JP2535040B2 - A method for reducing hydrocarbon emissions in the depressurization process of a high-pressure polymerization reactor. - Google Patents

A method for reducing hydrocarbon emissions in the depressurization process of a high-pressure polymerization reactor.

Info

Publication number
JP2535040B2
JP2535040B2 JP62306047A JP30604787A JP2535040B2 JP 2535040 B2 JP2535040 B2 JP 2535040B2 JP 62306047 A JP62306047 A JP 62306047A JP 30604787 A JP30604787 A JP 30604787A JP 2535040 B2 JP2535040 B2 JP 2535040B2
Authority
JP
Japan
Prior art keywords
pressure
reactor
released
atmosphere
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62306047A
Other languages
Japanese (ja)
Other versions
JPS63154708A (en
Inventor
フリードリツヒ・カンネ
フランツ・ゲオルク・ミーツナー
クラウス・プフレーガー
ジークフリート・クルザーヴエ
クラウス・ベツチヤー
ゲルハルト・アーノルド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of JPS63154708A publication Critical patent/JPS63154708A/en
Application granted granted Critical
Publication of JP2535040B2 publication Critical patent/JP2535040B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/002Avoiding undesirable reactions or side-effects, e.g. avoiding explosions, or improving the yield by suppressing side-reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/0027Pressure relief

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Control Of Transmission Device (AREA)
  • Transmissions By Endless Flexible Members (AREA)
  • Polymerisation Methods In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The pressure in a continuous high pressure polymerization system, in which ethylene, with or without comonomers, is polymerized under high pressures and temperatures and the unconverted amounts of gas are recycled through the high pressure recycle gas system into the polymerization system, is rapidly reduced to below the particular reaction pressure when predetermined limiting pressure and/or temperature values are exceeded or when other faults occur by opening one or more pressure-relief apparatuses mounted on the high pressure polymerization system and transferring the hot let-down reaction mixture from the polymerization system via one or more let-down lines through one or more separator systems into the atmosphere, by a process in which the high pressure polymerization system is divided into a plurality of isolated sections at the same time as the let-down process is triggered and only the section in which the let-down process is triggered is let down to the atmosphere. Preferably, the sections in which the let-down process is not triggered can be let down into the high pressure recycle gas system, if necessary through a product separator, in synchronization with triggering of the let-down to the atmosphere.

Description

【発明の詳細な説明】 本発明は、エチレン又はエチレン及びこれと共重合可
能な化合物からの混合物の重合が、500〜5000バールの
圧力及び150〜400℃の温度で行われ、そして未反応のガ
スが200〜400バールに放圧したのち高圧循環ガス系によ
り重合反応系中に返送される連続的に操業される高圧重
合反応系において、圧力を迅速に低下させる方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides that the polymerization of ethylene or a mixture of ethylene and a compound copolymerizable therewith is carried out at a pressure of 500 to 5000 bar and a temperature of 150 to 400 ° C. and is unreacted. The present invention relates to a method for rapidly reducing the pressure in a continuously operated high-pressure polymerization reaction system in which gas is released to 200 to 400 bar and then returned to the polymerization reaction system by a high-pressure circulating gas system.

この方法において圧力は、予定された圧力値及び/又
は温度値を越えた場合又は他の障害の際に、高圧重合反
応系に備えられた1個又は数個の放圧装置を開放し、そ
して熱い反応混合物を重合反応系から、1個又は数個の
放圧導管により1個又は数個の分離系を通して大気中に
移送することにより、各反応圧力より低い圧力に低下さ
れる。
In this method, the pressure opens one or several pressure relief devices provided in the high-pressure polymerization reaction system when the pressure and / or temperature value exceeds a predetermined value or in the case of other troubles, and The pressure below the reaction pressure is reduced by transferring the hot reaction mixture from the polymerization reaction system to the atmosphere by means of one or several pressure relief conduits and through one or several separation systems.

この種の方法においては、分解の際に起こる高圧重合
反応系中の高い圧力及び/又は温度(これは例えば管状
反応器の場合に障害が生じうる)を避けるための手段が
必要である。このためには直ちに開始剤の供給を中断す
ると共に、反応系を反応圧力よりはるかに低い圧力に放
圧する。これによつて強く圧力に依存する重合反応は減
速される。安全性の理由から、分解又は他の緊急の運転
中止の際に遊離するエチレン、ポリエチレン及び分解生
成物からの熱い反応混合物を、閉鎖容器中に集めること
は許されない。反応器の放圧は大気中に行われ、その際
ポリエチレン、エチレン、すす及び分解生成物からの熱
い混合物が放出される。そのほか固形物質が起こす環境
負荷により、炭化水素例えばエチレン、メタン、水素及
びすすからのガス雲が形成され、これは空気と混合して
爆発様発火を生じることができる。このガス雲の爆発様
発火は、装置及びその付近のものに対し著しく危険であ
るから、これは絶対に避けるべきである。
In this type of process, means are needed to avoid the high pressures and / or temperatures in the high-pressure polymerization reaction system that occur during decomposition, which can be an obstacle, for example in the case of tubular reactors. For this purpose, the supply of the initiator is immediately stopped and the reaction system is depressurized to a pressure much lower than the reaction pressure. This slows down the strongly pressure-dependent polymerization reaction. For safety reasons, it is not permissible to collect hot reaction mixtures from ethylene, polyethylene and decomposition products liberated during decomposition or other emergency shutdowns in closed vessels. The depressurization of the reactor is carried out in the atmosphere, releasing a hot mixture of polyethylene, ethylene, soot and decomposition products. In addition, environmental loading caused by solid materials forms gas clouds from hydrocarbons such as ethylene, methane, hydrogen and soot, which can mix with air and cause explosive ignition. This explosion-like ignition of the gas cloud is extremely dangerous to the equipment and its vicinity and should be avoided.

高圧重合反応系の放圧の際に必要な安全性を満足する
ために、ガスの流出路中の心室状管及び液体(これはガ
スを冷却するため放圧の時点で噴入される)を含有する
貯蔵容器から本質的に成る装置をこの系に取り付けるこ
とが知られている(英国特許1393919号参照)。液体は
例えば水であつてよい。
Ventricular tubing and liquid in the outflow tract of the gas (which is injected at the time of pressure relief to cool the gas) in order to satisfy the safety required during pressure relief of the high-pressure polymerization reaction system. It is known to attach to this system a device consisting essentially of the containing storage container (see GB 1393919). The liquid may be water, for example.

英国特許827682号明細書によれば、重合室に直続する
追加の弁を有する装置を用いるエチレン高圧重合法が知
られており、過熱の場合にはこの弁により、普通の重合
生成物の連続的仕上げ処理を障害することなく又は中断
する必要なく、生成する分解生成物を放圧容器により直
接に除去することができる。この方法において固形の分
解生成物は別に捕集されるが、生成するガス状分解生成
物の冷却及び精製について別個の装置は設けられていな
い。
According to GB-A-827682 there is known an ethylene high pressure polymerization process which uses a device with an additional valve directly connected to the polymerization chamber, which in the case of overheating allows the continuous polymerization of normal polymerization products. The decomposition products formed can be removed directly by means of pressure relief vessels without disturbing or having to interrupt the mechanical finishing process. In this method, solid decomposition products are collected separately, but no separate device is provided for cooling and purification of the resulting gaseous decomposition products.

高圧及び高温下でエチレン重合体を製造する他の方法
では、特定の圧力を越えたときに普通の流出導管による
とは別の手段により、この圧力で作動される安全装置に
より、反応混合物を流出管により排出し、そして流出す
る反応器混合物を水と混合する(米国特許3781256号明
細書参照)。この目的のために、放圧導管と結合された
室の中に、完全に又は部分的に水で満たされた数個の容
器(これは支配する温度及び圧力の条件で開かれる)が
備えられる。この水を入れた容器は、熱可塑性合成樹脂
製の小室である。すなわちこの方法においては、頂部か
ら取り出された分解ガスに水が混合されるので、熱い反
応混合物及び分解生成物の冷却により、空気中への爆発
様発火を大部分避けることができる。
Other methods of producing ethylene polymers under high pressure and high temperature allow the reaction mixture to be effluent when a certain pressure is exceeded, by means other than by means of an ordinary outflow conduit, with a safety device operated at this pressure. The reactor mixture, which is discharged via a tube and flows out, is mixed with water (see US Pat. No. 3,781,256). For this purpose, several chambers, which are completely or partially filled with water, which are opened at the prevailing temperature and pressure conditions, are provided in the chamber associated with the pressure relief conduit. . The container containing this water is a small chamber made of thermoplastic synthetic resin. That is, in this method, since the cracked gas taken out from the top is mixed with water, the hot reaction mixture and the decomposed products can largely avoid explosion-like ignition into the air.

さらに米国特許4115638号明細書によれば、放圧導管
から出てくる放圧された熱い反応混合物の輻射を、水面
下にではなく水面に対し0〜45゜の角度で、部分的に水
で満たされた放圧容器の中に導き、その際輻射流を水面
に接触させ又は突入させる。
Further, according to U.S. Pat. No. 4,115,638, the radiation of the hot depressurized reaction mixture exiting the pressure relief conduit is partially submerged in water at an angle of 0 to 45 ° with respect to the water surface rather than below it. It is introduced into a filled pressure relief vessel, where the radiant flow is brought into contact with or plunges into the water surface.

文献によれば、重合反応系の全内容物を大気中に放圧
し、その際反応混合物の戸外への放圧における爆発の危
険が防止される多数の方法も知られている(米国特許43
39412号、4424319号及び4534924号各明細書参照)。
According to the literature, a number of methods are also known in which the entire contents of the polymerization reaction system are released into the atmosphere, whereby the danger of explosion in releasing the reaction mixture to the outside is prevented (US Pat.
39412, 4424319 and 4534924 each specification).

連続的に操業される高圧重合反応系中の圧力を迅速に
低下させるための公知方法の欠点は、大量の炭化水素例
えばエチレンが放出されることである。分解の際に反応
混合物を迅速に除去するために必要である実際に普通の
用いられる自動開閉装置の場合には、反応器全体を戸外
に放圧するように、すなわち高圧下にある反応混合物全
体を、圧縮器から反応器端部又は高圧生成物分離器まで
大気圧にするように操作する。用いられる反応器の大き
さに応じ、放圧過程において4トンまでの炭化水素特に
エチレンが放出され、このことはきわめて強い環境負荷
に導く。
A disadvantage of the known process for rapidly reducing the pressure in a continuously operated high-pressure polymerization reaction system is the release of large amounts of hydrocarbons such as ethylene. In the case of the actually used automatic switchgear, which is necessary for the rapid removal of the reaction mixture during decomposition, the entire reactor is pressure-released, i.e., the entire reaction mixture under high pressure. Operate to atmospheric pressure from the compressor to the end of the reactor or the high pressure product separator. Depending on the size of the reactor used, up to 4 tons of hydrocarbons, especially ethylene, are released in the depressurization process, which leads to a very strong environmental load.

本発明の課題は、エチレンの重合に用いられる管状反
応器又はオートクレーブの放圧過程において生じる炭化
水素の放出を減少しうる方法を開発することであつた。
The object of the present invention was to develop a process which makes it possible to reduce the hydrocarbon emissions which occur during the depressurization process of tubular reactors or autoclaves used for the polymerization of ethylene.

本発明は、エチレン又はエチレン及びこれと共重合可
能な化合物からの混合物を500〜5000バールの圧力及び1
50〜400℃の温度で重合させ、そして200〜400バールに
放圧したのち未反応ガスを高圧循環ガス系により重合反
応系中に返送し、予定された圧力及び/又は温度の限界
値を越えた場合又は他の障害の場合に、高圧重合反応系
に備えられた1個又は数個の放圧装置を開放し、そして
放圧された熱い反応混合物を重合反応系から、1個又は
数個の放圧導管により1個又は数個の分離系を通して大
気中に移送することにより、圧力を各反応圧力より低い
圧力に低下させ、その際数個の構成区分での放圧過程の
開始と同時に高圧重合反応系を閉鎖し、そして放圧過程
のための関放が行われた構成区分だけを大気圧に放圧す
ることを特徴とする、連続的に操業される高圧重合反応
系の圧力を迅速に低下させる方法である。
The invention relates to ethylene or a mixture of ethylene and compounds copolymerizable therewith at a pressure of 500 to 5000 bar and
After polymerizing at a temperature of 50 to 400 ° C and releasing the pressure to 200 to 400 bar, the unreacted gas is returned to the polymerization reaction system by a high pressure circulating gas system, and the planned pressure and / or temperature limit is exceeded. In the case of damage or other obstacles, one or several pressure relief devices equipped in the high-pressure polymerization reaction system are opened, and the pressure-relieved hot reaction mixture is removed from the polymerization reaction system by one or several The pressure is reduced to a pressure lower than each reaction pressure by transferring it to the atmosphere through one or several separation systems by means of the pressure release conduit of the above, and at the same time as the start of the pressure release process in several constituent sections. The pressure of the continuously operated high-pressure polymerization reaction system is rapidly increased, which is characterized by closing the high-pressure polymerization reaction system and releasing only the constituent section for which the release process is performed to atmospheric pressure. It is a method of lowering.

圧力を迅速に低下させるとは、高圧重合反応系(工業
上は反応器と呼ばれる)中の圧力の放圧装置を操作した
のち約30秒以内好ましくは5〜20秒で、最初の圧力の少
なくとも50%に低下させることを意味する。低い圧力へ
の迅速放圧は重要で、これにより反応器の障害が避けら
れる。
Rapidly reducing the pressure means that the pressure releasing device for the pressure in the high-pressure polymerization reaction system (industrialally referred to as a reactor) is operated within about 30 seconds, preferably 5 to 20 seconds, at least the initial pressure. It means to reduce to 50%. Rapid depressurization to low pressure is important and avoids reactor failure.

エチレン又はエチレン及びこれと共重合可能な化合物
からの混合物を500〜5000バールの圧力及び150〜400℃
の温度で重合させ、その際200〜400バールに放圧したの
ち未反応のガス量が高圧循環系により重合反応系中に返
送され、そして生成したエチレン重合体が高圧生成物分
離器中で分離される、連続的に運転される高圧重合反応
系は、文献により公知である。管状反応器又はオートク
レーブ反応器が用いられる方法については、例えばウル
マン著・エンチクロペデイ・デル・テヒニツシエン・ヘ
ミー4版19巻169〜226頁に記載されている。
A mixture of ethylene or a mixture of ethylene and a compound copolymerizable therewith with a pressure of 500 to 5000 bar and a temperature of 150 to 400 ° C.
After releasing the pressure to 200-400 bar, the amount of unreacted gas is returned to the polymerization reaction system by the high pressure circulation system, and the produced ethylene polymer is separated in the high pressure product separator. Continuously operated high-pressure polymerization reaction systems are known from the literature. The method in which a tubular reactor or an autoclave reactor is used is described, for example, in Ullmann, Enticlopede del der Tehinitzien Chemie 4th edition, Vol. 19, pp. 169-226.

重合反応系中の圧力を、各反応圧力より低い圧力に、
ただし最初の圧力の少なくとも50%に低下させること
は、予定された圧力及び/又は温度の限界値を越えた場
合又は他の障害が生じた場合に行われる。予定された圧
力及び/又は温度の限界値を越えることは、例えば不正
確な開始剤注入又は反応器の不良な冷却により重合反応
が分解反応に変わる場合に起こり、その際反応器内容物
の一部はすす及びガス状分解生成物例えばメタン及び水
素に変化する。高いエチレン反応率により、反応器中の
反応条件は、エチレンの分解の起こる限界点に近接して
いるので、ポリエチレンが反応器壁に堆積するため熱の
除去が少ないことにより、又は反応器中に存在する熱い
混合物の不充分な混合により、反応条件は場所によりこ
の限界点に達する場合があり、これにより分解が起こ
る。その際に生じる反応は強い発熱性であるため、反応
器中で温度及び圧力が急速に上昇し、この場合に予定さ
れた圧力及び/又は温度の限界値を越える。他の障害
は、流通不良により装置が損傷される場合、又は例えば
濃縮器が休止し、これによりエチレンが充分に供給され
ない場合に生じうる。
The pressure in the polymerization reaction system to a pressure lower than each reaction pressure,
However, the reduction to at least 50% of the initial pressure is carried out if the planned pressure and / or temperature limits are exceeded or if other obstacles occur. Exceeding the predetermined pressure and / or temperature limits may occur, for example, when the polymerization reaction is converted into a cracking reaction due to incorrect initiator injection or poor reactor cooling, in which case one of the reactor contents Parts are converted to soot and gaseous decomposition products such as methane and hydrogen. Due to the high reaction rate of ethylene, the reaction conditions in the reactor are close to the point where the decomposition of ethylene takes place, so that less heat is removed due to polyethylene depositing on the reactor wall, or in the reactor. Due to insufficient mixing of the hot mixture present, the reaction conditions may reach this limit in some places, which leads to decomposition. Due to the strongly exothermic reaction which takes place in this case, the temperature and pressure rise rapidly in the reactor, in which case the pressure and / or temperature limits which are intended are exceeded. Other obstacles can occur if equipment is damaged by poor flow, or if, for example, the concentrator is down, which results in insufficient ethylene supply.

反応器に備えられた1個又は数個の放圧装置の開放
は、普通の放圧弁により行われる。その開放が圧力及び
/又は温度の限界値以上で行われる放圧弁の代わりに、
原則として、特定の圧力限界値以上で自動的に応答し、
そして反応器の部分的排出を生じさせる破裂安全装置又
は安全弁も使用できる。自動的に作用するもののほか調
節される放圧装置を使用することも可能である。調節さ
れる放圧装置を用いて操作することが特に有利である。
The opening of one or several pressure relief devices provided in the reactor is carried out by means of conventional pressure relief valves. Instead of a relief valve whose opening is performed above the pressure and / or temperature limits,
As a rule, it responds automatically above a certain pressure limit,
And a bursting safety device or safety valve that causes a partial discharge of the reactor can also be used. It is also possible to use pressure relief devices that act automatically or be adjusted. It is particularly advantageous to operate with a regulated pressure relief device.

放圧された熱い反応混合物を反応器から除去すること
は、1個又は数個の放圧導管(これらはすべて放圧容器
中に開口している)により行われる。放圧導管は、反応
器ならびに分離系と結合されているので、場合により反
応器から流出するガス混合物は分離系又は放圧容器に達
する。放圧容器は少なくとも10バールの圧力を保持する
ように、分離器頂部として取り付けられる。放圧容器は
上部が開放しているので逃散するガス又はガス/生成物
混合物は直接に大気中に導かれるか、あるいは大気に達
する前に同様に構成された第二の分離頂部を通して導か
れる。公知方法により、逃散するガスの流れに水を噴入
し(英国特許1393919号明細書参照)、水を入れた合成
樹脂製容器の破裂により水をもたらし(米国特許378125
6号明細書参照)、又はガス流を水面に導くことができ
る(米国特許4115638号明細書参照)。
Removing the hot depressurized reaction mixture from the reactor is done by one or several pressure relief conduits, all of which open into the pressure relief vessel. The pressure relief conduit is connected to the reactor as well as to the separation system, so that the gas mixture optionally leaving the reactor reaches the separation system or pressure relief vessel. The pressure relief vessel is mounted as a separator top so as to hold a pressure of at least 10 bar. Due to the open top of the pressure relief vessel, the escaping gas or gas / product mixture is either introduced directly into the atmosphere or through a similarly configured second separating top before reaching the atmosphere. In a known manner, water is injected into the escaping gas stream (see British Patent No. 1393919) and water is produced by rupturing a synthetic resin container containing water (US Pat. No. 378125).
6)) or a gas stream can be directed to the surface of the water (see US Pat. No. 4,115,638).

本発明方法によれば高圧重合反応系は、数個の構成区
分での放圧過程の開始と同時に閉鎖され、そして放圧過
程のための開放が行われた構成区分だけが大気に放圧さ
れる。
According to the method of the present invention, the high-pressure polymerization reaction system is closed at the same time as the start of the pressure release process in several constituent sections, and only the constituent section that has been opened for the pressure release process is released to the atmosphere. It

好ましい方法によれば、放圧過程に対する開放が行わ
れない構成区分を、大気への該放圧の開始と同時に高圧
循環ガス系中に放圧する。生成物分離器を通して高圧循
環ガス系中に放圧する方法が特に優れている。
According to a preferred method, the component section which is not opened to the pressure release process is released into the high-pressure circulating gas system at the same time as the start of the release to the atmosphere. The method of releasing pressure through the product separator into the high pressure circulating gas system is particularly advantageous.

反応装置(管状反応器又はオートクレーブ)からの反
応混合物の放圧は、分解の場合だけでなく、他の場合に
も開放される。すなわち例えば反応器は、調節装置又は
監視装置が中止した場合にも自動的に操業が中止される
が、本発明によれば、この場合にも異常が起こつた構成
区分だけが大気中に放圧される。
The pressure relief of the reaction mixture from the reactor (tubular reactor or autoclave) is released not only in the case of decomposition, but also in other cases. That is, for example, the reactor is automatically stopped even if the control device or the monitoring device is stopped, but according to the present invention, only the component section in which the abnormality occurs also releases the pressure to the atmosphere. To be done.

本発明方法においては、反応器の全長にわたり多数の
温度測定位置及び数個の圧力測定装置が分散されてい
る。圧力及び温度の監視のために上限値のマークに達す
ると、いわゆる緊急プログラムが開放される。これは例
えば分解の場合であるが、誤測定の場合ならびに他の技
術上の欠陥の場合であり、最後の2つの場合はいわゆる
誤開放と呼ばれる。
In the process according to the invention, numerous temperature measuring positions and several pressure measuring devices are distributed over the entire length of the reactor. When the upper limit mark is reached for pressure and temperature monitoring, the so-called emergency program is opened. This is the case, for example, in the case of disassembly, but in the case of erroneous measurements as well as in other technical defects, the last two cases being so-called false release.

緊急プログラムの実現のために実際に用いられる自動
開閉装置は、市販の測定系及び調節系(例えばAEG−理
論計算調節装置)であり、これにより一連の液圧作動弁
が調節される。
The automatic switchgear that is actually used to implement the emergency program is a commercially available measuring and regulating system (eg AEG-Theoretical Calculation Regulator), which regulates a series of hydraulically actuated valves.

本発明方法において最も簡単な場合は、反応器は1個
の反応帯域のみを有するが、多帯域反応器も実際に用い
られる。直列に接続されたオートクレーブ及び管状反応
器からの組合せを用いて操作することは少ない。これら
の型の反応器(多帯域反応器、管状反応器と組合せたオ
ートクレーブ)のためにも、本発明方法を利用すること
ができる。
In the simplest case of the process according to the invention, the reactor has only one reaction zone, but multizone reactors are also used in practice. It is rare to operate with combinations from autoclaves and tubular reactors connected in series. The process according to the invention can also be used for these types of reactors (multizone reactors, autoclaves in combination with tubular reactors).

以下に記載する一帯域反応のための方法は第1図にそ
の工程が示される。
The process for the one-zone reaction described below is illustrated by the steps in FIG.

この反応器は5個の構成区分に分けられていてよく、
いわゆる緊急プログラムの開放の際に液圧作動遮断弁に
より操作される。各構成区分は次表に示す反応器の領域
を意味する。 構成区分 弁間の領域 I 圧縮器(NV) A及びB1 II 開始帯域(STZ) B1及びC1 III 反応帯域(RZ) C1及びD1 IV 後冷却器(NK) D1及びE1 V 高圧分離器(HD) E1及びF 反応器の各構成区分には放圧弁(1〜5)が備えられ
ており、放圧弁は放圧導管により分離系(その排出管は
大気中に導かれる)と結合されている。放圧過程におい
て、開放の原因の存在する反応器の構成区分からの放圧
された反応混合物は、大気に達する前に前記の分離系を
通過する。
The reactor may be divided into 5 component sections,
It is operated by a hydraulically actuated shut-off valve when opening the so-called emergency program. Each structural section means the area of the reactor shown in the following table. Area of composition between valves I Compressor (NV) A and B 1 II Start zone (STZ) B 1 and C 1 III Reaction zone (RZ) C 1 and D 1 IV Aftercooler (NK) D 1 and E 1 V High pressure separator (HD) E 1 and F reactors are equipped with pressure relief valves (1 to 5) in each constituent section, and the pressure relief valve is a separation system by a pressure relief pipe (its discharge pipe is introduced into the atmosphere It is associated with. In the depressurization process, the depressurized reaction mixture from the reactor section where the cause of the opening is present passes through the separation system before reaching the atmosphere.

構成区分I、II、III及びIVは、その中に開放の原因
がない場合には、排出導管により高圧循環ガス系〔短い
高圧循環又はHD−循環(300バール)〕に排出すること
ができる。このために液圧弁B2、C2、D2又はE2が開か
れ、反応器の対応する構成区分中に存在する反応混合物
は、排出導管に供給される。排出導管は、少なくとも1m
3の容積を有する生成物分離器(WA)中に開口してい
る。より少さい容積を有する容器を使用する場合には、
放圧過程において放圧されたガス/生成物混合物からポ
リエチレン溶融物の一部が、生成物分離器(WA)からHD
−循環の隣接する冷却器中に輸送される危険があり、こ
の冷却器中で冷却した溶融物が堆積し、その結果高圧循
環(HD−循環)の閉塞が生じる。1m3より大きい容積を
有する容器は、反応器の構成区分から排出される反応混
合物の捕集のために特に有利に作用しうるにすぎない。
Components I, II, III and IV can be discharged by a discharge conduit into a high-pressure circulating gas system [short high-pressure circulation or HD-circulation (300 bar)], if there is no cause for their opening. For this purpose the hydraulic valves B 2 , C 2 , D 2 or E 2 are opened and the reaction mixture present in the corresponding component of the reactor is fed to the discharge conduit. Emission conduit is at least 1 m
It opens into a product separator (WA) with a volume of 3 . When using a container with a smaller volume,
Part of the polyethylene melt from the degassed gas / product mixture during the depressurization process, HD from the product separator (WA)
There is a risk of being transported into the adjacent cooler of the circulation, where the cooled melt will accumulate, resulting in blockage of the high pressure circulation (HD-circulation). Vessels with a volume of more than 1 m 3 can only act particularly advantageously for the collection of the reaction mixture discharged from the constituent parts of the reactor.

構成区分Vは、高圧循環の一部として排出導管への結
合を有しない。この構成区分が放圧過程の開放に原因的
に関与しない場合には、遮断弁E1は閉じるが弁Fは開い
たままである。これに対し構成区分Vに開放原因がある
場合には、放圧弁5が開くことにより大気中に放圧さ
れ、その際この区分に対する遮断弁E1及びFは閉じる。
Component V has no coupling to the exhaust conduit as part of the high pressure circuit. If this component does not causally contribute to the opening of the pressure relief process, the shut-off valve E 1 is closed but the valve F remains open. On the other hand, when there is a cause of opening in the structural section V, the pressure release valve 5 is opened to release the pressure to the atmosphere, and the shutoff valves E 1 and F for this section are closed at that time.

例えば分解が構成区分の境界で始まり、そして隣接す
る領域に広がることが実際にありうる。この場合には自
動開閉装置により両方の区分が分離系から大気中に放圧
され、残りの構成区分はHD−循環に排出される。
For example, it is possible that the decomposition actually begins at the boundaries of the constituent sections and spreads to adjacent areas. In this case, both sections are released from the separation system into the atmosphere by the automatic switchgear and the remaining constituent sections are discharged into the HD-circulation.

後記の第1表に、一帯域反応器の各構成区分の放圧過
程ならびに液圧弁の各位置及び開閉過程が示される。
Table 1 below shows the pressure release process of each component section of the one-zone reactor, and each position and opening / closing process of the hydraulic valve.

一帯域反応器についての説明は、オートクレーブのた
めにも同様に適用される。第1図に開始帯域(STZ)と
して示された区分は、オートクレーブの開始においてそ
のまま用いられるが、冷却帯域の操業中は機能が変わ
る。オートクレーブ自体は、第1図の構成区分IIと考え
ることができる。
The description for the single zone reactor applies as well for the autoclave. The section shown as the start zone (STZ) in FIG. 1 is used as it is at the start of the autoclave, but its function changes during the operation of the cooling zone. The autoclave itself can be considered as Category II in FIG.

多帯域反応器のためには、一帯域反応器について説明
した原理が同様に適用されるが、若干の構成区分が追加
される。他の各反応帯域について、構成区分の数は2個
(反応帯域及びそれに属する開始帯域)、又は追加の圧
縮器を用いる場合には3個だけ増加される。
For multi-zone reactors, the principles described for single-zone reactors apply analogously, with the addition of some subsections. For each of the other reaction zones, the number of components is increased by 2 (reaction zone and its associated start zone) or by 3 if an additional compressor is used.

多帯域反応器のためにも、各構成区分には区分するた
めの遮断弁、大気への放圧弁及び高圧循環(前記の構成
区分V)への放圧弁が備えられる(第2図参照)。
Also for the multi-zone reactor, each component is equipped with a shut-off valve for partitioning, a pressure relief valve to the atmosphere and a pressure relief valve to the high pressure circulation (component V above) (see Figure 2).

二帯域反応器のための個々の構成区分の放圧過程なら
びに液圧弁のそれぞれの位置及び開閉過程は、第2図の
工程図に示される。
The depressurization process of the individual components for the dual zone reactor and the respective position and opening and closing processes of the hydraulic valve are shown in the process diagram of FIG.

下記の例において、反応混合物30t/hが装入された一
帯域反応器及び反応混合物20t/hが装入された二帯域反
応器について、本発明方法の結果を、本発明による装置
を有しない同じ反応器における放圧過程と比較して説明
する。
In the examples below, the results of the process according to the invention are shown for a one-zone reactor charged with 30 t / h of reaction mixture and a two-zone reactor charged with 20 t / h of reaction mixture, without the device according to the invention. This will be described in comparison with the pressure release process in the same reactor.

第1図に示す一帯域反応器において、本発明によれ
ば、反応器全体中に存在する混合物の7.8〜56.25重量%
が大気中への放圧の際に排出されるにすぎない。
In the single-zone reactor shown in FIG. 1, according to the invention, 7.8 to 56.25% by weight of the mixture present in the whole reactor
Is only released when the pressure is released into the atmosphere.

第2図に示す二帯域反応器については、大気中への放
圧過程の際に放圧された反応混合物は、本発明によれば
4.5〜50重量%に減少される。
For the dual zone reactor shown in FIG. 2, the reaction mixture released during the release process into the atmosphere is according to the invention
It is reduced to 4.5-50% by weight.

実施例1〜5 一帯域反応器に反応混合物30t/hを装入し、そして230
0バールの圧力で操業した。
Examples 1-5 A single zone reactor is charged with 30 t / h of reaction mixture and 230
Operated at a pressure of 0 bar.

個々の構成区分の放圧過程の際に、次表に示す量のガ
ス又は生成物が、排出導管を通して高圧循環中に、なら
びに分離器を通して大気中に放圧された。
During the depressurization process of the individual constituents, the quantities of gases or products indicated in the table below were depressurized into the high-pressure circulation through the discharge conduit and into the atmosphere through the separator.

反応器全体中に存在する反応混合物の量は3.2tであつ
た。%は全重量に関する。本発明方法により、炭化水素
の放出を7.8〜56.2重量%に減少できた。
The amount of reaction mixture present in the entire reactor was 3.2 t. % Relates to the total weight. The process according to the invention made it possible to reduce the hydrocarbon emissions to 7.8-56.2% by weight.

比較例1(実施例1〜5に対する) 30t/hの反応混合物導通量を有する一帯域反応器を、
実施例1〜5と同様にして2300バールの圧力で操業し
た。この反応器には構成区分における遮断の可能性がな
かつたので、放圧に際して反応器全体の混合物が大気中
に排出されねばならない。
Comparative Example 1 (relative to Examples 1-5) A single zone reactor with a reaction mixture throughput of 30 t / h
Operating as in Examples 1-5 at a pressure of 2300 bar. Since there was no possibility of shut-off in this reactor, the mixture of the entire reactor had to be vented to the atmosphere during depressurization.

実施例6〜12 二帯域反応器に反応混合物20t/hを装入し、そして210
0バールの圧力で操業した。個々の構成区分について、
それぞれ放圧を開始させ、その際次表に示す量のガス/
生成物が、高圧循環中に排出され、ならびに分離系を通
つて大気中に放圧された。
Examples 6-12 A dual zone reactor was charged with 20 t / h of reaction mixture and 210
Operated at a pressure of 0 bar. For each component category,
Releasing pressure is started in each case, and the amount of gas shown in the following table /
The product was discharged into the high pressure circuit as well as released through the separation system into the atmosphere.

反応器全体中に在存する反応混合物の量は2.2tであつ
た。本発明方法により、炭化水素の放出を50〜4.5重量
%に減少することができた。%は全重量に関する。
The amount of reaction mixture present in the entire reactor was 2.2 t. The process according to the invention made it possible to reduce hydrocarbon emissions to 50 to 4.5% by weight. % Relates to the total weight.

比較例2(実施例6〜12に対する) 実施例6〜12の場合と同様にして、同じ二帯域反応域
を20t/hの反応混合物導通量及び2100バールで操業し
た。この反応器には、構成区分中に遮断の可能性がなか
つた。反応器全体の混合物は、放圧過程に際して大気中
に排出されねばならない。
Comparative Example 2 (relative to Examples 6-12) In the same way as in Examples 6-12, the same two-zone reaction zone was operated with a reaction mixture throughput of 20 t / h and 2100 bar. The reactor had no potential interruptions during the compartments. The entire reactor mixture must be vented to the atmosphere during the depressurization process.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は、それぞれ1個及び2個の反応帯域
を有する高圧重合反応系による本発明方法を説明するた
めの工程図である。図中の記号NVは圧縮器、STZは開始
帯域、RZは反応帯域、NKは後冷却器、HDは高圧分離器、
WAは分離器を意味する。
1 and 2 are process diagrams for explaining the method of the present invention using a high-pressure polymerization reaction system having one and two reaction zones, respectively. Symbol NV in the figure is a compressor, STZ is a start zone, RZ is a reaction zone, NK is a post-cooler, HD is a high pressure separator,
WA means separator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 クラウス・プフレーガー ドイツ連邦共和国5047ヴエセリング・オ ツトー‐シユトラーセ6 (72)発明者 ジークフリート・クルザーヴエ ドイツ連邦共和国5047ヴエセリング・フ アザーネンウエーク4 (72)発明者 クラウス・ベツチヤー ドイツ連邦共和国5047ヴエセリング・ア ントニウスシユトラーセ5 (72)発明者 ゲルハルト・アーノルド ドイツ連邦共和国5047ヴエセリング・ワ イスドルンウエーク4 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Klaus Pfreger, Federal Republic of Germany 5047 Vweseling Otto-Schutlerse 6 (72) Inventor Siegfried Kurzervewe, Federal Republic of Germany 5047 Vweseling Huazanen Wake 4 (72) Invention Klaus Bechtier Germany 5047 Vweseling Antonius Schutrase 5 (72) Inventor Gerhard Arnold Germany 5047 Vweseling Weiss Dornwake 4

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エチレン又はエチレン及びこれと共重合可
能な化合物からの混合物を500〜5000バールの圧力及び1
50〜400℃の温度で重合させ、200〜400バールに放圧し
たのち未反応ガスを高圧循環ガス系により重合反応系中
に返送し、予定された圧力及び/又は温度の限界値を越
えた場合又は他の障害の場合に、高圧重合反応系に備え
られた1個又は数個の放圧装置を開放し、放圧された熱
い反応混合物を重合反応系から、1個又は数個の放圧導
管により1個又は数個の分離系を通して大気中に移送す
ることにより、圧力を各反応圧力より低い圧力に低下さ
せ、その際数個の構成区分での放圧過程の開始と同時に
高圧重合反応系を閉鎖し、放圧過程のための開放が行わ
れた構成区分だけを大気中に放圧することを特徴とす
る、連続的に操業される高圧重合反応系の圧力を迅速に
低下させる方法。
1. A mixture of ethylene or a mixture of ethylene and a compound copolymerizable therewith at a pressure of 500 to 5000 bar and 1
Polymerization was carried out at a temperature of 50 to 400 ° C, the pressure was released to 200 to 400 bar, and then the unreacted gas was returned to the polymerization reaction system by a high pressure circulating gas system, and the planned pressure and / or temperature limit was exceeded. In the case of, or in the case of other obstacles, one or several pressure relief devices provided in the high-pressure polymerization reaction system are opened, and the hot reaction mixture of which pressure is released is released from the polymerization reaction system by one or several. The pressure is lowered to a pressure lower than each reaction pressure by transferring it into the atmosphere through one or several separation systems by means of a pressure conduit, and at the same time, the high pressure polymerization is started at the start of the pressure release process in several constituent sections. A method for rapidly lowering the pressure of a continuously operated high-pressure polymerization reaction system, characterized in that the reaction system is closed and only the constituent sections opened for the pressure release process are released to the atmosphere. .
【請求項2】放圧過程のための開放が行われない構成区
分を、大気圧への該放圧開始と同時に高圧循環ガス系中
に放圧する、特許請求の範囲第1項に記載の方法。
2. The method according to claim 1, wherein the component section which is not opened for the pressure release process is released into the high pressure circulating gas system at the same time when the release of the pressure to atmospheric pressure is started. .
【請求項3】生成物分離器を通して高圧循環ガス系中に
放圧する、特許請求の範囲第2項に記載の方法。
3. A process according to claim 2 wherein the pressure is released through the product separator into the high pressure circulating gas system.
JP62306047A 1986-12-04 1987-12-04 A method for reducing hydrocarbon emissions in the depressurization process of a high-pressure polymerization reactor. Expired - Lifetime JP2535040B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863641513 DE3641513A1 (en) 1986-12-04 1986-12-04 METHOD FOR REDUCING THE EMISSION OF HYDROCARBONS IN RELAXATION PROCEDURES ON HIGH PRESSURE POLYMERIZATION REACTORS
DE3641513.8 1986-12-04

Publications (2)

Publication Number Publication Date
JPS63154708A JPS63154708A (en) 1988-06-28
JP2535040B2 true JP2535040B2 (en) 1996-09-18

Family

ID=6315503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62306047A Expired - Lifetime JP2535040B2 (en) 1986-12-04 1987-12-04 A method for reducing hydrocarbon emissions in the depressurization process of a high-pressure polymerization reactor.

Country Status (6)

Country Link
US (1) US4804725A (en)
EP (1) EP0272512B1 (en)
JP (1) JP2535040B2 (en)
AT (1) ATE86639T1 (en)
DE (2) DE3641513A1 (en)
NO (1) NO167984C (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2680370B1 (en) * 1991-08-14 1993-11-05 Enichem Polymeres France Sa PROCESS FOR THE GRAFTING IN THE LINE OF ACIDS AND ANHYDRIDES OF UNSATURATED CARBOXYLIC ACIDS ON ETHYLENE POLYMERS AND INSTALLATION FOR CARRYING OUT SAID PROCESS.
US20020071798A1 (en) * 2000-07-12 2002-06-13 Decourcy Michael Stanley Laboratory Scale reaction systems
US8755947B2 (en) 2011-07-19 2014-06-17 Nova Chemicals (International) S.A. Roller detection
CN105102112A (en) * 2013-02-22 2015-11-25 康宁股份有限公司 Rupturable reliability devices for continuous flow reactor assemblies
US9821252B2 (en) 2014-01-31 2017-11-21 Exxonmobil Chemical Patents Inc. Fluid separation systems and methods
KR102324603B1 (en) * 2015-09-29 2021-11-12 엑손모빌 케미칼 패턴츠 인코포레이티드 Rapid depressurization of a reactor system
KR20180044408A (en) * 2015-09-29 2018-05-02 엑손모빌 케미칼 패턴츠 인코포레이티드 Rapid decompression of the reactor system
CN108290967B (en) 2015-11-18 2019-06-18 巴塞尔聚烯烃股份有限公司 Polymerization with part closed stage
MX2018006215A (en) * 2015-12-08 2018-08-01 Nova Chem Int Sa Method for designing multi-valve uni-direction blowdown system for a high pressure tubular reactor.
CN113166283B (en) 2018-12-18 2022-03-01 巴塞尔聚烯烃股份有限公司 High pressure polymerization of ethylenically unsaturated monomers in a polymerization reactor
EP3831472A1 (en) 2019-12-03 2021-06-09 Basell Polyolefine GmbH High-pressure polymerization system and high-pressure polymerization process for the polymerization of ethylenically unsaturated monomers

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2131445A1 (en) * 1970-06-24 1972-02-03 Mitsubishi Petrochemical Co Process for the production of high pressure polyethylene
GB1313458A (en) * 1970-11-27 1973-04-11 Stamicarbon Process and installation for the preparation of homo- or copolymers of ethylene
FR2165018A5 (en) * 1971-12-14 1973-08-03 Ethylene Plastique Sa
DE2524203A1 (en) * 1975-05-31 1976-12-16 Basf Ag PROCESS FOR MANUFACTURING HIGH PRESSURE POLYAETHYLENE
US4153774A (en) * 1976-02-17 1979-05-08 Basf Aktiengesellschaft Manufacture of high pressure polyethylene
DE2631834C3 (en) * 1976-07-15 1980-05-14 Basf Ag, 6700 Ludwigshafen Process for the expansion of ethylene high pressure polymerization systems
FR2455237A1 (en) * 1979-04-25 1980-11-21 Charbonnages Ste Chimique PROCESS FOR REDUCING THE RISK OF INFLAMMATION AND EXPLOSION RESULTING FROM THE DECOMPOSITION OF ETHYLENE UNDER HIGH PRESSURE AND DEVICE FOR CARRYING OUT SAID METHOD
FR2455239A1 (en) * 1979-04-25 1980-11-21 Charbonnages Ste Chimique PROCESS FOR REDUCING THE RISK OF INFLAMMATION AND EXPLOSION RESULTING FROM THE DECOMPOSITION OF ETHYLENE UNDER HIGH PRESSURE AND DEVICE FOR CARRYING OUT SAID METHOD
FR2455238A1 (en) * 1979-04-25 1980-11-21 Charbonnages Ste Chimique PROCESS FOR REDUCING THE RISK OF INFLAMMATION AND EXPLOSION RESULTING FROM THE DECOMPOSITION OF ETHYLENE UNDER HIGH PRESSURE AND DEVICE FOR CARRYING OUT SAID METHOD

Also Published As

Publication number Publication date
DE3641513A1 (en) 1988-06-09
US4804725A (en) 1989-02-14
EP0272512B1 (en) 1993-03-10
NO167984B (en) 1991-09-23
EP0272512A3 (en) 1991-07-03
JPS63154708A (en) 1988-06-28
DE3784657D1 (en) 1993-04-15
NO875046L (en) 1988-06-06
EP0272512A2 (en) 1988-06-29
NO167984C (en) 1992-01-02
ATE86639T1 (en) 1993-03-15
NO875046D0 (en) 1987-12-03

Similar Documents

Publication Publication Date Title
JP2535040B2 (en) A method for reducing hydrocarbon emissions in the depressurization process of a high-pressure polymerization reactor.
US9637569B2 (en) Vessel for separating components of a reaction mixture obtained by high-pressure polymerization of ethylenically unsaturated monomers with integrated bursting discs
US9908950B2 (en) High-pressure polymerization process of ethylenically unsaturated monomers
JPH0667977B2 (en) Process for polymerizing .ALPHA.-olefin and apparatus for implementing the process.
KR0150014B1 (en) Method and apparatus for stopping reaction in a gas phase polymerization reactor system
BR112016011149B1 (en) process for separating polymeric and gaseous components from a reaction mixture and process for preparing ethylene homopolymers or copolymers
EP1713837B1 (en) Process for recovering polymer solids with a transfer vessel between flash tank and purge column
CS230572B2 (en) Production method of ethylene polymer and equipment for its workmanship
DE60011982T2 (en) Sampling system for fluidized bed gas phase polymerization process
EP0830892B1 (en) Equipment and process for gas-phase olefin polymerisation
CA1195828A (en) Process for transferring solids
EP4069410B1 (en) High-pressure polymerization system and high-pressure polymerization process for the polymerization of ethylenically unsaturated monomers
US4996026A (en) Separation system and reducing the emission of solids in pressure relief processes in high pressure polymerization reactors
CN113166283B (en) High pressure polymerization of ethylenically unsaturated monomers in a polymerization reactor
JPS5831091B2 (en) How to purify the recycle gas of ethylene polymerization
RU2781188C1 (en) System and method for rapid heating of the drain tank
CS216518B2 (en) Method of making the homopolymeres of ethylene or copolymeres thereof with alpha-olefins

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 12