕微
鏡の光学系を小型化するとともに測定結果の位置信号を
自動発生させるように改良したものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention is a non-contact type in which three-dimensional coordinates representing the shape and size of an object are optically measured in a non-contact manner by a distance-measuring position movement of a pair of microscopes. The present invention relates to a three-dimensional coordinate detection method, in particular, an optical system of a microscope which is downsized and improved so that a position signal of a measurement result is automatically generated.

(従来の技術) 微細部品の三次元曲面を有する物体あるいは変形し易
い物体の形状寸法の測定のためには、通常三次元座標測
定装置が用いられるが、この測定装置の位置検出素子、
すなわち、フイーラとして、従来はフイーラの先端に微
小球を取付けた接触型フイーラが用いられて来た。しか
しながら、かかるフィーラを物体に接触させて例えば三
次元曲面の輪郭を測定しようとすると、測定結果に対す
る球の大きさの影響の補正を要するので精密な測定が困
難であるのみならず、IC用リードフレームなどのように
柔らで微小な物体ではフイーラの接触による変形のおそ
れがあって正確な形状寸法の測定を期待し得ず、新たな
非接触型フイーラの開発が望まれていた。
(Prior Art) A three-dimensional coordinate measuring device is usually used for measuring the shape and dimension of an object having a three-dimensional curved surface of a minute part or an easily deformable object.
That is, as the filler, conventionally, a contact-type filler in which microspheres are attached to the tip of the filler has been used. However, if you try to measure the contour of a three-dimensional curved surface by touching the feeler with an object, it is necessary to correct the influence of the size of the sphere on the measurement result, so not only precise measurement is difficult but also the lead for IC. With a soft and minute object such as a frame, there is a risk of deformation due to the contact of the filler, and accurate shape measurement cannot be expected, so the development of a new non-contact type filler has been desired.

そこで、本発明者の一人は、光軸を互いに交叉させて
測距的位置移動を行なう一対の顕微鏡と一対のテレビジ
ョンカメラとを組合わせて光学的に非接触の三次元座標
検出を行なう装置を開発して特開昭59−171806号公報に
より開示した。
Therefore, one of the inventors of the present invention is an apparatus for performing optically non-contact three-dimensional coordinate detection by combining a pair of microscopes and a pair of television cameras, which perform a distance-measuring position movement by intersecting optical axes with each other. Was developed and disclosed by Japanese Patent Application Laid-Open No. 59-171806.

(発明が解決しようとする問題点) しかしながら、この非接触型三次元座標検出装置のフ
イーラはかなり大きく、重量も2.5kg程度であって取扱
いが容易ではなく、スケールの目視による座標の読取り
に手間がかかり、実用上の不便があった。
(Problems to be solved by the invention) However, the feeler of this non-contact type three-dimensional coordinate detection device is quite large, and the weight is about 2.5 kg, which is not easy to handle, and it is troublesome to read the coordinates visually by the scale. However, there was a practical inconvenience.

(問題点を解決するための手段) 本発明の目的は、上述した従来の問題点を解決し、非
接触フィーラを小型化して取扱いを容易にするととも
に、三次元座標を表わす位置信号を自動発生させて座標
読取りを容易にし、実用化に適した非接触型三次元座標
検出装置を提供することにある。
(Means for Solving Problems) An object of the present invention is to solve the above-mentioned conventional problems, downsize the non-contact feeler to facilitate handling, and automatically generate a position signal representing three-dimensional coordinates. Therefore, it is intended to provide a non-contact type three-dimensional coordinate detection device which facilitates coordinate reading and is suitable for practical use.

すなわち、本発明による非接触型三次元座標検出装置
は、測距的位置移動を行なう一対の顕微鏡の光学系を改
良するとともにCCD撮像素子を用いてテレビジョンカメ
ラを構成することにより非接触フイーラを小型化し、さ
らに、テレビジョンカメラの撮像出力信号をディジダル
処理して自動発生させた位置信号によりフイーラの位置
移動を自動化するとともに三次元座標を自動読取り記録
し得るようにしたものであり、被検体を載置するテーブ
ルの載置面に平行のX軸およびY軸の方向にそれぞれ移
動可能に設けたフレームに対して前記載置面に垂直のZ
軸の方向に移動可能に支持軸を取付け、前記Z軸に対
し、互いに対称に前記X軸または前記Y軸の方向に離隔
するとともに互いに等しい角度をなして傾斜した光軸を
それぞれ有する一対の顕微光学系を前記支持軸に取付
け、当該一対の顕微光学系に一対のテレビジョンカメラ
をそれぞれ結合させ、当該一対のテレビジョンカメラに
よる被検体の所定個所の撮像出力画像を同一テレビジョ
ンモニタに同期表示して互いに合致させたときの前記フ
レームおよび前記支持軸の移動量により被検体の前記所
定個所の前記X軸、前記Y軸および前記Z軸に関する三
次元座標を非接触検出する装置において、光ファイバを
介して導入した光束を前記光軸に沿って進ませる第1の
偏向光学素子と、当該第1の偏向光学素子からの光束を
透過させるとともにその光束の被検体による反射光束を
前記光軸と交叉する方向に進ませる第2の偏向光学素子
と、当該第2の偏向光学素子から前記光軸と交叉する方
向に進む前記反射光束を限られた同一空間内における複
数回の反射により折り返させて前記テレビジョンカメラ
の撮像面に入射させる第3の偏向光学素子とを用いて前
記顕微光学系を構成するとともに、前記一対のテレビジ
ョンカメラの撮像出力画像を被検体の前記所定個所の近
傍にそれぞれ局限したうえで2値化して求めた相互の相
関が最大となる位置に前記フレームおよび前記支持軸を
それぞれ駆動して移動させ、その位置のX,Y,Z三軸座標
値をそれぞれ表わす電気信号をそれぞれの駆動手段によ
り発生させるようにしたことを特徴とするものである。
That is, the non-contact type three-dimensional coordinate detection device according to the present invention improves the optical system of a pair of microscopes that perform distance-measuring position movement, and configures a television camera using a CCD image pickup device to form a non-contact filler. The size of the object is further reduced, and the image sensor output signal of the television camera is digitized to automatically generate the position signal to automatically move the position of the filler, and the three-dimensional coordinates can be automatically read and recorded. Z perpendicular to the mounting surface with respect to a frame provided so as to be movable in the directions of X-axis and Y-axis parallel to the mounting surface of the table on which
A pair of microscopes each having a support shaft movably in the axial direction and having optical axes that are symmetrically spaced from each other in the direction of the X-axis or the Y-axis with respect to the Z-axis and are inclined at equal angles. An optical system is attached to the support shaft, a pair of television cameras is coupled to the pair of microscopic optical systems, respectively, and an output image taken at a predetermined portion of the subject by the pair of television cameras is synchronously displayed on the same television monitor. A non-contact device for detecting three-dimensional coordinates of the X-axis, the Y-axis, and the Z-axis of the predetermined portion of the subject based on the amount of movement of the frame and the support shaft when they are matched with each other. A first deflecting optical element for advancing the light beam introduced through the optical axis along the optical axis, and transmitting and transmitting the light beam from the first deflecting optical element. A second deflecting optical element for advancing a light beam reflected by the subject in a direction intersecting the optical axis and a reflected light beam traveling from the second deflecting optical element in a direction intersecting the optical axis are limited. The microscopic optical system is configured using a third deflecting optical element that is reflected by a plurality of reflections in the same space and is incident on the image pickup surface of the television camera, and the image pickup outputs of the pair of television cameras are provided. The frame and the support shaft are respectively driven and moved to the positions where the mutual correlations obtained by binarizing the image in the vicinity of the predetermined portion of the subject and binarizing the images are moved, and X, It is characterized in that electric signals respectively representing Y, Z triaxial coordinate values are generated by respective driving means.

(作 用) したがって、本発明により、一対の顕微鏡の測距的位
置移動を用いた非接触型三次元座標検出装置の実用性が
著しく向上し、この種の三次元座標検出装置を必要とす
る、例えばプレス金型化合業者やIC用リードフレーム製
造業者等に対して極めて有用となる。
(Operation) Therefore, according to the present invention, the practicality of the non-contact type three-dimensional coordinate detecting device using the distance-measuring position movement of the pair of microscopes is remarkably improved, and this kind of three-dimensional coordinate detecting device is required. For example, it is extremely useful for press die compounders, IC lead frame manufacturers, and the like.

(実施例) 以下に図面を参照して実施例につき本発明を詳細に説
明する。
(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.

まず、本発明による非接触フイーラを装着した三次元
座標測定機および測定データ処理用の付属機器を含めた
非接触型三次元座標検出装置全体の概略構成の例を第1
図に示す。図示の概略構成は前述の公報に開示した従来
装置とほぼ同様であり、ブリッジ型固定台1の両側縁レ
ール上に、被検体載置用テーブル4に平行のX軸方向に
移動可能に組合わせた水平・垂直フレーム2をY軸方向
に移動可能に設置し、テーブル4に垂直のZ軸方向に移
動可能の支持軸3を垂直フレーム2に取付け、その支持
軸3の下端部に拡大して図示するフイーラ部分を取付け
てある。すなわち、支持軸3のなすZ軸方向に対し、例
えばX軸方向に互いに対称に離隔するとともに同一角
度、例えば45゜傾斜させてZ軸上で光軸が互いに交叉す
る一対の顕微鏡光学系5,6を取付け、それら一対の顕微
鏡光学系5,6に一対のCCDカメラヘッド7,8をそれぞれ組
合わせてある。顕微鏡光学系5,6には被検体から離隔し
た光源9からの光束を一対の光ファイバ10,11をそれぞ
れ介し導入して被検体を照明し、被検体からの反射光束
による被検体の光像をCCDカメラ7,8の撮像面に結像させ
て撮像し、撮像出力画像信号を同期信号発生機14の制御
のもとにカメラ制御器12,13を介して画像処理装置15に
導き、処理結果の二重画像をテレビジョンモニタ16に映
出する。
First, a first example of a schematic configuration of the entire non-contact type three-dimensional coordinate detecting device including a three-dimensional coordinate measuring machine equipped with a non-contact filler and an accessory for processing measurement data according to the present invention will be described.
Shown in the figure. The schematic configuration shown in the figure is almost the same as the conventional device disclosed in the above-mentioned publication, and is combined on both side rails of the bridge type fixed base 1 so as to be movable in the X-axis direction parallel to the subject mounting table 4. The horizontal / vertical frame 2 is installed movably in the Y-axis direction, the support shaft 3 movable in the vertical Z-axis direction is attached to the table 4, and the support shaft 3 is expanded to the lower end of the support shaft 3. The illustrated filler portion is attached. That is, with respect to the Z-axis direction formed by the support shaft 3, for example, a pair of microscope optical systems 5, which are symmetrically separated from each other in the X-axis direction and inclined at the same angle, for example, 45 °, and whose optical axes intersect with each other on the Z-axis. 6 is attached, and a pair of CCD camera heads 7 and 8 are combined with the pair of microscope optical systems 5 and 6, respectively. A light beam from a light source 9 separated from the subject is introduced into the microscope optical systems 5 and 6 through a pair of optical fibers 10 and 11, respectively, to illuminate the subject, and an optical image of the subject by a reflected light flux from the subject. To form an image on the image pickup surface of the CCD cameras 7 and 8 and guide the image pickup output image signal to the image processing device 15 through the camera controllers 12 and 13 under the control of the synchronization signal generator 14 and process it. The resulting double image is displayed on the television monitor 16.

CCDカメラ7,8の被検体撮像出力画像は、モニタ16の画
面上では一般に二重画像となるが、一対の顕微鏡5,6の
光軸のZ軸上交叉点を支持軸3の移動により上下させて
その交差点が被検体の所定個所に合致したときには、そ
の二重画像が合致して一重画像となるので、かかる操作
により被検体所定個所のZ軸座標を測定することができ
る。なおX軸およびY軸の両座標については、顕微鏡光
軸のZ軸上交差点を示す十字線をモニタ16の画面上に重
ねて映出し、その十字線の交点と被検体測定点とが合致
するようにフレーム2を移動させて、その移動量により
X,Y軸両座標を検出することができる。
The output image of the subject captured by the CCD cameras 7 and 8 is generally a double image on the screen of the monitor 16, but the crossing point on the Z axis of the optical axes of the pair of microscopes 5 and 6 is moved up and down by moving the support shaft 3. Then, when the intersection coincides with a predetermined portion of the subject, the double images coincide with each other to form a single image, so that the Z-axis coordinate of the predetermined portion of the subject can be measured by such an operation. Regarding both the X-axis and Y-axis coordinates, a cross line indicating the intersection of the optical axes of the microscope on the Z-axis is superimposed and displayed on the screen of the monitor 16, and the cross point of the cross line and the measurement point of the subject match. Move the frame 2 like this, and
Both X and Y axis coordinates can be detected.

かかるX,Y,Z各座標値の読取りは、フレーム2および
支持軸3をそれぞれ駆動して移動させる各ギヤ・システ
ムの回転量を例えばアブソリュート・エンコーダにより
ディジタル信号にして読取り、第1図に示すように、フ
レーム2および支持軸3の移動に応じ刻々変化するディ
ジタル座標信号を、モニタ16の画面上で上述した十字線
交点と被検体測定点とが一致したときにストップスイッ
チ18により停止させて座標表示部17に表示するととも
に、例えばデスクトップコンピュータ19により処理して
プロッタ20に記録する。
The reading of each X, Y, Z coordinate value is performed by reading the amount of rotation of each gear system that drives and moves the frame 2 and the support shaft 3 as a digital signal by, for example, an absolute encoder, and is shown in FIG. As described above, the stop switch 18 is used to stop the digital coordinate signal that changes momentarily according to the movement of the frame 2 and the support shaft 3 when the cross line intersection point on the screen of the monitor 16 coincides with the object measurement point. The data is displayed on the coordinate display unit 17, processed by, for example, the desktop computer 19, and recorded on the plotter 20.

本発明においては、第1図に拡大して示し、上述した
ようにして使用する光学的非接触フイーラを小型軽量化
してその実用性を向上させるために、顕微鏡5,6の光学
系を第2図に示すように構成してある。図示の光学系に
おいては、熱の発生による光学系の変形に基づく測定精
度劣化を避けて離隔した光源21からの光束を光ファイバ
を介し直角プリズム25に入射させ、顕微鏡5,6の光軸に
沿って偏向させる。光軸に沿い、ビームスプリッタ23を
透過して直進した入射光束により被検体25を照明すると
ともに、被検体25の測定点からの反射光束をCCDカメラ
7,8の撮像素子27に導くに際し、非接触フィーラ全体を
コンパクトに構成しても顕微鏡5,6における光学系の作
用距離、すなわち、非検体25と対物レンズ24との距離を
充分長くして測定可能な被検体の高さに余裕をもたせる
ために、レンズ系の焦点距離を十分長く設定して対物レ
ンズ24と非検体光像が結像する撮像素子27との間の光路
長を十分長く設定する手段として、顕微鏡5,6の光軸に
沿った反射光束をビームスプリッタ23により光軸と交叉
し、好ましくは直交する方向に偏向させ、さらに、ポロ
プリズム26により折り返させて撮像素子27に入射させる
ように光学系を構成してある。なお、非接触フィーラ小
型化のためにCCDカメラ7,8の撮像素子27のみを分離して
フィーラ本体内に装着し、駆動制御回路系はフィーラ本
体外に設置してある。かかる構成とした結果、本発明に
よる非接触フィーラ本体の各寸法および重量はともに従
来の約1/2となった。すなわち、非接触フィーラ本体の
重量は約800グラムとなり、また、外形の概略寸法は第
3図に示すとおりとなった。
In the present invention, in order to reduce the size and weight of the optical non-contact filler used as described above in an enlarged manner in FIG. It is configured as shown in the figure. In the illustrated optical system, the luminous flux from the light source 21 that is separated while avoiding the measurement accuracy deterioration due to the deformation of the optical system due to the generation of heat is made incident on the right-angle prism 25 through the optical fiber, and is incident on the optical axes of the microscopes 5 and 6. Deflect along. The subject 25 is illuminated by the incident light flux that has passed through the beam splitter 23 and travels straight along the optical axis, and the reflected light flux from the measurement point of the subject 25 is measured by a CCD camera.
When guiding to the image pickup device 27 of 7, 8, even if the whole non-contact feeler is configured compactly, the working distance of the optical system in the microscope 5, 6, that is, the distance between the non-specimen 25 and the objective lens 24 should be sufficiently long. In order to allow a measurable height for the subject, the focal length of the lens system is set to be sufficiently long so that the optical path length between the objective lens 24 and the image sensor 27 on which the non-analyte optical image is formed is sufficiently long. As a means for setting, the reflected light flux along the optical axis of the microscope 5, 6 is intersected with the optical axis by the beam splitter 23, is preferably deflected in a direction orthogonal to the optical axis, and further is folded back by the Porro prism 26 to the image pickup element 27. The optical system is configured to make the light incident. In order to reduce the size of the non-contact feeler, only the image pickup device 27 of the CCD cameras 7 and 8 is separately mounted in the feeler main body, and the drive control circuit system is installed outside the feeler main body. As a result of such a configuration, each size and weight of the non-contact feeler main body according to the present invention are about half that of the conventional one. That is, the weight of the non-contact feeler body was about 800 grams, and the outline dimensions were as shown in FIG.

しかして、本発明者らの開発した光学的非接触型三次
元座標検出装置においては、被検体測定点のZ軸座標を
一対の顕微鏡による二重画像の合致によって検出する
が、その二重画像合致を従来は目視によって行なってい
たので、測定に時間がかかるのみならず、測定誤差が大
きかった。そこで、本発明においては、例えば第4図に
示すような構成の画像所理装置により二重画像の合致検
出を自動的に行なっている。図示の構成においては、一
対の顕微光学系に組合わせた一対のCCDカメラの左右各
撮像出力信号を画面切出し回路28を介して2値化回路29
に導き、適切に調整可能の参照信号レベルとの比較によ
り2値化したうえで相関回路30に導き、左右両画像信号
のディジタル処理により相互相関の最大点を求めて二重
画像の合致による被検体測定点のZ軸座標検出を実時間
で自動的に行なう。すなわち、相関回路30の出力相関値
を積分計数回路31に導き、例えば10MHzのクロック発生
回路32の制御のもとにフィーラのZ軸方向移動に伴う相
関値の変化を計数してその計数結果を合致度表示装置33
に表示する。なお、図示の画像処理装置においては、2
値化回路29からの被検体測定点近傍を表わすディジタル
画像信号と、垂直・水平両同期信号を供給した十字線発
生回路34からの十字線信号との論理積をAND回路35から
取出してLED表示装置36に導き、後述するようにして被
検体測定点と十字線中心点との一致・不一致を表示し、
X軸,Y軸両座標の検出も行ない得るようにしてある。
Therefore, in the optical non-contact type three-dimensional coordinate detection device developed by the present inventors, the Z-axis coordinate of the measurement point of the object is detected by matching the double images by the pair of microscopes. Conventionally, the matching was performed visually, so not only the measurement took time, but also the measurement error was large. Therefore, in the present invention, the coincidence detection of the double images is automatically performed by the image processing device having the structure shown in FIG. 4, for example. In the illustrated configuration, the left and right imaging output signals of a pair of CCD cameras combined with a pair of microscopic optical systems are binarized through a screen cutout circuit 28 into a binarization circuit 29.
To the correlation circuit 30, and then to the correlation circuit 30 to obtain the maximum point of the cross-correlation by digital processing of the left and right image signals and obtain the maximum value of the cross-correlation. The Z-axis coordinate detection of the sample measurement point is automatically performed in real time. That is, the output correlation value of the correlation circuit 30 is led to the integral counting circuit 31, and the change of the correlation value due to the movement of the feeler in the Z-axis direction is counted under the control of the 10 MHz clock generation circuit 32, and the counting result is obtained. Matching degree display device 33
To be displayed. In addition, in the illustrated image processing apparatus,
The logical product of the digital image signal representing the vicinity of the object measurement point from the binarization circuit 29 and the crosshair signal from the crosshair generation circuit 34 that has supplied both vertical and horizontal synchronization signals is taken out from the AND circuit 35 and displayed as an LED. Guide to the device 36, display the match / mismatch between the subject measurement point and the center point of the crosshair as described below,
Both X-axis and Y-axis coordinates can be detected.

しかして、本発明における一対の顕微鏡の各光軸はZ
軸に斜交しているのであるから、例えば平板とする被検
体の測定面に垂直とはならない場合が多く、したがっ
て、顕微光学系の焦点が合っているのは測定点近傍領域
に限られる。例えば、第5図に示すように、測定面の中
心を挟んで等間隔にある同じ大きさの3点画像はモニタ
16の画面上では測定面上のとおりには映出されない。し
たがって、焦点の合っている中心近傍のみに撮像領域を
限って左右両撮像出力画像信号の相関をとるように画面
を切取る窓を設ける必要があり、第4図示の画像処理装
置における画面切出し回路28はそのために設けたもので
ある。
Therefore, each optical axis of the pair of microscopes in the present invention is Z
Since it is oblique to the axis, it is often not perpendicular to the measurement surface of the subject, for example, a flat plate. Therefore, the microscopic optical system is focused only in the area near the measurement point. For example, as shown in FIG. 5, three point images of the same size that are equally spaced across the center of the measurement surface are displayed on the monitor.
It is not displayed on the 16 screen as it is on the measurement surface. Therefore, it is necessary to limit the image pickup area only in the vicinity of the center where the image is in focus and to provide a window for cutting out the screen so as to correlate the left and right image pickup output image signals, and the screen cutout circuit in the image processing apparatus shown in FIG. 28 is provided for that purpose.

上述した画面切出しの状態を第6図(A)に示し、画
面切出し回路28の詳細構成の例を第6図(B)に示す。
すなわち、第6図(A)に示すように、画面の垂直走査
において上端から時間t1の走査線からさらに時間t2の走
査線までの区間および左端から時間t3の点からさらに時
間t4の点までの区間に囲まれた中心領域のみを切出すも
のとして、第6図(B)に示すように、垂直同期信号を
それぞれ時間t1およびt2だけ遅延させるマルチバイブレ
ータ37および38と水平同期信号をそれぞれ時間t3および
t4だけ遅延させるマルチバイブレータ39および40との遅
延出力をAND回路41に導き、その論理積出力によりオン
オフスイッチ42を駆動して、画面の中心領域に相当する
画像信号のみを切取って取出す。なお、被検体の測定点
を探し易くするために中心領域外の周囲画像はコントラ
ストを下げて同時に映出するのが好適である。
The above-described screen cutout state is shown in FIG. 6 (A), and an example of the detailed configuration of the screen cutout circuit 28 is shown in FIG. 6 (B).
That is, as shown in FIG. 6A, in the vertical scanning of the screen, the section from the upper end to the scanning line at time t 1 to the scanning line at time t 2 and the time t 3 from the left end to time t 4 As shown in FIG. 6 (B), assuming that only the central area surrounded by the section up to the point is cut out, the vertical synchronizing signal is delayed by time t 1 and time t 2 respectively and horizontal and horizontal. Sync signal at time t 3 and
The delayed output from the multivibrators 39 and 40, which delays by t 4, is led to the AND circuit 41, and the on / off switch 42 is driven by the AND output, and only the image signal corresponding to the central region of the screen is cut out and taken out. It is preferable that the peripheral images outside the central region are simultaneously displayed with reduced contrast in order to easily find the measurement point of the subject.

一方、X軸およびY軸の位置座標検出は、第4図示の
画像処理装置について前述したように、十字線発生回路
34からの十字線信号をモニタ16の画面に映出し、その十
字線の交点と被検体の測定点との合致を、従来は目視に
より検出していたが、本発明においては、画像処理装置
の第4図示の構成におけるLED表示装置36内に例えば第
7図(B)に示すような構成のX軸・Y軸座標検出回路
を設けて自動的に検出し得るようにしてある。すなわ
ち、第7図(A)の上段に示すように、モニタ16の画面
の中心に映出した十字線の交点がなす参照点の位置に映
出した例えば右側カメラ7の2値化撮像出力画像信号
が、Hレベルすなわち白レベルであれば下段(a)に示
すように下側のGL(緑)LEDすなわち発光ダイオードが
点灯し、Lレベルすなわち黒レベルであれば下段(c)
に示すように右側のGL・(緑)LEDすなわち発光ダイオ
ードが点灯し、Lレベルすなわち黒レベルであれば下段
(c)に示すように右側のGR・LEDが点灯し、参照点の
位置で2値化画像信号が立上りもしくは立下れば下段
(b)に示すように中央のR(赤)LEDが点灯するよう
にして、被検体測定点が参照点に合致するようにX軸・
Y軸座標検出回路を構成し、その検出出力信号により各
LEDをそれぞれ点灯するとともにフレーム2を適切に駆
動して移動させ、X軸・Y軸両座標を自動検出し得るよ
うにする。かかるX軸・Y軸座標検出回路の構成例を第
7図(B)に示す。図示の構成においては、十字線縦線
信号と十字線横信号とをAND回路46に導いてその論理積
よりなる十字線交点信号をAND回路43および45に供給
し、前述した右側カメラ2値化撮像出力画像信号および
インバータ44によるその反転信号をそれぞれゲートし、
2値化画像信号がHレベルおよびLレベルのときに得ら
れるそれぞれのゲート出力信号により単安定マルチバイ
ブレータ47および48をそれぞれ駆動して、第7図(A)
につき上述した同図(a)および(c)の状態をそれぞ
れ表わす信号をそれぞれ形成し、それらの信号により対
応するG・LED50、52、50、52をそれぞれ点灯させる。
On the other hand, the X-axis and Y-axis position coordinate detection is performed by the crosshair generation circuit as described above with respect to the image processing apparatus shown in FIG.
The crosshair signal from 34 is projected on the screen of the monitor 16, and the match between the intersection of the crosshair and the measurement point of the subject is conventionally detected visually, but in the present invention, the image processing apparatus For example, an X-axis / Y-axis coordinate detection circuit having a structure as shown in FIG. 7B is provided in the LED display device 36 having the structure shown in FIG. That is, as shown in the upper part of FIG. 7 (A), for example, a binarized captured output image of the right camera 7 displayed at the position of the reference point formed by the intersection of the crosshairs displayed in the center of the screen of the monitor 16. If the signal is at H level, that is, white level, the lower G L (green) LED, that is, the light emitting diode is turned on as shown in the lower stage (a), and if at L level, that is, the black level, the lower stage (c).
The right G L · (green) LED, that is, the light emitting diode is lit as shown in, and if it is L level, that is, the black level, the right G R · LED is lit as shown in the lower row (c), and the position of the reference point When the binarized image signal rises or falls at, the central R (red) LED is turned on as shown in the lower part (b), and the X-axis
The Y-axis coordinate detection circuit is configured, and each of the detection output signals
The LEDs are turned on and the frame 2 is appropriately driven and moved so that both X-axis and Y-axis coordinates can be automatically detected. An example of the configuration of such an X-axis / Y-axis coordinate detection circuit is shown in FIG. In the configuration shown in the figure, the vertical line signal and the horizontal line signal of the cross line are guided to the AND circuit 46, and the cross line intersection signal which is the logical product thereof is supplied to the AND circuits 43 and 45, and the right camera binarization described above is performed. Gate the image output signal and its inverted signal by the inverter 44,
The monostable multivibrators 47 and 48 are driven by the respective gate output signals obtained when the binarized image signal is at the H level and the L level, and FIG.
Therefore, the signals respectively representing the states of (a) and (c) of FIG. 1 are formed, and the corresponding G-LEDs 50, 52, 50, 52 are turned on by the signals.

さらに、2値化画像信号のHレベルとLレベルとの境
界部分が十字線交点に合致して同図(b)の状態になっ
たときには、2値化画像信号の閾値レベルの近傍では信
号レベルが不安定になって、アンド回路43と45とが不安
定に交互に論理1の状態になるので、単安定マルチバイ
ブレータ47および48の出力パルスの幅をテレビジョン画
像信号のフレーム周期より少し広くし、例えば1/30秒以
上に設定しておけば、単安定マルチバイブレータ47と48
との出力信号が同時に論理1となり、それらの信号を導
いたAND回路49のゲート出力信号により同図(b)に示
した参照点と被検体測定点との合致状態を表わしてR・
LED51を点灯させる。
Furthermore, when the boundary portion between the H level and the L level of the binarized image signal coincides with the intersection of the cross lines and becomes the state of FIG. 7B, the signal level is near the threshold level of the binarized image signal. Becomes unstable and the AND circuits 43 and 45 become unstable and alternate to the logic 1 state. Therefore, the width of the output pulse of the monostable multivibrators 47 and 48 is made slightly wider than the frame period of the television image signal. However, if you set it to 1/30 seconds or more, for example, monostable multivibrators 47 and 48
And the output signals of and become logic 1 at the same time, and the gate output signal of the AND circuit 49 that guides these signals represents the matching state between the reference point and the object measurement point shown in FIG.
Turn on LED51.

以上のように構成して動作させる本発明の三次元座標
検出装置による座標検出の繰返し精度を各軸個別に測定
した結果は、X,Y,Z各軸座標の標準偏差で表わしてσ
=0.4μm,σ=0.0μm,σ=0.6μmであった。
The result of measuring the repeatability of the coordinate detection by the three-dimensional coordinate detecting apparatus of the present invention configured and operated as described above for each axis individually is represented by the standard deviation of the X, Y, Z axis coordinates, and σ x
= 0.4 μm, σ y = 0.0 μm, σ z = 0.6 μm.

また、撮像出力画像信号2値化の閾値を第8図に示す
ように微細に変化させて被検体測定点を表わす輝点の幅
を十字線の交点の幅にほぼ等しくした状態における三軸
座標同時自動検出の繰返し精度は標準偏差σ=1.1μ
m,σ=0.6μm,σ=1.4μmであり、目視による同様
の測定における標準偏差σ=1.2μm,σ=0.9μm,σ
=1.4μmより高い繰返し精度が得られた。
Also, the triaxial coordinates in a state where the width of the binarized threshold value of the imaging output image signal is finely changed as shown in FIG. Repeatability of simultaneous automatic detection is standard deviation σ x = 1.1μ
m, σ y = 0.6 μm, σ z = 1.4 μm, and standard deviation σ x = 1.2 μm, σ y = 0.9 μm, σ in the same visual measurement.
Repeatability higher than z = 1.4 μm was obtained.

また、第9図に示すようなIC用リードフレームにおけ
る図示のY軸方向のリード間隔を表わす座標測定の結果
を第10図(A)に示し、比較のために、従来の万能投影
機による同様の測定結果を第10図(B)に示す。なお、
それぞれの測定装置に同一個所を測定するようにしてIC
用リードフレームを載置するのは極めて困難であり、し
たがって、両者の測定結果は全く同一の被検体を測定し
たことにはならないが、測定結果の繰返し精度は、本発
明の非接触フィーラの場合の方が標準偏差0.3μmとな
り、標準偏差0.5μmとなる万能投影機の場合より高い
精度が得られた。
Further, FIG. 10 (A) shows the result of the coordinate measurement showing the lead interval in the Y-axis direction in the lead frame for IC as shown in FIG. 9, and for comparison, the same result is obtained by the conventional universal projector. The measurement result of is shown in FIG. 10 (B). In addition,
IC to measure the same point on each measuring device
It is extremely difficult to mount the lead frame for use in the non-contact feeler of the present invention, although the measurement results of both are not the same for the same subject. Has a standard deviation of 0.3 μm, which is higher than that of the universal projector with a standard deviation of 0.5 μm.

さらに、第11図に示すようなIC用リードフレームにお
いてICチップを設置するパット面の基準面とするフレー
ム上面からの深さを表わすZ軸座標の測定結果を第12図
に示す。なお、この測定に際しては、基準面のX′Y′
Z′軸座標系を被測定パット面のXYZ軸座標系に変換す
るための三次元座標測定プログラムを用いた。したがっ
て、フレーム上面上の3点C1〜C3の座標値を入力した後
にパット面上の点Piの座標値を入力すれば、座標変換さ
れた点Piの座標値が得られ、そのZ軸座標値がパット面
深さを示すことになる。第12図には、かかる測定を3回
繰返した結果を示してあり、その繰返し精度は標準偏差
σ′=2.7μmであった。なお、フレーム上面からの
パット面深さのみを単純に20回繰返し測定したときの繰
返し精度は標準偏差0.6μmであり、前述の標準偏差σ
′は、フレーム外枠面の形状偏差に起因して劣化した
ものとみられる。
Further, in the IC lead frame as shown in FIG. 11, FIG. 12 shows the measurement result of the Z-axis coordinate representing the depth from the upper surface of the frame which is the reference surface of the pad surface for mounting the IC chip. In this measurement, X'Y 'of the reference plane
A three-dimensional coordinate measuring program for converting the Z ′ axis coordinate system into the XYZ axis coordinate system of the pad surface to be measured was used. Therefore, if the coordinate values of the points P i on the pad surface are input after the coordinate values of the three points C 1 to C 3 on the upper surface of the frame are input, the coordinate values of the coordinate-converted points P i are obtained. The Z-axis coordinate value indicates the pad surface depth. FIG. 12 shows the result of repeating such measurement three times, and the repeatability thereof was standard deviation σ z ′ = 2.7 μm. It should be noted that the repeatability when simply measuring the pad surface depth from the top surface of the frame 20 times is a standard deviation of 0.6 μm.
It is considered that z ′ is deteriorated due to the shape deviation of the frame outer frame surface.

(発明の効果) 以上の説明から明らかなように、本発明による光学的
非接触フイーラを用いれば、従来の接触型フイーラでは
測定不可能な微小で変形し易いIC用リードフレームや塑
製加工研究用立体被検体上の格子線等の三次元座標を容
易かつ高精度に自動検出することができる。すなわち、
本発明により非接触フイーラが従来に比して格段に小型
軽量になるとともに座標検出出力信号が自動的に得られ
るので、三次元座標検出の精度が向上し,繰返し精度を
標準偏差で表わして、直径0.5mmの基準球体に対して0.4
〜1.1μm、また、IC用リードフレームに対して2.5μm
程度の精度が容易確実に得られる。
(Effects of the Invention) As is clear from the above description, by using the optical non-contact filler according to the present invention, it is possible to study a lead frame for an IC and a plastic working which cannot be measured by the conventional contact-type filler and are easily deformed. It is possible to automatically and easily detect the three-dimensional coordinates of the grid line or the like on the three-dimensional object for use with high precision. That is,
According to the present invention, the non-contact filler is significantly smaller and lighter than the conventional one, and the coordinate detection output signal is automatically obtained. Therefore, the accuracy of three-dimensional coordinate detection is improved, and the repeatability is represented by the standard deviation. 0.4 for a reference sphere with a diameter of 0.5 mm
~ 1.1 μm, and 2.5 μm for IC lead frame
The degree of accuracy can be easily and reliably obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による非接触型三次元座標検出装置の概
略構成の例を示す構成配置図、 第2図は同じくその非接触フイーラにおける顕微光学系
の構成例を模式的に示す斜視図、 第3図は同じくその非接触フイーラの概略寸法の例を示
す正面図、 第4図は同じくその三次元座標検出装置における撮像出
力画像処理装置の回路構成の例を示すブロック線図、 第5図は同じくその非接触フイーラにおける顕微光学系
の被検体撮像の態様の例を模式的に示す線図、 第6図(A)および(B)は同じくその画像処理装置に
おける画面切出しの態様および画面切出し回路の構成例
をそれぞれ示す線図およびブロック線図、 第7図(A)および(B)は同じくその光学的非接触フ
イーラによるX軸・Y軸座標検出の態様およびX軸Y軸
座標検出回路の構成例をそれぞれ示す線図およびブロッ
ク線図、 第8図は同じくその撮像出力画像信号2値化の態様を示
す線図、 第9図は同じくそのIC用リードフレームのY軸座標検出
実験の態様の例を示す線図、 第10図(A)および(B)は同じくそのIC用リードフレ
ームY軸座標の測定結果の例および従来の測定結果をそ
れぞれ示す特性曲線図、 第11図は同じくそのIC用リードフレームのZ軸座標検出
実験の態様の例を示す線図、 第12図は同じくそのIC用リードフレームZ軸座標の測定
結果の例を示す特性曲線図である。 1……ブリッジ型固定台、2……垂直・水平フレーム 3……支持軸 4……被検体載置用テーブル 5,6……顕微鏡光学系 7,8……CCDカメラ・ヘッド 9……照明用光源、10,11……光ファイバ 12,13……カメラ制御器、14……同期信号発生器 15……画像処理装置、16……テレビジョンモニタ 17……座標表示部、18……ストップスイッチ 19……デスクトップコンピュータ 20……プロッタ、21……照明用光源 22……直角プリズム、23……ビームスプリッタ 24……対物レンズ、25……被検体 26……ポロプリズム、27……撮像素子 28……画面切出し回路、29……2値化回路 30……相関回路、31……積分(計数)回路 32……クロック発生回路、33……合致度表示装置 34……十字線発生回路、35……AND回路 36……LED表示装置 37,38,39,40,47,48……単安定マルチバイブレータ 41,43,45,46,49……AND回路 42……オンオフスイッチ 44……インバータ 50,51,52……LED
FIG. 1 is a structural layout view showing an example of a schematic structure of a non-contact type three-dimensional coordinate detecting device according to the present invention, and FIG. 2 is a perspective view schematically showing a structural example of a microscopic optical system in the non-contact filler. FIG. 3 is a front view showing an example of schematic dimensions of the non-contact filler, and FIG. 4 is a block diagram showing an example of a circuit configuration of an image pickup output image processing device in the three-dimensional coordinate detecting device, and FIG. Is also a diagram schematically showing an example of a mode of imaging an object of a microscopic optical system in the non-contact filler, and FIGS. 6 (A) and 6 (B) are also mode of screen cutout and screen cutout in the image processing apparatus. A diagram and a block diagram respectively showing an example of the circuit configuration are shown in FIGS. 7A and 7B, which show a mode of X-axis / Y-axis coordinate detection by the optical non-contact filler and an X-axis Y-axis coordinate detection circuit. Structure FIG. 8 is a diagram showing a mode of binarization of the imaged output image signal, and FIG. 9 is a diagram showing a mode of Y-axis coordinate detection experiment of the IC lead frame. A diagram showing an example, FIGS. 10 (A) and 10 (B) are also characteristic curve diagrams showing an example of the measurement result of the Y-axis coordinate of the lead frame for the IC and a conventional measurement result, respectively, and FIG. 11 is the same IC. FIG. 12 is a characteristic curve diagram showing an example of the measurement result of the Z-axis coordinate of the lead frame for the IC, which is an example of an embodiment of the Z-axis coordinate detection experiment of the lead frame for IC. 1 …… Bridge type fixed base 2 …… Vertical / horizontal frame 3 …… Support shaft 4 …… Table for placing specimen 5,6 …… Microscope optical system 7,8 …… CCD camera / head 9 …… Illumination Light source, 10,11 ...... Optical fiber 12,13 ...... Camera controller, 14 ...... Synchronization signal generator 15 ...... Image processing device, 16 ...... Television monitor 17 ...... Coordinate display unit, 18 ...... Stop Switch 19 …… Desktop computer 20 …… Plotter, 21 …… Illumination light source 22 …… Right angle prism, 23 …… Beam splitter 24 …… Objective lens, 25 …… Subject 26 …… Porro prism, 27 …… Image sensor 28 …… Screen cut-out circuit, 29 …… Binarization circuit 30 …… Correlation circuit, 31 …… Integration (counting) circuit 32 …… Clock generation circuit, 33 …… Match degree display device 34 …… Cross line generation circuit, 35 …… AND circuit 36 …… LED display 37,38,39,40,47,48 …… Monostable multivibrator 41,43,4 5,46,49 …… AND circuit 42 …… ON / OFF switch 44 …… Inverter 50,51,52 …… LED

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被検体を載置するテーブルの載置面に平行
のX軸およびY軸の方向にそれぞれ移動可能に設けたフ
レームに対して前記載置面に垂直のZ軸の方向に移動可
能に支持軸を取付け、前記Z軸に対し、互いに対称に前
記X軸または前記Y軸の方向に離隔するとともに互いに
等しい角度をなして傾斜した光軸をそれぞれ有する一対
の顕微光学系を前記支持軸に取付け、当該一対の顕微光
学系に一対のテレビジョンカメラをそれぞれ結合させ、
当該一対のテレビジョンカメラによる被検体の所定個所
の撮像出力画像を同一テレビジョンモニタに同期表示し
て互いに合致させたときの前記フレームおよび前記支持
軸の移動量により被検体の前記所定個所の前記X軸、前
記Y軸および前記Z軸に関する三次元座標を非接触検出
する方法において、前記一対のテレビジョンカメラの撮
像出力画像を非検体の前記所定個所の近傍にそれぞれ局
限したうえで2値化して求めた相互の相関が最大となる
位置に前記フレームおよび前記支持軸をそれぞれ駆動し
て移動させるとともに、その位置のX,Y,Z三軸座標値を
それぞれ表わす電気信号をそれぞれの駆動手段により発
生させるようにしたことを特徴とする非接触型三次元座
標検出用位置信号自動発生方法。
1. A frame, which is provided so as to be movable in directions of an X axis and a Y axis parallel to a mounting surface of a table on which a subject is mounted, moves in a direction of a Z axis perpendicular to the mounting surface. A support shaft is attached so as to be possible, and a pair of microscopic optical systems are provided which are symmetrical with respect to the Z axis and are separated from each other in the direction of the X axis or the Y axis and have optical axes inclined at equal angles. Mounted on a shaft, coupled with a pair of television cameras to the pair of microscopic optical systems,
The captured output image of a predetermined portion of the subject by the pair of television cameras is synchronously displayed on the same television monitor, and the frame and the supporting shaft are moved by the moving amount when they are matched with each other. In a method for non-contact detection of three-dimensional coordinates with respect to the X axis, the Y axis, and the Z axis, the output images captured by the pair of television cameras are localized in the vicinity of the predetermined portion of the non-specimen and then binarized. The frame and the support shaft are respectively driven and moved to a position where the mutual correlation obtained by the above is maximized, and electric signals respectively representing the X, Y and Z triaxial coordinate values of the position are respectively driven by respective driving means. A method for automatically generating a position signal for non-contact type three-dimensional coordinate detection, which is characterized by being generated.
【請求項2】2値化した前記撮像出力画像信号およびそ
の2値化撮像出力画像信号の反転信号と前記テレビジョ
ンモニタの表示画面上における被検体の前記所定個所を
表示すべき位置を示す十字線信号とのそれぞれの論理積
に応じ前記フレームを駆動してX軸およびY軸の方向に
移動させるようにしたことを特徴する特許請求の範囲第
1項記載の非接触型三次元座標検出用位置信号自動発生
方法。
2. A cross representing the binarized image pickup output image signal, an inversion signal of the binarized image pickup output image signal, and a position on the display screen of the television monitor where the predetermined portion of the subject should be displayed. The non-contact type three-dimensional coordinate detecting device according to claim 1, wherein the frame is driven in accordance with a logical product of each of the line signals and moved in the directions of the X-axis and the Y-axis. Position signal automatic generation method.
JP62045280A 1987-03-02 1987-03-02 Non-contact type position signal automatic generation method for three-dimensional coordinate detection Expired - Lifetime JP2535735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62045280A JP2535735B2 (en) 1987-03-02 1987-03-02 Non-contact type position signal automatic generation method for three-dimensional coordinate detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62045280A JP2535735B2 (en) 1987-03-02 1987-03-02 Non-contact type position signal automatic generation method for three-dimensional coordinate detection

Publications (2)

Publication Number Publication Date
JPS63212806A JPS63212806A (en) 1988-09-05
JP2535735B2 true JP2535735B2 (en) 1996-09-18

Family

ID=12714895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62045280A Expired - Lifetime JP2535735B2 (en) 1987-03-02 1987-03-02 Non-contact type position signal automatic generation method for three-dimensional coordinate detection

Country Status (1)

Country Link
JP (1) JP2535735B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110864A (en) * 1978-02-20 1979-08-30 Hitachi Ltd Method and apparatus for detecting patterns for liquid crystal display element
JPS59171806A (en) * 1983-03-22 1984-09-28 Tokyo Inst Of Technol Non-contact detector of three-dimentional coordinates

Also Published As

Publication number Publication date
JPS63212806A (en) 1988-09-05

Similar Documents

Publication Publication Date Title
US6094269A (en) Apparatus and method for optically measuring an object surface contour
KR102615578B1 (en) Characterizing a height profile of a sample by side view imaging
JP3612068B2 (en) Coordinate measurement method for workpiece
US6636310B1 (en) Wavelength-dependent surface contour measurement system and method
US4498776A (en) Electro-optical method and apparatus for measuring the fit of adjacent surfaces
US5090811A (en) Optical radius gauge
CN108344381A (en) A kind of non-contact 3-D surface shape measurement method
TWI627414B (en) Probe card detection method and system
KR20020066378A (en) A lens meter for measuring properties of a spectacle lens or a contact lens
JP2535735B2 (en) Non-contact type position signal automatic generation method for three-dimensional coordinate detection
JP6590429B1 (en) Confocal microscope and imaging method thereof
JP2018066767A (en) Shape measuring device, structure manufacturing system, and shape measuring method
US9921401B2 (en) Measuring device with alignment and reference position for measurement object
JPH0323856B2 (en)
JP5882524B1 (en) Defect measuring device
JP6287153B2 (en) Sensor unit, shape measuring device, and structure manufacturing system
JPH0820334B2 (en) Automatic lens meter
JPH0792364B2 (en) Z-coordinate position detecting method and device for non-contact type three-dimensional coordinate detecting device
JP2553352Y2 (en) Automatic dimension measuring device
JP4340138B2 (en) Non-contact 3D shape measuring device
JPS5965705A (en) Device for measuring size of processed parts
CN117030723A (en) PCB visual defect detection method
JPH02103404A (en) Lead inspection apparatus
JPS6273716A (en) Inspecting apparatus
JPH0712526A (en) Keyway shape measuring device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term