JP2533790B2 - Imide group-containing resin composition - Google Patents

Imide group-containing resin composition

Info

Publication number
JP2533790B2
JP2533790B2 JP63097929A JP9792988A JP2533790B2 JP 2533790 B2 JP2533790 B2 JP 2533790B2 JP 63097929 A JP63097929 A JP 63097929A JP 9792988 A JP9792988 A JP 9792988A JP 2533790 B2 JP2533790 B2 JP 2533790B2
Authority
JP
Japan
Prior art keywords
weight
parts
copolymer
composition
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63097929A
Other languages
Japanese (ja)
Other versions
JPH01268744A (en
Inventor
康男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP63097929A priority Critical patent/JP2533790B2/en
Publication of JPH01268744A publication Critical patent/JPH01268744A/en
Application granted granted Critical
Publication of JP2533790B2 publication Critical patent/JP2533790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、スチレン及び/又はα−メチルスチレン−
N−置換マレイミド共重合樹脂とポリブタジエンなどで
変性されたスチレン−アクリロニトリル共重合樹脂(以
下ABSと略す、以下同じ)、必要に応じて添加されるス
チレン−アクリロニトリル共重合樹脂(以下AS)から成
る樹脂組成物に、芳香族ビニル−シアン化ビニル−無水
マレイン酸共重合体〔D−1〕と、芳香族ビニル−N−
置換マレイミド−第三の単量体の共重合体〔D−2〕と
から成る共重合体混合物を添加することにより得られ
る、耐熱・耐衝撃性と溶融流動性に優れたイミド基含有
樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to styrene and / or α-methylstyrene-
Resin consisting of N-substituted maleimide copolymer resin, styrene-acrylonitrile copolymer resin modified with polybutadiene, etc. (hereinafter abbreviated as ABS, hereinafter the same), and styrene-acrylonitrile copolymer resin (hereinafter AS) added as necessary. The composition contains aromatic vinyl-vinyl cyanide-maleic anhydride copolymer [D-1] and aromatic vinyl-N-.
An imide group-containing resin composition excellent in heat resistance / impact resistance and melt fluidity obtained by adding a copolymer mixture consisting of a substituted maleimide-copolymer of a third monomer [D-2] Regarding things.

〔従来の技術〕[Conventional technology]

スチレン、又は、α−メチルスチレン−N−置換マレ
イミド共重合樹脂(以下(α)SI)とABSの組成物は公
知であり、例えばUSP3,652,726などに開示されている。
この組成物は、ABSを用いているため耐衝撃性は高い
が、(α)SIとABSは相溶性に乏しいため、耐熱性が充
分であるとは言えない。
The composition of styrene or α-methylstyrene-N-substituted maleimide copolymer resin (hereinafter (α) SI) and ABS is known and disclosed in, for example, USP 3,652,726.
Although this composition has high impact resistance because it uses ABS, it cannot be said that the heat resistance is sufficient because (α) SI and ABS have poor compatibility.

さらに、(α)SI、ABS及びASの三元樹脂組成物も公
知であり、例えば特開昭59−93,746が例示される。この
例では、(α)SIとABSの組成物に適量のASを改質剤的
に用いることにより、(α)SIとABSの単純組成物より
も耐熱性の高い組成物が得られることを開示している。
しかしながら、この組成物もマトリクス樹脂は本質的に
非相溶であり、耐熱性は高いが耐衝撃性と溶融流動性
は、充分ではなかった。
Further, a ternary resin composition of (α) SI, ABS and AS is also known, and examples thereof include JP-A-59-93,746. In this example, by using an appropriate amount of AS as a modifier in the composition of (α) SI and ABS, it is possible to obtain a composition having higher heat resistance than a simple composition of (α) SI and ABS. Disclosure.
However, also in this composition, the matrix resin is essentially incompatible, and although the heat resistance is high, the impact resistance and the melt fluidity are not sufficient.

複合樹脂組成物の性能を向上させる目的で、両樹脂に
親和性の高い固体相溶化剤を添加する試みもなされてお
り、例えば特開昭61−179,212は、ラジカル開始剤の存
在下でASとMS(メチルメタクリレート−スチレン共重合
樹脂)の重合体混合物を混練することにより得られる変
性重合体を、ASとMSブレンド系に添加して、単純ブレン
ドでは得られない物性を発現させた。しかし(α)SIと
ABSあるいは(α)SIとABS及びASから成る組成物に対し
ては、有効な相溶化剤(複合系改質剤)がなく、非相溶
なままでブレンドせねばならないため、その組成物は充
分な性能を持たなかった。
For the purpose of improving the performance of the composite resin composition, attempts have been made to add a solid compatibilizer having a high affinity to both resins, for example, JP-A-61-179,212 discloses that AS in the presence of a radical initiator. A modified polymer obtained by kneading a polymer mixture of MS (methyl methacrylate-styrene copolymer resin) was added to an AS / MS blend system to develop physical properties that cannot be obtained by a simple blend. But with (α) SI
For a composition consisting of ABS or (α) SI and ABS and AS, there is no effective compatibilizer (complex type modifier) and the composition must be blended while remaining incompatible. It didn't have enough performance.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は、(α)SIを必須成分としABS及び必要に応
じて用いられるASとのブレンド組成物の相溶性を改良し
その物性を向上させるために、(α)SIとASのポリマー
成分を同一分子中に持つ固体相溶化剤を合成し、これを
(α)SIとABSあるいは、(α)SIとABS及びASとのブレ
ンド組成物に添加することにより、単純なブレンド組成
物では得られない高い耐熱・耐衝撃性と溶融流動性を持
つ複合樹脂組成物を得ることが目的である。
In order to improve the compatibility and improve the physical properties of the blend composition of ABS and AS used as necessary with (α) SI as an essential component, the present invention uses a polymer component of (α) SI and AS. By synthesizing a solid compatibilizer in the same molecule and adding it to a blend composition of (α) SI and ABS or (α) SI and ABS and AS, a simple blend composition can be obtained. The purpose is to obtain a composite resin composition having high heat resistance, impact resistance and melt flowability.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、芳香族ビニル化合物、ビニルシアン化合物
及び無水マレイン酸から成る共重合体〔D−1〕と、芳
香族ビニル化合物、N−置換マレイミド化合物及び、2
−ヒドロキシエチルメタクリレート、グリシジルメタク
リレートあるいはp−アミノスチレンの少なくとも一種
から選ばれる官能基含有単量体から成る共重合体〔D−
2〕との混合物を、少量の水の存在下、温度180〜300℃
で5〜30分間溶融混練することにより得られる共重合体
組成物〔D〕を、(α)SIとABSあるいは必要に応じて
用いられるASとのブレンド物に少量添加することによ
り、耐熱・耐衝撃性と溶融流動性が優れた高性能の樹脂
組成物を提供することである。
The present invention relates to a copolymer [D-1] composed of an aromatic vinyl compound, a vinyl cyan compound and maleic anhydride, an aromatic vinyl compound, an N-substituted maleimide compound and 2
-A copolymer comprising a functional group-containing monomer selected from at least one of hydroxyethyl methacrylate, glycidyl methacrylate and p-aminostyrene [D-
2] in the presence of a small amount of water, the temperature of 180 ~ 300 ℃
By adding a small amount of the copolymer composition [D] obtained by melt-kneading at 5 to 30 minutes to a blend of (α) SI and ABS or AS used as necessary, heat resistance and resistance can be improved. It is an object of the present invention to provide a high-performance resin composition having excellent impact properties and melt flowability.

すなわち、本発明は、 (1)a) 芳香族ビニル化合物40〜70重量%、N−置
換マレイミド化合物30〜60重量%、より成る共重合樹脂
〔A〕を40〜80重量部、 b) ゴム状重合体30〜70重量%の存在下に、芳香族ビ
ニル化合物25〜50重量%、シアン化ビニル化合物5〜20
重量%、及び他の共重合可能なビニル化合物0〜50重量
%をグラフト共重合させたグラフト共重合樹脂〔B〕を
20〜60重量部、 c) 芳香族ビニル化合物60〜82重量%、シアン化ビニ
ル化合物18〜40重量%及び他の共重合可能なビニル化合
物0〜50重量%よる成る共重合樹脂〔C〕を0〜20重量
部、 から成る樹脂組成物100重量部に対し、 d) 芳香族ビニル化合物50〜84重量%、シアン化ビニ
ル化合物15〜49重量%及び無水マレイン酸1〜10重量%
から成る共重合体〔D−1〕30〜70重量部と、芳香族ビ
ニル化合物40〜74重量%、N−置換マレイミド化合物25
〜59重量%及び、2−ヒドロキシエチルメタクリレー
ト、グリシジルメタクリレート及びp−アミノスチレン
の少なくとも一種から選ばれる官能基含有単量体1〜10
重量%から成り共重合体〔D−2〕30〜70重量部、から
成る共重合体混合物を、温度180〜300℃で、溶融混練す
ることにより得られる共重合体組成分〔D〕5〜30重量
部 を添加して成る耐熱・耐衝撃性、溶融流動性に優れたイ
ミド基含有樹脂組成物。
That is, the present invention includes (1) a) 40 to 70% by weight of an aromatic vinyl compound, 30 to 60% by weight of an N-substituted maleimide compound, and 40 to 80 parts by weight of a copolymer resin [A], and b) a rubber. In the presence of 30 to 70% by weight of the polymer, 25 to 50% by weight of an aromatic vinyl compound and 5 to 20% of a vinyl cyanide compound.
% By weight, and 0 to 50% by weight of another copolymerizable vinyl compound, which is a graft copolymer resin [B].
20-60 parts by weight, c) A copolymer resin [C] comprising 60-82% by weight of an aromatic vinyl compound, 18-40% by weight of a vinyl cyanide compound and 0-50% by weight of another copolymerizable vinyl compound. 0 to 20 parts by weight, based on 100 parts by weight of a resin composition consisting of: d) 50 to 84% by weight of aromatic vinyl compound, 15 to 49% by weight of vinyl cyanide compound and 1 to 10% by weight of maleic anhydride.
30 to 70 parts by weight of a copolymer [D-1] composed of 40 to 74% by weight of an aromatic vinyl compound and an N-substituted maleimide compound 25
To 59% by weight and a functional group-containing monomer 1 to 10 selected from at least one of 2-hydroxyethyl methacrylate, glycidyl methacrylate and p-aminostyrene.
Copolymer composition [D] 5 obtained by melt-kneading a copolymer mixture consisting of 30 to 70 parts by weight of copolymer [D-2] at a temperature of 180 to 300 ° C. An imide group-containing resin composition having excellent heat resistance, impact resistance, and melt flowability, which is formed by adding 30 parts by weight.

(2) N−置換マレイミド化合物が、N−フェニルマ
レイミド、N−シクロヘキシルマレイミド、N−(2,4,
6−トリブロモ)フェニルマレイミドから選ばれる少な
くとも一種である請求項1記載の樹脂組成物である。
(2) N-substituted maleimide compounds are N-phenylmaleimide, N-cyclohexylmaleimide, N- (2,4,
The resin composition according to claim 1, which is at least one selected from 6-tribromo) phenylmaleimide.

本発明に使用する共重合樹脂〔A〕は、芳香族ビニル
化合物40〜70重量%、N−置換マレイミド化合物30〜60
重量%よりなる共重合体であり、溶液重合、懸濁重合、
乳化重合などいずれの方法によって製造してもよいが乳
化重合による方法が好ましい。本発明の共重合体〔A〕
で用いられる芳香族ビニル化合物としては、スチレン、
α−メチルスチレン、p−メチルスチレンなどが挙げら
れる。この中で特にα−メチルスチレンが好ましい。芳
香族ビニル化合物の使用量は40〜70重量%である。40重
量%未満では流動性が低下するので好ましくなく、70重
量%を越えると耐熱性が低下する。本発明の共重合体
〔A〕で使用されるN−置換マレイミドとしては、N−
フェニルマレイミド、N−シクロヘキシルマレイミド、
N−(2,4,6−トリブロモ)フェニルマレイミドが好適
である。これら以外のN−置換マレイミドを使用すると
耐熱性が低下する。又、N−置換マレイミドの使用量は
30〜60重量%である。この使用量が30重量%未満では、
耐熱性が劣るので好ましくなく、60重量%を越えると流
動性が低下するので好ましくない。
The copolymer resin [A] used in the present invention comprises an aromatic vinyl compound 40 to 70% by weight and an N-substituted maleimide compound 30 to 60%.
It is a copolymer consisting of wt%, solution polymerization, suspension polymerization,
It may be produced by any method such as emulsion polymerization, but the method by emulsion polymerization is preferred. Copolymer of the present invention [A]
As the aromatic vinyl compound used in, styrene,
Examples include α-methylstyrene and p-methylstyrene. Of these, α-methylstyrene is particularly preferable. The amount of the aromatic vinyl compound used is 40 to 70% by weight. If it is less than 40% by weight, the fluidity is lowered, which is not preferable, and if it exceeds 70% by weight, the heat resistance is lowered. Examples of the N-substituted maleimide used in the copolymer [A] of the present invention include N-
Phenylmaleimide, N-cyclohexylmaleimide,
N- (2,4,6-tribromo) phenylmaleimide is preferred. If N-substituted maleimide other than these is used, the heat resistance is lowered. The amount of N-substituted maleimide used is
30 to 60% by weight. If this amount is less than 30% by weight,
It is not preferable because it is inferior in heat resistance, and when it exceeds 60% by weight, fluidity is lowered, which is not preferable.

本発明に使用するグラフト共重合樹脂〔B〕は、ゴム
状重合体30〜70重量%の存在下に、芳香族ビニル化合物
25〜60重量%、シアン化ビニル化合物5〜20重量%及び
他の共重合可能なビニル化合物0〜50重量%、好ましく
は0〜20重量%をグラフト共重合させて得られる。グラ
フト共重合樹脂〔B〕は、ゴム状重合体のラテックスに
上記単量体混合物をグラフトさせる乳化重合法により製
造する方法や、ゴム状重合体の溶液中で単量体混合物を
グラフト重合させる溶液重合法などいずれの方法によっ
ても良い。上記ゴム状重合体としては、ブタジエンゴ
ム、スチレン−ブタジエン共重合ゴム、エチレン−プロ
ピレン共重合ゴム、アクリルゴムなどが使用される。ゴ
ム状重合体の使用量が30重量%未満では、樹脂〔B〕の
耐衝撃性が低く、70重量%を越えると最終組成物の耐熱
性が低下する。グラフト共重合樹脂〔B〕中の芳香族ビ
ニル化合物としては、前記〔A〕で使用したものと同様
の化合物が用いられるが、スチレンが特に好ましい。
〔B〕中の芳香族ビニル化合物の量は25〜60重量%の範
囲である。25重量%未満では、〔B〕の溶融流動性が低
く60重量%を越えると〔B〕の耐熱性が低下する。スチ
レンとα−メチルスチレンを併用する場合、α−メチル
スチレンの割合は、全芳香族ビニル化合物中の50重量%
以下が望ましい。それ以上用いると最終組成物の耐衝撃
性が低下する。〔B〕中のシアン化ビニルとしては、ア
クリロニトリルが最も適している。シアン化ビニルの使
用量は、5〜20重量%である。5重量%未満では、
〔B〕や最終組成物の耐溶剤性が低く20重量%を越える
と〔B〕の溶融流動性が低い。さらに〔B〕中に必要に
応じて用いられる重合可能なビニル化合物とは、メチル
アクリレート、エチルメタクリレート、ブチルアクリレ
ートなどのアクリル酸エステル、あるいはアクリル酸や
メタクリル酸などの不飽和酸などが挙げられる。この中
でメタクリル酸メチルは、最終組成物の加熱収縮率改良
のために好ましい。このものの使用率は50重量%未満、
好ましくは20重量%未満である。それ以上用いると耐熱
性が低下するので好ましくない。
The graft copolymer resin [B] used in the present invention is an aromatic vinyl compound in the presence of 30 to 70% by weight of a rubbery polymer.
It is obtained by graft copolymerizing 25 to 60% by weight, vinyl cyanide compound 5 to 20% by weight and other copolymerizable vinyl compound 0 to 50% by weight, preferably 0 to 20% by weight. The graft copolymer resin [B] is produced by an emulsion polymerization method in which a latex of a rubber-like polymer is grafted with the above-mentioned monomer mixture, or a solution of graft-polymerizing the monomer mixture in a solution of the rubber-like polymer. Any method such as a polymerization method may be used. As the rubber-like polymer, butadiene rubber, styrene-butadiene copolymer rubber, ethylene-propylene copolymer rubber, acrylic rubber or the like is used. When the amount of the rubbery polymer used is less than 30% by weight, the impact resistance of the resin [B] is low, and when it exceeds 70% by weight, the heat resistance of the final composition is lowered. As the aromatic vinyl compound in the graft copolymer resin [B], the same compounds as those used in the above [A] are used, but styrene is particularly preferable.
The amount of aromatic vinyl compound in [B] is in the range of 25 to 60% by weight. If it is less than 25% by weight, the melt fluidity of [B] is low, and if it exceeds 60% by weight, the heat resistance of [B] is lowered. When styrene and α-methylstyrene are used together, the proportion of α-methylstyrene is 50% by weight in the wholly aromatic vinyl compound.
The following is desirable. If it is used more than that, the impact resistance of the final composition is lowered. Acrylonitrile is most suitable as the vinyl cyanide in [B]. The amount of vinyl cyanide used is 5 to 20% by weight. Below 5% by weight,
If the solvent resistance of [B] or the final composition is low and exceeds 20% by weight, the melt fluidity of [B] is low. Examples of the polymerizable vinyl compound used in [B] as required include acrylic acid esters such as methyl acrylate, ethyl methacrylate and butyl acrylate, and unsaturated acids such as acrylic acid and methacrylic acid. Of these, methyl methacrylate is preferable for improving the heat shrinkage ratio of the final composition. The usage rate of this thing is less than 50% by weight,
It is preferably less than 20% by weight. It is not preferable to use more than that, because the heat resistance will decrease.

本発明に使用する共重合樹脂〔C〕は溶液重合、懸濁
重合、乳化重合などいずれの方法によって製造してもよ
いが、特に〔A〕や〔B〕とのブレンドが容易であると
いう意味で乳化重合法が好ましい。〔C〕に使用される
芳香族ビニル化合物の種類も、〔A〕や〔B〕と同様の
ものが使用でき、特にスチレン単独又はスチレンとα−
メチルスチレンの併用が好ましい。スチレンとα−メチ
ルスチレンを併用する場合は、芳香族ビニル化合物中の
α−メチルスチレンの割合は、50重量%未満であること
が望ましい。50重量%以上であると最終組成物の耐衝撃
性が低くなる。〔C〕中の芳香族ビニル化合物の量は60
〜82重量%であり、60重量%未満であると流動性が低下
して好ましくなく、一方、82重量%を越えると共重合樹
脂〔A〕,〔B〕と〔C〕の相溶性が低下するので好ま
しくない。〔C〕中のシアン化ビニルとしては、〔B〕
と同様にアクリロニトリルが用いられる。このものの使
用量は18〜40重量%であり、18重量%未満であると
〔A〕、〔B〕と相溶性が悪く、一方、40重量%を越え
ると樹脂が着色するので好ましくない。芳香族ビニル化
合物、シアン化ビニル化合物と共重合可能な他の単量体
としては、〔B〕と同じアクリル酸エステルあるいは不
飽和酸などを用いることが出来るが、特にメタクリル酸
メチルが好ましい。このものの使用量は、50重量%未
満、より好ましくは、20重量%未満である。50重量%以
上では最終組成物の物性、特に耐熱性が低下する。
The copolymer resin [C] used in the present invention may be produced by any method such as solution polymerization, suspension polymerization and emulsion polymerization, but it means that it can be easily blended with [A] or [B]. The emulsion polymerization method is preferred. As the aromatic vinyl compound used in [C], the same kind as in [A] or [B] can be used. Particularly, styrene alone or styrene and α-
The combined use of methylstyrene is preferred. When styrene and α-methylstyrene are used in combination, the ratio of α-methylstyrene in the aromatic vinyl compound is preferably less than 50% by weight. If it is 50% by weight or more, the impact resistance of the final composition becomes low. The amount of aromatic vinyl compound in [C] is 60
If it is less than 60% by weight, the fluidity is lowered, and if it exceeds 82% by weight, the compatibility of the copolymer resins [A], [B] and [C] is lowered. Is not preferred. Examples of vinyl cyanide in [C] include [B]
Acrylonitrile is used as in. The amount of this substance used is from 18 to 40% by weight. If it is less than 18% by weight, the compatibility with [A] and [B] is poor, while if it exceeds 40% by weight, the resin is colored, which is not preferable. As the other monomer copolymerizable with the aromatic vinyl compound or the vinyl cyanide compound, the same acrylic acid ester or unsaturated acid as in [B] can be used, and methyl methacrylate is particularly preferable. The amount used of this is less than 50% by weight, and more preferably less than 20% by weight. If it is 50% by weight or more, the physical properties of the final composition, particularly the heat resistance, deteriorate.

本発明に使用する共重合体〔D−1〕の製造は、公知
のいかなる方法でも可能である。例えば溶液重合法を採
用する場合には、芳香族ビニル化合物、ビニルシアン化
合物及び少量の無水マレイン酸をメチルエチルケトンの
ような溶媒に溶かし、ラジカル開始剤を添加して反応容
器に仕込み不活性ガス雰囲気下で重合させる。重合体の
組成を一定にするために、重合中残余の無水マレイン酸
を分割添加することが望ましい。重合温度は、70〜120
℃の範囲で任意に選択できるが、ポリマーの分子量を高
めるためには、80℃前後の比較的低温が好ましい。重合
終了後のドープは真空乾燥機で脱揮し、最終的に得られ
る塊状生成物は、粉砕して微粉状にする方が後のブレン
ド操作に好都合である。
The copolymer [D-1] used in the present invention can be produced by any known method. For example, when adopting the solution polymerization method, an aromatic vinyl compound, a vinyl cyanide compound and a small amount of maleic anhydride are dissolved in a solvent such as methyl ethyl ketone, and a radical initiator is added and charged into a reaction vessel under an inert gas atmosphere. Polymerize with. In order to keep the composition of the polymer constant, it is desirable to add the remaining maleic anhydride in portions during the polymerization. Polymerization temperature is 70-120
The temperature can be arbitrarily selected within the range of 0 ° C, but a relatively low temperature of around 80 ° C is preferable in order to increase the molecular weight of the polymer. It is convenient for the subsequent blending operation that the dope after completion of the polymerization is devolatilized with a vacuum dryer, and the finally obtained lump product is pulverized into a fine powder.

〔D−1〕に使用される芳香族ビニル化合物とは、ス
チレンとα−メチルスチレンの単独又は、その組合せが
特に好ましい。又、同時に使用されるビニルシアン化合
物としては、アクリロニトリル、メタクリロニトリルが
挙げられるがアクリロニトリルが好ましい。〔D−1〕
中の芳香族ビニル化合物(イ)、ビニルシアン化合物
(ロ)及び無水マレイン酸(ハ)の組成比は、(イ)が
50〜84重量%、(ロ)が15〜49重量%及び(ハ)が1〜
10重量%の範囲である必要がある。(イ)が50重量%未
満では、〔D−1〕を加熱・混練する際に着色しやす
い。(イ)が84重量%を越えると、〔D−1〕の耐熱性
が低下する。〔D−1〕中のビニルシアン化合物(ロ)
が15重量%未満では、(α)SIなどとブレンドする際の
親和性に乏しく、40重量%を越えると着色劣化しやす
い。〔D−1〕中の無水マレイン酸(ハ)の量は、1重
量%未満では、共重合体組成物〔D〕の相溶化剤として
の効果に乏しく、一方、10重量%以上では、〔D−1〕
と〔D−2〕を混練して得られる組成物〔D〕がゲル化
してしまうので好ましくない。重合体〔D−1〕の重合
度指標としての溶液粘度〔η〕は、テトラヒドロフラン
中30℃で測定した値が0.3〜1.0であるのが良い。0.3未
満では樹脂としての強度に乏しく、又1.0以上では、分
子量が高すぎて流動性が悪い。
The aromatic vinyl compound used in [D-1] is particularly preferably styrene and α-methylstyrene alone or in combination. Examples of the vinyl cyan compound used at the same time include acrylonitrile and methacrylonitrile, with acrylonitrile being preferred. [D-1]
The composition ratio of the aromatic vinyl compound (a), the vinyl cyan compound (b) and the maleic anhydride (c) in the
50-84 wt%, (b) 15-49 wt% and (c) 1-
It must be in the range of 10% by weight. When the content of (a) is less than 50% by weight, the [D-1] tends to be colored during heating and kneading. When the content of (a) exceeds 84% by weight, the heat resistance of [D-1] decreases. Vinyl cyanide compound (B) in [D-1]
If it is less than 15% by weight, the affinity for blending with (α) SI or the like is poor, and if it exceeds 40% by weight, color deterioration is likely to occur. When the amount of maleic anhydride (C) in [D-1] is less than 1% by weight, the effect as a compatibilizing agent of the copolymer composition [D] is poor, while when it is 10% by weight or more, D-1]
Composition [D] obtained by kneading and [D-2] is not preferable because it gels. The solution viscosity [η] as an index of the degree of polymerization of the polymer [D-1] is preferably 0.3 to 1.0 when measured in tetrahydrofuran at 30 ° C. When it is less than 0.3, the strength as a resin is poor, and when it is 1.0 or more, the molecular weight is too high and the fluidity is poor.

本発明に使用される共重合体〔D−2〕の製造法も任
意に選択できるが、例えば懸濁重合法が好ましい。具体
的には、芳香族ビニル化合物(イ)、N−置換マレイミ
ド(ニ)及び2−ヒドロキシエチルメタクリレート、グ
リシジルメタクリレート及びp−アミノスチレンの少な
くとも1種から選ばれる官能基含有単量体(ホ)の3者
から成る単量体混合物を、リン酸カルシウム系の分散剤
を含む水溶液中に投入して懸濁液とし、ベンゾイルパー
オキシドなどのラジカル開始剤を用いて窒素雰囲気下70
〜80℃で10時間程度重合する。その結果得られる100μ
程度の粒径を持つビーズ状ポリマーをろ別・乾燥する。
ポリマー形状がビーズ状であることは、次の〔D−1〕
と〔D−2〕の混練過程で混合しやすいという利点があ
る。〔D−2〕の成分である芳香族ビニル化合物(イ)
は、〔D−1〕と全く同じ単量体を用いることができ
る。又、N−置換マレイミド(ニ)としては、N−フェ
ニルマレイミド、N−シクロヘキシルマレイミド、N−
(2,4,6−トリブロモ)フェニルマレイミドなどが好ま
しく、特にN−フェニルマレイミドが好都合である。官
能基含有単量体(ホ)とは、水酸基、エポキシ基、アミ
ノ基などいわゆる反応性の官能基を有する単量体を意味
し、具体的には、2−ヒドロキシエチルメタクリレー
ト、グリシジルメタクリレート、p−アミノスチレンな
どが挙げられる。〔D−2〕中の芳香族ビニル単量体の
使用量は、40〜74重量%が好ましい。40重量%未満で
は、共重合体〔D−2〕の熱安定性が悪く流動性も低
い。74重量%以上では〔D−2〕の耐熱性が低く、〔D
−1〕と〔D−2〕から成る組成物の相溶化剤又は複合
系樹脂改質剤としての効果も低い。〔D−2〕中のN−
置換マレイミド化合物の組成比は、25〜59重量%である
ことが必要である。N−置換マレイミド化合物が25重量
%未満では、〔D−2〕の耐熱性が悪くなる。〔D−
2〕中の第三成分単量体(ホ)の割合は1〜10重量%が
好ましい。1重量%未満では〔D−1〕と〔D−2〕の
組成物の相溶化剤としての効果を発揮しない。〔D−
2〕の重合度指標としての〔η〕(測定条件は〔a〕と
同じ)は、0.3〜1.0であることが望ましい。0.3未満で
は重合体としての強度が低く、1.0以上になると最終組
成物の流動性が悪い。
The production method of the copolymer [D-2] used in the present invention can be arbitrarily selected, but for example, the suspension polymerization method is preferable. Specifically, a functional group-containing monomer (e) selected from at least one kind of aromatic vinyl compound (a), N-substituted maleimide (d) and 2-hydroxyethyl methacrylate, glycidyl methacrylate and p-aminostyrene. The monomer mixture consisting of the above three components is put into an aqueous solution containing a calcium phosphate-based dispersant to form a suspension, and a radical initiator such as benzoyl peroxide is used in a nitrogen atmosphere.
Polymerize at ~ 80 ° C for about 10 hours. The resulting 100μ
A bead-shaped polymer having a particle size of about 3 is filtered and dried.
The fact that the polymer shape is beaded means that the following [D-1]
And [D-2] have an advantage that they are easily mixed in the kneading process. Aromatic vinyl compound (a) which is a component of [D-2]
The same monomer as [D-1] can be used. Further, as the N-substituted maleimide (d), N-phenylmaleimide, N-cyclohexylmaleimide, N-
(2,4,6-Tribromo) phenylmaleimide and the like are preferable, and N-phenylmaleimide is particularly preferable. The functional group-containing monomer (e) means a monomer having a so-called reactive functional group such as a hydroxyl group, an epoxy group, an amino group, and specifically, 2-hydroxyethyl methacrylate, glycidyl methacrylate, p -Aminostyrene and the like. The amount of the aromatic vinyl monomer used in [D-2] is preferably 40 to 74% by weight. If it is less than 40% by weight, the copolymer [D-2] has poor thermal stability and low fluidity. When it is 74% by weight or more, the heat resistance of [D-2] is low,
The effect of the composition comprising [-1] and [D-2] as a compatibilizer or a composite resin modifier is also low. N- in [D-2]
The composition ratio of the substituted maleimide compound needs to be 25 to 59% by weight. When the N-substituted maleimide compound is less than 25% by weight, the heat resistance of [D-2] becomes poor. [D-
The ratio of the third component monomer (e) in 2) is preferably 1 to 10% by weight. If it is less than 1% by weight, the effect of the composition of [D-1] and [D-2] as a compatibilizer is not exhibited. [D-
[Η] (measurement conditions are the same as those of [a]) as a polymerization index of 2] is preferably 0.3 to 1.0. When it is less than 0.3, the strength as a polymer is low, and when it is 1.0 or more, the fluidity of the final composition is poor.

本発明に於ける共重合体組成物〔D〕は共重合体〔D
−1〕と〔D−2〕を溶融混練させて得られる。溶融混
練方法としては通常のプラスチックス混練に用いられる
方法が任意に選択できる。具合的には、ロール、ニーダ
ー、混練押出機などの溶融混合装置を用いうるが、特に
2軸のベント付き混練押出機を用いるのが有効である。
溶融混練温度としては180〜300℃が好ましく、180℃未
満では混練が充分でなく反応も進行しない又300℃以上
では樹脂の分解が起こり好ましくない。溶融混練時間は
5〜30分程度が望ましい。混練の際の共重合体〔D−
1〕と〔D−2〕の重量組成比は、〔D−1〕/〔D−
2〕=(30〜70)/(70〜30)の範囲で任意に選択でき
るが、より好ましい範囲は次の方法で計算して決める。
すなわち、〔D−1〕中の無水マレイン酸単位の重量%
をn、その分子量を98、組成物中の〔D−1〕の使用量
(組成比)をX部とし、〔D−2〕中の第三単量体
(ホ)の重量%をm、その分子量のM、〔D−2〕の使
用量をY部とするとき、 X+Y=100(重量部) ……(1) であり、しかも〔A〕中の無水マレイン酸単位と〔B〕
の官能基のモル比をQとするとき、 0.5≦Q=(M×n×X)/(98×m×Y)<1.5 ……
(2) 但し、n,m≠0 ……(3) を満足するようにXとYを算出してブレンドする。
(2)式で表わされるQが、0.5未満または1.5以上で
は、共に組成物が相溶化剤として充分な効果を発揮しな
い。Qのより好ましい範囲は0.8≦Q<1.2である。
The copolymer composition [D] in the present invention is a copolymer [D
-1] and [D-2] are melt-kneaded and obtained. As the melt-kneading method, a method used for ordinary plastics kneading can be arbitrarily selected. Specifically, a melt mixing device such as a roll, a kneader, or a kneading extruder can be used, but it is particularly effective to use a kneading extruder with a biaxial vent.
The melt-kneading temperature is preferably 180 to 300 ° C. If it is less than 180 ° C., the kneading is insufficient and the reaction does not proceed, and if it is 300 ° C. or more, the resin is decomposed, which is not preferable. The melt kneading time is preferably about 5 to 30 minutes. Copolymer at the time of kneading [D-
The weight composition ratio of 1] and [D-2] is [D-1] / [D-
2] = (30 to 70) / (70 to 30), but the more preferable range is determined by the following method.
That is, the weight% of the maleic anhydride unit in [D-1]
N, its molecular weight is 98, the amount (composition ratio) of [D-1] in the composition is X part, and the weight% of the third monomer (e) in [D-2] is m, When the use amount of M and [D-2] of the molecular weight is Y part, X + Y = 100 (parts by weight) (1), and the maleic anhydride unit in [A] and [B]
When the molar ratio of the functional groups of is Q, 0.5 ≦ Q = (M × n × X) / (98 × m × Y) <1.5
(2) However, X and Y are calculated and blended so as to satisfy n, m ≠ 0 (3).
When Q represented by the formula (2) is less than 0.5 or 1.5 or more, the composition does not exhibit a sufficient effect as a compatibilizer. The more preferable range of Q is 0.8 ≦ Q <1.2.

本発明の最終組成物を得る方法としては、樹脂
〔A〕,〔B〕及び必要に応じて用いられる樹脂〔C〕
の粉末に、本発明の固体相溶化剤である共重合体組成物
〔D〕のペレットを所定量秤量し、少量の熱安定剤を加
えた後、タンブラーミキサーなどでよく混合する。混合
した試料を、2軸混練押出機などを用いて混練・押出し
を行いペレット化すれば良い。
As a method for obtaining the final composition of the present invention, resins [A] and [B] and optionally a resin [C]
A predetermined amount of pellets of the copolymer composition [D], which is the solid compatibilizing agent of the present invention, is weighed in the powder of 1. and a small amount of a heat stabilizer is added, and then thoroughly mixed with a tumbler mixer or the like. The mixed sample may be kneaded and extruded using a biaxial kneading extruder or the like to form pellets.

本発明の最終組成物を得る際の、樹脂〔A〕の使用割
合は40〜80重量部が望ましく、40重量部未満では最終組
成物の耐熱性が低い。80重量部を越えると、最終組成物
の耐衝撃性や溶融流動性が低下する。最終組成物中のグ
ラフト共重合樹脂〔B〕の割合は、20〜60重量部が望ま
しい。20重量部未満では、最終組成物の耐衝撃性が低
く、60重量部を越えると耐熱性が低下する。次に、必要
に応じて用いられる共重合樹脂〔C〕は、20重量部未満
である必要がある。20重量部を越えると最終組成物の耐
熱性・耐衝撃性が低下する。
When the final composition of the present invention is obtained, the proportion of the resin [A] used is preferably 40 to 80 parts by weight, and when it is less than 40 parts by weight, the heat resistance of the final composition is low. If it exceeds 80 parts by weight, the impact resistance and melt fluidity of the final composition will decrease. The proportion of the graft copolymer resin [B] in the final composition is preferably 20 to 60 parts by weight. If it is less than 20 parts by weight, the impact resistance of the final composition is low, and if it exceeds 60 parts by weight, the heat resistance is lowered. Next, the amount of the copolymer resin [C] used as required needs to be less than 20 parts by weight. If it exceeds 20 parts by weight, the heat resistance and impact resistance of the final composition will deteriorate.

次に最終組成物中に用いられる固体相溶化剤〔D〕の
使用割合は、5〜30重量部が望ましい。5重量部未満で
あると最終組成物の耐衝撃性が低く、又、30重量部を越
えると最終組成物の耐熱性が低くなる。
Next, the proportion of the solid compatibilizer [D] used in the final composition is preferably 5 to 30 parts by weight. If it is less than 5 parts by weight, the impact resistance of the final composition will be low, and if it exceeds 30 parts by weight, the heat resistance of the final composition will be low.

〔実施例〕〔Example〕

以下に本発明を具体例を示して説明する。特に指定し
ない限り、部数及び%は重量基準である。
The present invention will be described below with reference to specific examples. Parts and percentages are by weight unless otherwise specified.

〔共重合体〔A〕の製造例〕 撹拌機を備えた反応器の内部を窒素で置換し、イオン
交換水・150部と、α−メチルスチレン(αS)・70部
及びN−フェニルマレイミド(pMI)・30部を投入した
のち、内温を60℃に昇温し、ピロリン酸ナトリウム・0.
2部、硫酸第一鉄水和物0.01部、ブドウ糖・0.4部をイオ
ン交換水・20部に溶解した液を加え、キュメンハイドロ
パーオキシド(CPO)・0.05部を添加して重合を開始
し、4時間重合させた。得られた共重合体は、塩化カル
シウムを用いて凝固し、水洗・乾燥した。この共重合体
(αSI)を組成分析すると、αS=72%、pMI=28%で
あることが分かった。また、この共重合体の〔η〕=0.
52であった。N−置換マレイミドとしてN−シクロヘキ
シルマレイミドを用いて実験した例と共に、表−1にそ
の分析データを示す。
[Production Example of Copolymer [A]] The inside of a reactor equipped with a stirrer was replaced with nitrogen, and 150 parts of ion-exchanged water, α-methylstyrene (αS), 70 parts, and N-phenylmaleimide ( pMI) ・ 30 parts, and then the internal temperature was raised to 60 ℃, sodium pyrophosphate.
Add 2 parts, ferrous sulfate hydrate 0.01 part, glucose 0.4 parts dissolved in ion-exchanged water 20 parts, add cumene hydroperoxide (CPO) 0.05 parts to start polymerization, It was polymerized for 4 hours. The obtained copolymer was coagulated with calcium chloride, washed with water and dried. Composition analysis of this copolymer (αSI) revealed that αS = 72% and pMI = 28%. Moreover, [η] = 0.
It was 52. The analytical data are shown in Table 1 together with an example in which N-cyclohexylmaleimide was used as the N-substituted maleimide.

〔共重合樹脂〔B〕及び〔C〕〕 本発明で使用した共重合樹脂〔B〕及び〔C〕は、表
−2の市販品を用いた。
[Copolymer resin [B] and [C]] As the copolymer resins [B] and [C] used in the present invention, commercially available products shown in Table 2 were used.

〔共重合体〔D−1〕の製造〕 かくはん機を備えた反応機の内部を窒素で置換して、
メチルエチルケトン(MEK)・30部、スチレン(ST)・7
0部、アクリロニトリル(AN)・27部及び無水マレイン
酸(MAH)・3部と重合開始剤、ラウロイルパーオキシ
ド(LPO)0.2部を一挙に投入し、窒素雰囲気下75℃で3.
5時間重合した。重合の途中でMAH・5部をMEK・10部に
溶解し10分毎に分割して添加した。重合終了後内部を急
冷し、ドープを真空乾燥機に移して脱揮・乾燥した。脱
揮後のブロック状サンプルは粉砕して微粉状にした。粉
末サンプルのIRスペクトルによる分析では、ST=66%、
AN=26%及びMAH=8%であり、〔η〕は0.80であっ
た。なお単量体の種類と組成及び分子量調節剤の量を変
えた4種の〔D−1〕x(x=a,b,c,d)を製造した結
果を表−3に示す。但し〔D−1〕は、無水マレイン
酸を使用しなかった例である。
[Production of Copolymer [D-1] X ] By replacing the inside of a reactor equipped with a stirrer with nitrogen,
Methyl ethyl ketone (MEK) · 30 parts, styrene (ST) · 7
0 parts, acrylonitrile (AN), 27 parts and maleic anhydride (MAH), 3 parts, and a polymerization initiator, lauroyl peroxide (LPO), 0.2 parts were added all at once, and the mixture was heated at 75 ° C under a nitrogen atmosphere at 3.
Polymerization was carried out for 5 hours. During the polymerization, MAH (5 parts) was dissolved in MEK (10 parts) and added every 10 minutes. After the completion of the polymerization, the inside was rapidly cooled, the dope was transferred to a vacuum dryer, and volatilized and dried. The devolatilized block-like sample was pulverized into a fine powder. Analysis of powder sample by IR spectrum shows ST = 66%,
AN = 26% and MAH = 8%, and [η] was 0.80. Table 3 shows the results of the production of four kinds of [D-1] x (x = a, b, c, d) in which the kind and composition of the monomer and the amount of the molecular weight modifier were changed. However, [D-1] d is an example in which maleic anhydride was not used.

〔共重合体〔D−2〕の製造〕 かくはん機を備えた反応機の内部を窒素で置換して、
α−メチルスチレン(αS)70部、N−フェニルマレイ
ミド(pMI)・10部とグリシジルメタクリレート(GMA)
・5部を含む単量体混合物と、重合開始剤としてベンゾ
イルパーオキシド(BPO)・0.35部、分子量調節剤とし
て、ターシャリードデシルメルカプタン(TDM)・0.18
部の混合物を仕込み、よくかき混ぜた。次いで、リン酸
カルシウム分散剤・0.2部と分散安定助剤としてドデシ
ル硫酸ナトリウム0.01部を含む水分散液100部を、上記
単量体混合物中に添加して、高速で撹拌し懸濁状態とし
た。内温を75℃に上げ重合させ、その状態で6時間保持
した。この重合の途中、懸濁液中にαS・5部とpMI・
2部から成る溶液を5時間かけて後添加した。その後、
内温を85℃に昇温して、2時間重合を継続した。
[Production of Copolymer [D-2] x ] By replacing the inside of a reactor equipped with a stirrer with nitrogen,
70 parts α-methylstyrene (αS), 10 parts N-phenylmaleimide (pMI) and glycidyl methacrylate (GMA)
-A monomer mixture containing 5 parts, benzoyl peroxide (BPO) as a polymerization initiator-0.35 parts, and a tertiary weight decyl mercaptan (TDM) -0.18 as a molecular weight regulator
Part of the mixture was charged and mixed well. Next, 100 parts of an aqueous dispersion containing 0.2 part of a calcium phosphate dispersant and 0.01 part of sodium dodecyl sulfate as a dispersion stabilizing aid was added to the above-mentioned monomer mixture and stirred at a high speed to obtain a suspension state. The internal temperature was raised to 75 ° C to polymerize, and the state was maintained for 6 hours. During this polymerization, αS ・ 5 parts and pMI ・
A 2 part solution was post-added over 5 hours. afterwards,
The internal temperature was raised to 85 ° C and the polymerization was continued for 2 hours.

重合終了後、分散剤を塩酸で分解した後、ろ過・水洗
しろ別した。乾燥後、100μ程度の粒径を持つビーズ状
共重合体を得たが、単量体仕込み量をベースにしたその
収率は、98%であった。単量体の種類及び組成比を変え
て重合した結果(〔D−2〕)を、表−4に示す。
After the polymerization was completed, the dispersant was decomposed with hydrochloric acid, filtered, washed with water and separated by filtration. After drying, a bead-like copolymer having a particle size of about 100 μm was obtained, and the yield based on the charged amount of the monomer was 98%. Table 4 shows the results ([D-2] x ) of polymerization by changing the kinds and composition ratios of the monomers.

〔固体相溶化剤である共重合体〔D−1〕と共重合体
〔D−2〕との共重合体組成物〔D〕の製造〕 〔D−1〕と〔D−2〕からブレンド組成物を得
るために次の方法を採用した。即ち、〔D−1〕=41
部、〔D−2〕=59部及び脱イオン水0.6部を混合し
たのち、30mmφベント付き2軸押出機に供給した。押出
し条件は、スクリュー温度:240℃、スクリュー回転数:8
0rpm、ベントの真空度:30Torr.であった。押出し後のペ
レットをIR分析したところ、〔D−1〕〔D−2〕
それぞれの単独の場合に比べ酸無水物の吸収とエポキシ
基の吸収が非常に弱くなり、一方フリーのカルボキシル
基と水酸基の吸収が見られたので、共重合体〔D−1〕
と〔D−2〕の間に化学結合が生じたと考えられ
る。〔D−1〕と〔D−2〕の種類と量をかえて同様に
実験した内容を表−5に示す。
[Production of Copolymer Composition [D] of Copolymer [D-1] x as Solid Compatibilizer and Copolymer [D-2] x ] [D-1] x and [D-2 The following method was adopted to obtain the blend composition from x . That is, [D-1] a = 41
Parts, [D-2] a = 59 parts and 0.6 parts of deionized water were mixed and then fed to a 30 mmφ vented twin-screw extruder. The extrusion conditions are: screw temperature: 240 ° C, screw speed: 8
It was 0 rpm and the degree of vacuum of the vent was 30 Torr. IR analysis of the pellets after extrusion revealed that [D-1] a [D-2] a
The absorption of the acid anhydride and the absorption of the epoxy group became much weaker than the case of each alone, while the absorption of the free carboxyl group and the hydroxyl group was observed, so that the copolymer [D-1]
It is considered that a chemical bond occurred between a and [D-2] a . Table 5 shows the contents of the same experiment with different kinds and amounts of [D-1] and [D-2].

(樹脂の物性評価方法) a. 耐熱変形温度(HDT) ASTM D−648準拠、FS=18.56kgf/cm2:1/4″,アニー
ルなし b. アイゾット衝撃強度(IS) ASTM D−256準拠、1/4″,切削ノッチ c. メルトインデックス(MI) ASTM D−1238準拠、230℃x5KgL d. 引っ張り破断強度(TSb)及び引っ張り破断伸度(T
Eb) ASTM D−638準拠、引っ張り速度:5mm/min 〔実施例−1〕 表−1のαSI−1=2,400(g)、ABS=1,600(g)
及び相溶化剤の〔D〕aa=400(g)を秤量し、熱安定
剤として住友化学製スミライザー・WXR=8.0(g)を加
えて混合撹拌器中で10分混合した。この際の樹脂ブレン
ド比は、〔A〕:〔B〕=60:40であり、〔D〕aaの添
加量は、〔D〕/(〔A〕+〔B〕)=10/100である。
このドライブレンド物は、300mmφ2軸押出機を用いて
シリンダー温度=260℃、スクリュー回転数=80rpmで混
練・押出しペレット化した。
(Resin property evaluation method) a. Heat distortion temperature (HDT) conforming to ASTM D-648, FS = 18.56kgf / cm 2 : 1/4 ″, no annealing b. Izod impact strength (IS) conforming to ASTM D-256, 1/4 ″, cutting notch c. Melt index (MI) according to ASTM D-1238, 230 ℃ x 5KgL d. Tensile breaking strength (TS b ) and tensile breaking elongation (T
E b ) ASTM D-638 compliant, pulling speed: 5 mm / min [Example-1] αSI-1 = 2,400 (g), ABS = 1,600 (g) in Table-1
The compatibilizer [D] aa = 400 (g) was weighed, and Sumitomo Chemical's Sumilizer WXR = 8.0 (g) was added as a heat stabilizer and mixed for 10 minutes in a mixing stirrer. The resin blending ratio at this time is [A]: [B] = 60: 40, and the addition amount of [D] aa is [D] / ([A] + [B]) = 10/100. .
This dry blend was kneaded and extruded into pellets using a 300 mmφ twin-screw extruder at a cylinder temperature of 260 ° C. and a screw rotation speed of 80 rpm.

押出し後のペレットは、MIを測定した後射出成形機に
て、1/4″試験片と引っ張り試験片を成形し、耐熱変形
温度(HDT)、アイゾット衝撃強度(IS)、引っ張り破
断強度・伸度(TSb,TEb)を測定した。この例のHDT=12
3℃、IS=13Kg・cm/cm、TSb=423Kg/cm2、TEb=18% かつMI=1.2g/10分であった。これらの物性は、イミ
ド樹脂としての特徴である高い耐熱性を維持しながら、
しかも耐衝撃性と溶融流動性も従来より大幅に改良され
た。結果を表−6にまとめる。
The extruded pellets were measured for MI and then injection molded to form 1/4 "test pieces and tensile test pieces, and the heat distortion temperature (HDT), Izod impact strength (IS), tensile rupture strength and elongation were measured. (TS b , TE b ), HDT = 12 in this example
3 ℃, IS = 13Kg · cm / cm, TS b = 423Kg / cm 2, TE b = 18% And MI was 1.2 g / 10 minutes. These physical properties, while maintaining the high heat resistance that is a characteristic of the imide resin,
In addition, impact resistance and melt flowability have also been greatly improved over the past. The results are summarized in Table-6.

〔実施例−2〕 αSI−1=2,400(g)、AS=440(g)、ABS=1,160
(g)と相溶化剤としての〔D〕bb=400(g)を秤量
しスミライザー・WXR(住友化学製)=8.0(g)を加え
て混合かくはん機で10分混合した。この際の樹脂ブレン
ド比は、〔A〕:〔B〕:〔C〕=60:11:29でかつ
〔D〕/(〔A〕+〔B〕+〔C〕)=10/100である。
この樹脂ブレンド物を〔実施例−1〕と同様に押出機で
混練ペレット化し、MIを測定したのち射出成形機で1/
4″バーと引っ張りダンベルを成形した。この試験片の
物性評価結果は、表−6に示すようにそれぞれ、HDF=1
25(℃、以下単位省略)、IS=11、TSb=435、TEb=1
5、MI=1.5であって、この組成物は、物性バランスが優
れていた。
[Example-2] αSI-1 = 2,400 (g), AS = 440 (g), ABS = 1,160
(G) and [D] bb = 400 (g) as a compatibilizer were weighed, and Sumilizer WXR (Sumitomo Chemical Co., Ltd.) = 8.0 (g) was added and mixed for 10 minutes with a mixing stirrer. The resin blend ratio at this time is [A]: [B]: [C] = 60: 11: 29 and [D] / ([A] + [B] + [C]) = 10/100. .
This resin blend was kneaded and pelletized by an extruder in the same manner as in [Example-1], and after measuring MI, 1 / was measured by an injection molding machine.
A 4 ″ bar and a tensile dumbbell were molded. The physical property evaluation results of this test piece are shown in Table 6 and HDF = 1, respectively.
25 (℃, the following units are omitted), IS = 11, TS b = 435, TE b = 1
5, MI = 1.5, and this composition had an excellent balance of physical properties.

〔実施例−3〕 本例は、αSI−2を用いた例である。αSI−2=2,80
0(g)、ABS=1,200(g)に相溶化剤として〔D〕ac
=400(g)秤量し、熱安定剤=8(g)を加えて混合
かくはん機で10分混合した。この時の重量比は〔A〕:
〔B〕=70:30でかつ〔D〕/(〔A〕+〔B〕)=10/
100であった。〔実施例−1〕と同様に押出機でペレッ
ト化したのち、MIを測定した。得られたペレットを射出
成形機にて物性評価用サンプルに成形した。この結果
は、表−6に示す様にHDT=127、IS=11、TSb=415、TE
b=15、MI=1.0とかなりの耐衝撃性を保持しながらなお
かつ、耐熱性が非常に高かった。
Example-3 This example is an example using αSI-2. αSI-2 = 2,80
0 (g), ABS = 1,200 (g) as compatibilizer [D] ac
= 400 (g), the heat stabilizer = 8 (g) was added, and the mixture was mixed for 10 minutes with a mixing stirrer. The weight ratio at this time is [A]:
[B] = 70: 30 and [D] / ([A] + [B]) = 10 /
It was 100. After pelletizing with an extruder in the same manner as in [Example-1], MI was measured. The obtained pellets were molded into a sample for physical property evaluation with an injection molding machine. This result, as shown in Table -6 HDT = 127, IS = 11 , TS b = 415, TE
While b = 15 and MI = 1.0, which had considerable impact resistance, the heat resistance was very high.

〔実施例−4〕 〔実施例−3〕において、ABSの一部をASに置き換え
た例である。具体的には、αSI−2=2,800(g)、ABS
=760(g)、AS=440(g)及び相溶化剤〔D〕ab=40
0(g)を秤量しWXRを加え後混合した。この時の重量組
成比は、〔A〕:〔B〕:〔C〕=70:11:19でかつ
〔D〕/(〔A〕+〔B〕+〔C〕)=10/100である。
この混合物を押出機でペレット化したのち射出成形によ
って評価試片を得た。この組成物の物性評価結果は、表
−6に示す様にHDT=129、IS=10、TSb=420、TEb=1
3、MI=1.1で耐熱性が非常に高かった。
[Example-4] This is an example in which a part of ABS was replaced with AS in [Example-3]. Specifically, αSI-2 = 2,800 (g), ABS
= 760 (g), AS = 440 (g) and compatibilizer [D] ab = 40
0 (g) was weighed, WXR was added, and then mixed. The weight composition ratio at this time is [A]: [B]: [C] = 70: 11: 19 and [D] / ([A] + [B] + [C]) = 10/100. .
This mixture was pelletized with an extruder and then injection-molded to obtain an evaluation sample. The results of evaluation of the physical properties the composition as shown in Table -6 HDT = 129, IS = 10 , TS b = 420, TE b = 1
3, MI = 1.1, the heat resistance was very high.

〔比較例−1〕 この例は、相溶化剤として〔D〕adを用いた場合の結
果を示す。〔D〕adは〔D−2〕に反応性の官能基を含
まない場合である。〔A〕としてのαSI−1=2,400
(g)、〔B〕=1,600(g)及び〔D〕ad=400(g)
とWXRを0.2部秤量し混合したのち、押出機でペレット化
した。MIを測定後射出成形機で評価用試片を成形した。
この組成物の物性評価結果を表−6に示すが、MI=1.0
とかなり高いがHDT=121、IS=5及びTSb=385とMI以外
の物性は、非常に低く相溶化剤の添加効果はほとんど見
られない。
[Comparative Example-1] This example shows the result when [D] ad was used as a compatibilizing agent. [D] ad is the case where [D-2] does not contain a reactive functional group. ΑSI-1 = 2,400 as [A]
(G), [B] = 1,600 (g) and [D] ad = 400 (g)
And 0.2 parts of WXR were weighed and mixed, and then pelletized by an extruder. After measuring MI, a test piece for evaluation was molded by an injection molding machine.
The results of evaluation of physical properties of this composition are shown in Table-6, where MI = 1.0.
When fairly high but non HDT = 121, IS = 5 and TS b = 385 and MI physical properties, the effect of adding a very low compatibilizer hardly observed.

〔比較例−2〕 本例は、相溶化剤として官能基である無水マレイン酸
を含まない〔D−1〕を用いて得られた〔D〕daを用い
た例である。この場合のブレンド組成比は、〔A〕;
〔B〕=70:30かつ〔D〕/(〔A〕+〔B〕)=10/10
0である。このものの物性評価結果を表−6に示した
が、HDT=123と高かったがIS=4、MI=0.8と低く性能
は充分でなかった。
[Comparative Example-2] This example is an example using [D] da obtained by using [D-1] that does not contain a maleic anhydride as a functional group as a compatibilizing agent. The blend composition ratio in this case is [A];
[B] = 70: 30 and [D] / ([A] + [B]) = 10/10
It is 0. The results of evaluation of physical properties of this product are shown in Table-6. The results were high with HDT = 123, but low with IS = 4 and MI = 0.8, and the performance was not sufficient.

〔比較例−3〕 この例は、相溶化剤として本発明の範囲外である
〔D〕ceを用いた例である。〔D〕ceは、成分共重合体
である〔D−1〕と〔D−2〕中の官能基含有量が高く
分子間反応が起こりすぎたため、〔D〕ce自体が溶媒に
溶けにくくしたがって単体の溶融流動性も低かった。表
−6にこの場合の組成比及び物性評価結果を示す。ただ
し、〔A〕;〔B〕=60:40及び〔D〕/(〔A〕+
〔B〕)=10/100である。この組成物のMI=0.6と小さ
く又IS=3も低い。
[Comparative Example-3] This example is an example using [D] ce , which is outside the scope of the present invention, as a compatibilizing agent. Since [D] ce has a high content of functional groups in the component copolymers [D-1] and [D-2] and an intermolecular reaction occurs too much, [D] ce itself is difficult to dissolve in a solvent. The melt flowability of the simple substance was also low. Table 6 shows the composition ratio and the physical property evaluation results in this case. However, [A]; [B] = 60: 40 and [D] / ([A] +
[B]) = 10/100. This composition has a low MI = 0.6 and a low IS = 3.

〔比較例−4〕 この例は、官能基を含まない相溶化剤〔D〕ddを用い
た例である。この組成物は、〔A〕;〔B〕=70:30か
つ〔D〕/(〔A〕+〔B〕)=10/100である。表−6
に示す様に、この組成物のMI=1.2とかなり高いが、IS
=4と低かった。
[Comparative Example-4] In this example, a compatibilizing agent [D] dd containing no functional group was used. This composition has [A]; [B] = 70: 30 and [D] / ([A] + [B]) = 10/100. Table-6
As shown in, the composition has a very high MI = 1.2, but IS
It was as low as = 4.

〔比較例−5〕 この例は、相溶化剤〔D〕を用いなかった場合であ
る。αSI−1=2,400(g)、ABS=1,600(g)
(〔A〕:〔B〕=60:40)にWXR=8.0(g)を加え混
合した。押出機でペレット化後MIを測定した。射出成形
機で評価試片を作製し物性を測定した。表−6に結果を
示すが、HDT=124と高いもののIS=4、MI=0.2と低か
った。
[Comparative Example-5] In this Example, the compatibilizing agent [D] was not used. αSI-1 = 2,400 (g), ABS = 1,600 (g)
WXR = 8.0 (g) was added to ([A]: [B] = 60: 40) and mixed. After pelletizing with an extruder, MI was measured. An evaluation test piece was prepared with an injection molding machine and its physical properties were measured. Table-6 shows the results. HDT = 124 was high, but IS = 4 and MI = 0.2 were low.

〔実施例−5〕 本例では、表−7に示す様にαSI−1=2,400
(g)、ABS=1,600(g)及び〔D〕aa=800(g)を
秤量し、熱安定剤WXR=8.0(g)を加えて混合した。
〔A〕:〔B〕=60:40かつ〔D〕/(〔A〕+
〔B〕)=20/100である。押出機でペレット化してMIを
測定したのち射出成形機で試験片を作製した。物性測定
結果を表−7に示す。HDT=119とそれほど高くないが、
IS=16と非常に高く又MIも2.3と高かった。
Example-5 In this example, as shown in Table-7, αSI-1 = 2,400
(G), ABS = 1,600 (g) and [D] aa = 800 (g) were weighed, and the heat stabilizer WXR = 8.0 (g) was added and mixed.
[A]: [B] = 60: 40 and [D] / ([A] +
[B]) = 20/100. After pelletizing with an extruder and measuring MI, a test piece was prepared with an injection molding machine. The results of measuring physical properties are shown in Table 7. HDT = 119, not so high,
The IS was very high at 16 and the MI was also high at 2.3.

〔実施例−6〕 この例は、αSI−2=3,200(g)、ABS=800(g)
及び相溶化剤〔D〕bb=400(g)で、〔A〕:〔B〕
=80:20かつ〔D〕/(〔A〕+〔B〕)=10/100の例
である。熱安定剤を0.2部加えたのち混合し、混練ペレ
ット化した。ペレットのMIを測定したのち射出成形試験
片で物性を評価した。結果を表−7に示すが、IS=8と
低かった。しかし、HDT=132と高くMI=1.0で耐熱性樹
脂としては、かなり高い流動性を示した。
[Example-6] In this example, αSI-2 = 3,200 (g), ABS = 800 (g)
And a compatibilizer [D] bb = 400 (g), [A]: [B]
= 80: 20 and [D] / ([A] + [B]) = 10/100. After adding 0.2 parts of the heat stabilizer, they were mixed and kneaded into pellets. After measuring the MI of the pellets, the physical properties were evaluated by injection molding test pieces. The results are shown in Table-7, which was as low as IS = 8. However, HDT = 132, which is high, and MI = 1.0, indicating a fairly high fluidity as a heat-resistant resin.

〔比較例−6,7〕 この2つの例は、相溶化剤が発明の範囲のものであっ
ても、〔A〕と〔B〕の組成比が範囲外であれば性能が
低い例である。〔比較例−6〕は、〔A〕:〔B〕=9
5:5で〔D〕/(〔A〕+〔B〕)=10/100の例であ
る。〔比較例−7〕は、逆に〔D〕の添加量は10重量部
であるが、〔A〕:〔B〕=10:90である。表−7にこ
れらの組成物の物性評価結果を示すが、前者は、HDT=1
34と最も高かったが、IS=2とABSの添加効果が見られ
ず、MI=0.2と低かった。後者は逆に、IS=20と最高で
あったが、HDT=109と低く耐熱性樹脂として不適当であ
った。
[Comparative Examples-6 and 7] These two examples are examples in which the performance is low even if the compatibilizing agent is within the range of the invention if the composition ratio of [A] and [B] is out of the range. . In [Comparative Example-6], [A]: [B] = 9
In this example, 5: 5 [D] / ([A] + [B]) = 10/100. On the contrary, in [Comparative Example-7], the amount of [D] added was 10 parts by weight, but [A]: [B] = 10: 90. Table 7 shows the evaluation results of physical properties of these compositions. The former is HDT = 1.
The highest value was 34, but the effect of adding IS = 2 and ABS was not seen, and MI was as low as 0.2. On the contrary, the latter had the highest IS = 20, but was low as HDT = 109 and was unsuitable as a heat resistant resin.

〔比較例−8,9〕 これら二つの例は、〔A〕:〔B〕=60:40かつ
〔D〕/(〔A〕+〔B〕)=10/100であるが、〔比較
例−8〕は〔D〕として〔D〕′aaを用いた例で、〔D
−2〕が多かったため〔D〕′aaの流動性がよく可塑
剤効果を発揮したため、表−7に結果を示す様に、この
組成物のMI=2.0と高かったが、IS=8と低い。
[Comparative Examples-8, 9] These two examples are [A]: [B] = 60: 40 and [D] / ([A] + [B]) = 10/100. -8] is an example in which [D] ' aa is used as [D].
-2] Since the amount of a was large, the fluidity of [D] ' aa was good and the plasticizer effect was exhibited. Therefore, as shown in the results in Table 7, the composition had a high MI = 2.0, but an IS = 8. Low.

一方、〔比較例−9〕は、〔D〕中の〔D−1〕
多かったため、耐熱性がそれほど低下しなかったが相溶
化剤の添加効果に乏しく、しかもこのものは、成形中の
滞留劣化による着色と発泡が見られた。
On the other hand, in [Comparative Example-9], the amount of [D-1] a in [D] was large, so that the heat resistance did not decrease so much, but the effect of adding the compatibilizer was poor, and this was not produced during molding. Coloring and foaming were observed due to the deterioration of retention.

〔比較例−10〕 この例は、相溶化剤の種類が発明の範囲であっても添
加量が多すぎると物性が低下する例である。〔A〕:
〔B〕=60:40で、〔D〕/(〔A〕+〔B〕)=50/10
0の場合は、表−7に示す様にIS=18と高いが、HDT=10
9と低下した。
[Comparative Example-10] This example is an example in which even if the type of the compatibilizer is within the range of the invention, if the addition amount is too large, the physical properties deteriorate. [A]:
[B] = 60: 40, [D] / ([A] + [B]) = 50/10
In the case of 0, as shown in Table-7, IS = 18 is high, but HDT = 10
It decreased to 9.

〔比較例−11〕 この例は、〔A〕:〔B〕=70.4:29.6であるが、
〔D〕/(〔A〕+〔B〕)=2/100と相溶化剤が少な
い場合である。評価結果を表−7に示したが、HDT=126
と高いものの、IS=5と低く、MI=0.3と低かった。
[Comparative Example-11] In this example, [A]: [B] = 70.4: 29.6,
[D] / ([A] + [B]) = 2/100, which is the case where the amount of the compatibilizer is small. The evaluation results are shown in Table-7. HDT = 126
Although it was high, it was low with IS = 5 and low with MI = 0.3.

〔発明の効果〕 イミド基含有樹脂とABSのブレンドにより高耐熱・高
衝撃性のイミド変性樹脂組成物を得ようとする場合、従
来技術ではそのブレンド組成物は、耐熱性は確かに高い
が、耐衝撃性と溶融流動性が不十分であるため、自動車
のフロントグリルやOA機器のハウジングなど大型機器の
成形用樹脂素材として適用することが難しかった。この
発明の結果、相溶化剤を別途調製するためのコストが若
干付加されるが、従来不可能だったイミド変性樹脂組成
物を、エンプラに代わって大型成形用樹脂素材として使
用できる様になる。
(Effects of the Invention) When an imide-modified resin composition having high heat resistance and high impact is to be obtained by blending an imide group-containing resin and ABS, the blended composition of the prior art is certainly high in heat resistance, Due to insufficient impact resistance and melt flowability, it was difficult to apply it as a molding resin material for large equipment such as automobile front grills and OA equipment housings. As a result of the present invention, although the cost for separately preparing the compatibilizing agent is added, the imide-modified resin composition, which has hitherto been impossible, can be used as a large-sized molding resin material instead of engineering plastics.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】a)芳香族ビニル化合物40〜70重量%、N
−置換マレイミド化合物30〜60重量%、より成る共重合
樹脂[A]を40〜80重量部、 b)ゴム状重合体30〜70重量%の存在下に、芳香族ビニ
ル化合物25〜50重量%、シアン化ビニル化合物5〜20重
量%、及び他の共重合可能なビニル化合物0〜50重量%
をグラフト共重合させたグラフト共重合樹脂[B]を20
〜60重量部、 c)芳香族ビニル化合物60〜82重量%、シアン化ビニル
化合物18〜40重量%、及び他の共重合可能なビニル化合
物0〜50重量%より成る共重合樹脂[C]を0〜20重量
部、 から成る樹脂組成物100重量部に対し、 d)芳香族ビニル化合物50〜84重量%、シアン化ビニル
化合物15〜49重量%、及び無水マレイン酸1〜10重量%
から成る共重合体[D−1]30〜70重量部と、芳香族ビ
ニル化合物40〜74重量%、N−置換マレイミド化合物25
〜59重量%、及び2−ヒドロキシエチルメタクリレー
ト、グリシジルメタクリレート及びp−アミノスチレン
の少なくとも一種から選ばれる官能基含有単量体1〜10
重量%から成る共重合体[D−2]30〜70重量部、との
混合物を、温度180〜300℃で溶融混練することにより得
られる共重合体組成物[D]5〜30重量部、 を添加して成る耐熱・耐衝撃性、溶融流動性に優れたイ
ミド基含有樹脂組成物。
1. A) 40 to 70% by weight of an aromatic vinyl compound, N
40-80 parts by weight of a copolymer resin [A] consisting of 30-60% by weight of a substituted maleimide compound, and b) 25-50% by weight of an aromatic vinyl compound in the presence of 30-70% by weight of a rubber-like polymer. , Vinyl cyanide compound 5 to 20% by weight, and other copolymerizable vinyl compound 0 to 50% by weight
20% of the graft copolymer resin [B] obtained by graft copolymerizing
To 60 parts by weight, c) a copolymer resin [C] comprising 60 to 82% by weight of an aromatic vinyl compound, 18 to 40% by weight of a vinyl cyanide compound, and 0 to 50% by weight of another copolymerizable vinyl compound. 0 to 20 parts by weight, based on 100 parts by weight of a resin composition consisting of: d) 50 to 84% by weight of aromatic vinyl compound, 15 to 49% by weight of vinyl cyanide compound, and 1 to 10% by weight of maleic anhydride.
30 to 70 parts by weight of a copolymer [D-1], 40 to 74% by weight of an aromatic vinyl compound, and an N-substituted maleimide compound 25
To 59% by weight, and a functional group-containing monomer 1 to 10 selected from at least one of 2-hydroxyethyl methacrylate, glycidyl methacrylate and p-aminostyrene.
5 to 30 parts by weight of a copolymer composition [D] obtained by melt-kneading a mixture of 30 to 70 parts by weight of a copolymer [D-2] composed of 1% by weight at a temperature of 180 to 300 ° C. An imide group-containing resin composition which is excellent in heat resistance, impact resistance, and melt fluidity.
【請求項2】N−置換マレイミド化合物が、N−フェニ
ルマレイミド、N−シクロヘキシルマレイミド、N−
(2,4,6−トリブロモ)フェニルマレイミドから選ばれ
る少なくとも一種である請求項1記載の樹脂組成物。
2. An N-substituted maleimide compound is N-phenylmaleimide, N-cyclohexylmaleimide or N-phenylmaleimide.
The resin composition according to claim 1, which is at least one selected from (2,4,6-tribromo) phenylmaleimide.
JP63097929A 1988-04-20 1988-04-20 Imide group-containing resin composition Expired - Lifetime JP2533790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63097929A JP2533790B2 (en) 1988-04-20 1988-04-20 Imide group-containing resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63097929A JP2533790B2 (en) 1988-04-20 1988-04-20 Imide group-containing resin composition

Publications (2)

Publication Number Publication Date
JPH01268744A JPH01268744A (en) 1989-10-26
JP2533790B2 true JP2533790B2 (en) 1996-09-11

Family

ID=14205366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63097929A Expired - Lifetime JP2533790B2 (en) 1988-04-20 1988-04-20 Imide group-containing resin composition

Country Status (1)

Country Link
JP (1) JP2533790B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3127927A4 (en) * 2015-04-27 2017-10-18 LG Chem, Ltd. Heat resistant san resin, preparation method therefor, and heat resistant san resin composition containing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3127927A4 (en) * 2015-04-27 2017-10-18 LG Chem, Ltd. Heat resistant san resin, preparation method therefor, and heat resistant san resin composition containing same

Also Published As

Publication number Publication date
JPH01268744A (en) 1989-10-26

Similar Documents

Publication Publication Date Title
EP0684282B1 (en) Process for producing a maleimide-modified heat-resistant ABS resin
JPS60192754A (en) Thermoplastic resin composition
JPH0725982B2 (en) Heat resistant, impact resistant thermoplastic resin composition
JPH0786165B2 (en) Impact resistant thermoplastic resin composition
JPH04175370A (en) Resin composition
JP2533790B2 (en) Imide group-containing resin composition
JP2000017170A (en) Thermoplastic resin composition
JPS63165451A (en) Impact-resistant thermoplastic resin composition
JPH04173863A (en) Resin composition
JP2682083B2 (en) Low gloss thermoplastic resin composition
JP2003041080A (en) Maleimide heat resistance-imparting material
JPH11116767A (en) Thermoplastic resin composition excellent in coloring property
JPH08157535A (en) Heat-resistant resin composition
JP3933756B2 (en) Rubber-modified styrenic resin composition
JP4197068B2 (en) Flame retardant thermoplastic resin composition
JPS6225700B2 (en)
JPH04126745A (en) Impact-resistant thermoplastic resin composition
JP3397360B2 (en) Glass fiber reinforced thermoplastic resin composition with excellent ultrasonic weldability
JP3206076B2 (en) Thermoplastic resin composition
JPH0481623B2 (en)
JP2987975B2 (en) Low gloss thermoplastic resin composition
JPH02175740A (en) Vinyl chloride resin composition
JP3107607B2 (en) Thermoplastic resin composition
JPH0224345A (en) Thermoplastic resin composition containing n-substituted maleimide
JPS6234938A (en) Thermoplastic resin composition having improved heat resistance