JP2532484B2 - Method and apparatus for assembling hybrid optical integrated circuit - Google Patents

Method and apparatus for assembling hybrid optical integrated circuit

Info

Publication number
JP2532484B2
JP2532484B2 JP17294287A JP17294287A JP2532484B2 JP 2532484 B2 JP2532484 B2 JP 2532484B2 JP 17294287 A JP17294287 A JP 17294287A JP 17294287 A JP17294287 A JP 17294287A JP 2532484 B2 JP2532484 B2 JP 2532484B2
Authority
JP
Japan
Prior art keywords
optical
semiconductor
light
wavelength
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17294287A
Other languages
Japanese (ja)
Other versions
JPS6418109A (en
Inventor
泰文 山田
盛男 小林
明 姫野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP17294287A priority Critical patent/JP2532484B2/en
Publication of JPS6418109A publication Critical patent/JPS6418109A/en
Application granted granted Critical
Publication of JP2532484B2 publication Critical patent/JP2532484B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は光ゲート素子、半導体レーザ、光変調素子等
の半導体光素子と、光導波路とを同一基板上に複合一体
化したタイプのハイブリッド光集積回路の組立方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a hybrid optical system of a type in which a semiconductor optical device such as an optical gate device, a semiconductor laser, an optical modulation device, and an optical waveguide are combined and integrated on the same substrate. The present invention relates to a method of assembling an integrated circuit.

<従来の技術> 光通信や光情報処理分野で必要な各種光回路では、小
形化、高信頼化及び低価格化のために、光導波路と各種
光素子とを同一基板上に複合一体化したハイブリッド光
集積回路の実現が期待されている。
<Prior Art> In various optical circuits required in the fields of optical communication and optical information processing, an optical waveguide and various optical elements are combined and integrated on the same substrate for downsizing, high reliability, and cost reduction. Realization of a hybrid optical integrated circuit is expected.

ハイブリッド光集積回路の実現には、同一基板上で光
導波路の光素子とを位置合せして極力効率的に光結合さ
せることが必要不可欠である。
In order to realize a hybrid optical integrated circuit, it is indispensable to align the optical element of the optical waveguide on the same substrate and optically couple as efficiently as possible.

光導波路と半導体レーザ等の半導体光素子との位置合
せでも最も一般的な方法は、半導体光素子を発光させて
光導波路の光出力をモニタすることにより、最適位置を
見い出す発光方法である。しかし、高温環境下では半導
体レーザ等を発光させることができないので、温度を上
昇させることが必要となる素子固定工程の場合には、こ
の方法を適用することができない。
The most common method for aligning an optical waveguide with a semiconductor optical device such as a semiconductor laser is a light emitting method for finding an optimum position by causing the semiconductor optical device to emit light and monitoring the optical output of the optical waveguide. However, since a semiconductor laser or the like cannot emit light under a high temperature environment, this method cannot be applied to the element fixing step that requires raising the temperature.

そこで高温環境下でも位置モニタができる方法とし
て、搭載すべき半導体光素子を光ディテクタ(光検出
器)として用いる方法がある(吉野他、信学技報OQE86
−26)。この光ディテクタ法は半導体光素子の活性層が
光吸収を起す波長領域に発振波長を持つ光源を用い、こ
の光源の出力光で光導波路を励振し、半導体光素子が受
光して発生した光電流モニタし、光電流が最大となるよ
うに位置合せを行う。
Therefore, there is a method of using a semiconductor optical device to be mounted as a photodetector (photodetector) as a method for position monitoring even in a high temperature environment (Yoshino et al., IEICE Tech.
-26). This photodetector method uses a light source with an oscillation wavelength in the wavelength region where the active layer of the semiconductor optical device absorbs light, excites the optical waveguide with the output light of this light source, and generates the photocurrent generated by the semiconductor optical device. Monitor and align to maximize photocurrent.

<発明が解決しようとする課題> しかし、半導体光素子を光ディテクタとして用いる後
者の方法は、半導体光素子を発光させる前者の方法と比
較すると、位置ずれに対する光電流の変化が第6図の特
性曲線Aに示すように比較的ブロードなピークを持つた
め、最適位置を決め難いという問題がある。第6図の特
性曲線Aは、第7図に示すように半導体レーザ11と光導
波路12を配置した場合、両者の位置ずれ量Xと光ディテ
クタとして使用した半導体レーザ11の光電流との関係を
示したものであり、光電流が20%(1dB)低下する位置
ずれが±2μmである。これに対し、第6図の特性曲線
Bは半導体レーザ11を発光させた場合の半導体レーザ11
と光導波路12との光結合効率を示し、光結合効率が20%
低下する位置ずれ量は±1μmである。
<Problems to be Solved by the Invention> However, in the latter method of using a semiconductor optical device as a photodetector, compared with the former method of emitting light from the semiconductor optical device, the change in the photocurrent with respect to the positional deviation is the characteristic of FIG. Since it has a relatively broad peak as shown by the curve A, it is difficult to determine the optimum position. When the semiconductor laser 11 and the optical waveguide 12 are arranged as shown in FIG. 7, the characteristic curve A in FIG. 6 shows the relationship between the positional deviation amount X between them and the photocurrent of the semiconductor laser 11 used as the photodetector. As shown, the positional deviation at which the photocurrent is reduced by 20% (1 dB) is ± 2 μm. On the other hand, the characteristic curve B in FIG. 6 shows the semiconductor laser 11 when the semiconductor laser 11 is made to emit light.
Shows the optical coupling efficiency between the and optical waveguide 12, and the optical coupling efficiency is 20%
The amount of positional deviation that decreases is ± 1 μm.

更に、半導体光素子を光ディテクタとして用いる方法
では、位置合せをするために予め、半導体光素子の電極
取出しができるように半導体光素子または光回路基板に
対してワイヤボンディングが必要となるので、ハイブリ
ッド光集積回路の組立工程が繁雑になるという問題があ
る。
Further, in the method of using the semiconductor optical device as a photodetector, wire bonding is required in advance to the semiconductor optical device or the optical circuit board so that the electrodes of the semiconductor optical device can be taken out in order to perform the alignment. There is a problem that the assembly process of the optical integrated circuit becomes complicated.

本発明の目的は上述した従来技術の問題点を解決した
ハイブリッド光集積回路の組立方法を提供することであ
る。
It is an object of the present invention to provide a method for assembling a hybrid optical integrated circuit, which solves the above-mentioned problems of the prior art.

<課題を解決するための手段> 本発明によるハイブリッド光集積回路の組立方法は、
基板上に形成された光導波路の途中に設けた光素子搭載
用の間隙中に、電流を流さない状態では吸収され電流を
流した状態では透過となる波長領域に動作波長を有する
半導体光素子を搭載するに際し、モニタ光として、該半
導体光素子の動作波長とは異なり、電流を流さない状態
でも該半導体光素子を透過する波長領域の光を用い、該
モニタ光を光導波路を経由して該半導体光素子に入力
し、該半導体光素子を経由した光導波路からの出力光を
モニタし、光導波路の出力光の強度が最大となる位置
に、該半導体光素子を位置合せして固定することを特徴
とする。
<Means for Solving the Problems> A method for assembling a hybrid optical integrated circuit according to the present invention is
A semiconductor optical device having an operating wavelength in a wavelength range in which a current is absorbed when a current is not applied and is transmitted when a current is applied in a gap for mounting an optical device provided in the middle of an optical waveguide formed on a substrate. At the time of mounting, as the monitor light, different from the operating wavelength of the semiconductor optical element, light in the wavelength range that is transmitted through the semiconductor optical element even when no current is flowing is used, and the monitor light is passed through the optical waveguide to Inputting to a semiconductor optical element, monitoring the output light from the optical waveguide that has passed through the semiconductor optical element, and aligning and fixing the semiconductor optical element at a position where the intensity of the output light of the optical waveguide is maximum. Is characterized by.

<作用> 従来の光ディテクタ法では半導体光素子の活性層で吸
収される波長領域の光を出力する光源を用い、半導体光
素子を光ディテクタとして動作させたのに対し、本発明
では半導体光素子が電流を流さない状態でも透明となる
波長領域の光モニタ光として用いるため、半導体光素子
が光導波路として動作する。従って、モニタ光は光導波
路→半導体光素子→光導波路と伝搬することになり、光
結合効率を直接モニタでき、位置合せ精度が向上する。
<Operation> In the conventional photodetector method, a semiconductor light device is operated as a photodetector by using a light source that outputs light in a wavelength region absorbed in the active layer of the semiconductor photodevice, whereas in the present invention, the semiconductor photodevice is operated. Since it is used as an optical monitor light in a wavelength range that becomes transparent even when no current flows, the semiconductor optical element operates as an optical waveguide. Therefore, the monitor light propagates in the order of the optical waveguide → semiconductor optical element → optical waveguide, and the optical coupling efficiency can be directly monitored, and the alignment accuracy is improved.

<実 施 例> 以下、第1図〜第5図を参照して本発明の一実施例を
説明する。
<Example> An example of the present invention will be described below with reference to FIGS. 1 to 5.

第1図は本発明方法の実施に使用する組立装置の構成
例を示し、同組立装置は試料台1と、マニピュレータ2
と、光入力手段3と、光出力手段4と、モニタ光を出力
する光源5と、受光部6と、制御手段9とを基本構成要
素としている。
FIG. 1 shows a structural example of an assembling apparatus used for carrying out the method of the present invention. The assembling apparatus includes a sample stage 1 and a manipulator 2.
The light input means 3, the light output means 4, the light source 5 for outputting the monitor light, the light receiving section 6, and the control means 9 are the basic constituent elements.

マニピュレータ2はXY微動部2Dと、このXY微動部2D上
に設けた上下(Z)微動部2Cと、上下微動部2Cに設けた
腕2Bと、腕2Bに設けた回転角(θ)微動部2Eと、回転角
微動部2Eに設けた半導体光素子8を保持するためのチャ
ック2Aとを主要構成要素として、制御手段9によって動
作を制御される。
The manipulator 2 includes an XY fine movement part 2D, a vertical (Z) fine movement part 2C provided on the XY fine movement part 2D, an arm 2B provided on the vertical fine movement part 2C, and a rotation angle (θ) fine movement part provided on the arm 2B. 2E and a chuck 2A for holding the semiconductor optical element 8 provided in the rotational angle fine movement unit 2E are main components, and the operation is controlled by the control means 9.

半導体光素子8は電流を流さない状態で吸収され電流
を流した状態では透過となる波長領域に動作波長を有し
ている。
The semiconductor optical device 8 has an operating wavelength in a wavelength region in which it is absorbed in a state where no current is passed and is transmitted in a state where a current is passed.

光入力手段3はファイバ保持台3Aと、これに保持され
た入力用光ファイバ3Bとからなり、試料台1の近傍に設
置されている。光ファイバ3Bの入力端は光源5と光結合
され、出力端は光回路基板7の光導波路71に光結合され
る。
The optical input means 3 is composed of a fiber holding base 3A and an input optical fiber 3B held by the fiber holding base 3A, and is installed near the sample base 1. The input end of the optical fiber 3B is optically coupled to the light source 5, and the output end is optically coupled to the optical waveguide 71 of the optical circuit board 7.

光出力手段4はファイバ保持台4Aと、これに保持され
た出力用光ファイバ4Bとからなり、試料台1の近傍に設
置されている。光ファイバ4Bの入力端は光回路基板7の
光導波路72と光結合され、出力端は受光部6と光結合さ
れている。光導波路71,72はその間の間隙中に半導体光
素子8を搭載して光結合するものである。
The light output means 4 comprises a fiber holding table 4A and an output optical fiber 4B held by the fiber holding table 4A, and is installed near the sample table 1. The input end of the optical fiber 4B is optically coupled to the optical waveguide 72 of the optical circuit board 7, and the output end thereof is optically coupled to the light receiving portion 6. The optical waveguides 71, 72 mount the semiconductor optical element 8 in the gap between them and optically couple them.

受光部6は検出信号を接続用ケーブル10Aを介して制
御手段9へ与え、制御手段9は制御信号を接続用ケーブ
ル10Bを介してマニピュレータ2へ与えるようになって
いる。制御手段9はコンピュータで構成してある。
The light receiving section 6 gives a detection signal to the control means 9 via the connecting cable 10A, and the control means 9 gives a control signal to the manipulator 2 via the connecting cable 10B. The control means 9 is composed of a computer.

光源5は半導体光素子8の動作波長とは異なり、電流
を流さない状態でも半導体光素子8を透過する波長領域
に発振波長を持つものであり、この発振波長は例えば、
半導体光素子8の動作波長より長波長側の波長領域にあ
り、かつ、該半導体光素子8が光導波路として機能する
ためのカットオフ波長より短波長側の波長領域にある。
Unlike the operating wavelength of the semiconductor optical element 8, the light source 5 has an oscillating wavelength in a wavelength range that allows the semiconductor optical element 8 to pass through even when no current is flowing.
It is in the wavelength region longer than the operating wavelength of the semiconductor optical device 8 and also in the wavelength region shorter than the cutoff wavelength for the semiconductor optical device 8 to function as an optical waveguide.

次に動作を説明する。 Next, the operation will be described.

光源5からのモニタ光は、光ファイバ3Bにより光導波
路71に入力する。このモニタ光は、マニピュレータ2の
チャック2Aで保持された状態で基板7上に載置された半
導体光素子8の活性層を導波し、次いで光導波路72を経
て光ファイバ4Bへ伝搬して出力する。この出力光は受光
部6で受光され、電気信号に変換される。この電気信号
は制御用コンピュータ9に伝わり、コンピュータ9で
は、受光部6からの電気信号に基づいてX,Y及びθの位
置についてマニピュレータ2にフィードバックをかけ、
受光部6が受光する光導波路72からの出力光の強度が最
大となる位置に半導体光素子8を配置させる。この状態
で、適宜な手段により半導体光素子8の位置を固定す
る。
The monitor light from the light source 5 is input to the optical waveguide 71 by the optical fiber 3B. This monitor light is guided through the active layer of the semiconductor optical device 8 placed on the substrate 7 while being held by the chuck 2A of the manipulator 2, and then propagated to the optical fiber 4B via the optical waveguide 72 and output. To do. This output light is received by the light receiving unit 6 and converted into an electric signal. This electric signal is transmitted to the control computer 9, and the computer 9 feeds back to the manipulator 2 the positions of X, Y and θ based on the electric signal from the light receiving unit 6,
The semiconductor optical element 8 is arranged at a position where the intensity of the output light from the optical waveguide 72 received by the light receiving section 6 is maximized. In this state, the position of the semiconductor optical device 8 is fixed by an appropriate means.

次に、具体例として、光スイッチ回路へ半導体光素子
である光ゲート素子を搭載する場合を例にとり、本発明
方法を詳細に説明する。
Next, as a specific example, the method of the present invention will be described in detail by taking as an example a case where an optical gate element which is a semiconductor optical element is mounted in an optical switch circuit.

第2図は光ゲート素子搭載部分の光スイッチ回路の説
明図、第3図は光導波路の構造を示す断面図、第4図は
光ゲート素子の活性層付近の構造を示す断面図である。
FIG. 2 is an explanatory view of an optical switch circuit on which an optical gate element is mounted, FIG. 3 is a sectional view showing a structure of an optical waveguide, and FIG. 4 is a sectional view showing a structure near an active layer of the optical gate element.

これらの図において、7はSi基板からなる光回路基
板、71と72は石英系の光導波路である。光導波路71,72
はコア層72A、クラッド層72B、バッファ層72Cからな
る。73は電極パタン、8は光ゲート素子、8Aはその活性
層、81はヒートシンクである。
In these figures, 7 is an optical circuit board made of a Si substrate, and 71 and 72 are quartz optical waveguides. Optical waveguide 71,72
Is composed of a core layer 72A, a clad layer 72B, and a buffer layer 72C. 73 is an electrode pattern, 8 is an optical gate element, 8A is its active layer, and 81 is a heat sink.

光ゲート素子8は光回路基板7上に形成れた光導波路
71,72間の電極パタン73上に、活性層8Aを下向きにした
アップサイドダウンの状態で搭載される。この際第3図
に示すように、光導波路底面からコア層72A中心までの
高さと、電極パタン73上に光ゲート素子8を搭載したと
きの活性層8Aの高さを、共に等しくl1に設定しておく。
The optical gate element 8 is an optical waveguide formed on the optical circuit board 7.
It is mounted on the electrode pattern 73 between 71 and 72 in an upside down state with the active layer 8A facing downward. At this time, as shown in FIG. 3, the height from the bottom surface of the optical waveguide to the center of the core layer 72A and the height of the active layer 8A when the optical gate element 8 is mounted on the electrode pattern 73 are both made equal to l 1 . Set it.

第4図の構造のように光ゲート素子8では、InGaAsP
系の活性層8A、n−InGaAsP層及びp−InGaAsP層の3層
にまたがって光が閉じ込められる構造になっている。従
って、これら3層全体が光ゲート素子のコア層82として
機能する。
In the optical gate device 8 as shown in the structure of FIG.
The structure is such that light is confined across the three active layers 8A, the n-InGaAsP layer and the p-InGaAsP layer of the system. Therefore, these three layers as a whole function as the core layer 82 of the optical gate element.

今、この光ゲート素子8が1.32μmの波長帯で動作す
るものとする。即ち、電流を注入しないとき、この光ゲ
ート素子8の吸収端は1.32μmにある。また、電流を注
入することにより、吸収端は短波長側に移行し、発振し
きい値直前の電流値において1.28μmになる。従って、
1.30μmの光を光ゲート素子8に入射すると、電流を流
さない(電流オフ)状態で吸収されるが、電流を流した
(電流オフ)状態では透過する。
Now, it is assumed that the optical gate element 8 operates in the wavelength band of 1.32 μm. That is, when no current is injected, the absorption edge of this optical gate element 8 is 1.32 μm. Also, by injecting a current, the absorption edge shifts to the short wavelength side, and the current value immediately before the oscillation threshold becomes 1.28 μm. Therefore,
When light of 1.30 μm is incident on the optical gate element 8, it is absorbed in a state where no current is passed (current off), but is transmitted in a state where current is passed (current off).

上記のような吸収端を持っている場合、光源5として
光ゲート素子8の動作波長1.30μmとは異なる長波長側
の1.5μm発振の半導体レーザを用いると、光ゲート素
子8は電流オフの状態でもモニタ光に対して透明とな
る。また、1h5μmのモニタ光は、光ゲート素子8が光
導波路として機能するためのカットオフ波長より短波長
側にある。従って、光導波路71,72と光ゲート素子8と
の位置が合っていれば、光導波路71に入射した1.5μm
のモニタ光は、光ゲート素子8を単に光導波路とみな
し、その活性層8Aを中心としたコア層82を伝搬する。こ
の光は再び光導波路72に結合して伝搬する。
In the case of having the absorption edge as described above, when a semiconductor laser of 1.5 μm oscillation on the long wavelength side different from the operating wavelength of 1.30 μm of the optical gate element 8 is used as the light source 5, the optical gate element 8 is in a current off state. However, it becomes transparent to the monitor light. The monitor light of 1 h 5 μm is on the shorter wavelength side than the cutoff wavelength for the optical gate element 8 to function as an optical waveguide. Therefore, if the optical waveguides 71 and 72 and the optical gate element 8 are aligned with each other, 1.5 μm incident on the optical waveguide 71 is detected.
The monitoring light of 1) regards the optical gate element 8 simply as an optical waveguide, and propagates through the core layer 82 centering on the active layer 8A. This light is again coupled to the optical waveguide 72 and propagates.

従って、第1図において光源5として1.5μm波長で
発振するものを用いれば、即ち、1.5μmのモニタ光を
用いれば第2図の光スイッチ回路基板7へ光ゲート素子
8を搭載するための位置合せができる。
Therefore, in FIG. 1, if a light source that oscillates at a wavelength of 1.5 μm is used as the light source 5, that is, if a monitor light of 1.5 μm is used, a position for mounting the optical gate element 8 on the optical switch circuit board 7 in FIG. Can be matched.

第5図、上述した方法によって位置合せを行った時
の、光導波路71→光ゲート素子8→光導波路72の構成で
の光導波路出力光強度と位置ずれとの関係に示す。
FIG. 5 shows the relationship between the optical waveguide output light intensity and the positional deviation in the configuration of the optical waveguide 71 → the optical gate element 8 → the optical waveguide 72 when the alignment is performed by the method described above.

第5図より、光導波路出力光強度が20%(IdB)低下
する位置ずれ量は、±1μmである。
From FIG. 5, the amount of positional deviation at which the output light intensity of the optical waveguide is reduced by 20% (IdB) is ± 1 μm.

これは、第6図の特性曲線Bの如く半導体レーザを発
光させる方法の場合の位置合せ精度と同程度であり、光
ディテクタとして用いる方法よりも高精度での位置合せ
が実現できることが判る。
This is about the same as the alignment accuracy in the method of emitting a semiconductor laser as shown by the characteristic curve B in FIG. 6, and it can be seen that the alignment can be achieved with higher accuracy than the method used as the photodetector.

この場合、電流を流さない状態でも半導体素子を透過
する波長のモニタ光を用いるので、温度を上昇した状態
で出力光強度をモニタできる。従って、半導体光素子8
を基板7上に固定するまでの間、第1図の組立装置を用
いてフィードバックをかけながら最適位置に半導体光素
子8を保持することができ、高精度なハイブリッド光集
積回路が実現する。
In this case, since the monitor light having the wavelength that passes through the semiconductor element is used even when the current is not supplied, the output light intensity can be monitored in the state where the temperature is increased. Therefore, the semiconductor optical device 8
The semiconductor optical device 8 can be held at the optimum position while being fed back by using the assembling apparatus shown in FIG. 1 until the semiconductor device is fixed on the substrate 7, and a highly accurate hybrid optical integrated circuit is realized.

また、電流を流さない状態でも半導体光素子を透過す
る波長のモニタ光を用いるので、半導体光素子を光ディ
テクタとして使用する従来の場合のような電極取出しが
不要である。
Further, since the monitor light having the wavelength that passes through the semiconductor optical element is used even when the current is not applied, it is not necessary to take out an electrode as in the conventional case where the semiconductor optical element is used as a photodetector.

<発明の効果> 本発明によれば、電流を流さない状態でも半導体素子
が透明となる波長領域のモニタ光を当該半導体光素子に
導波させることにより光導波路との光結合効率を直接モ
ニタするので、高精度な位置合せができる。これは、温
度を上昇させてもできる。
<Effects of the Invention> According to the present invention, the optical coupling efficiency with the optical waveguide is directly monitored by guiding the monitor light in the wavelength region in which the semiconductor element is transparent even when no current flows, to the semiconductor optical element. Therefore, highly accurate alignment is possible. This can also be done by raising the temperature.

また、半導体光素子の電極取出しが不要となるため、
ハイブリッド集積時の繁雑さが低減できる。
Moreover, since it is not necessary to take out the electrodes of the semiconductor optical device,
The complexity of hybrid integration can be reduced.

このように、本発明は光スイッチ回路など、光回路基
板上の光導波路途中の間隙中に半導体光素子を搭載する
タイプのハイブリッド光集積回路の製造に極めて有用で
ある。
As described above, the present invention is extremely useful for manufacturing a hybrid optical integrated circuit such as an optical switch circuit in which a semiconductor optical device is mounted in a gap in the middle of an optical waveguide on an optical circuit board.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法の実施に使用する組立装置の一例を
示す構成図、第2図は光スイッチ回路の説明図、第3図
は光導波路の断面図、第4図は光ゲート素子の活性層付
近の断面図、第5図は本発明の位置合せ精度を示すグラ
フ、第6図は従来の位置合せ精度を示すグラフ、第7図
は従来方法の概略説明図である。 図 面 中、 1は試料台、 2はマニピュレータ、 3は光入力手段、 4は光出力手段、 5は光源、 6は受光部、 7は基板、 71と72は光導波路、 8は半導体素子、 8Aは活性層、 82はコア層、 9は制御用コンピュータである。
FIG. 1 is a block diagram showing an example of an assembling apparatus used for carrying out the method of the present invention, FIG. 2 is an explanatory view of an optical switch circuit, FIG. 3 is a sectional view of an optical waveguide, and FIG. 4 is an optical gate element. FIG. 5 is a cross-sectional view near the active layer, FIG. 5 is a graph showing the alignment accuracy of the present invention, FIG. 6 is a graph showing the conventional alignment accuracy, and FIG. 7 is a schematic explanatory view of the conventional method. In the figure, 1 is a sample stage, 2 is a manipulator, 3 is light input means, 4 is light output means, 5 is a light source, 6 is a light receiving part, 7 is a substrate, 71 and 72 are optical waveguides, 8 is a semiconductor element, 8A is an active layer, 82 is a core layer, and 9 is a control computer.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に形成された光導波路の途中に設け
た光素子搭載用の間隙中に、電流を流さない状態では吸
収され電流を流した状態では透過となる波長領域に動作
波長を有する半導体光素子を搭載した形態のハイブリッ
ド光集積回路を製造するに際し、 モニタ光として、該半導体光素子の動作波長とは異な
り、電流を流さない状態でも該半導体光素子を透過する
波長領域の光を用い、 該モニタ光を光導波路を経由して該半導体光素子に入力
し、 該半導体光素子を経由した光導波路からの出力光をモニ
タし、 光導波路の出力光の強度が最大となる位置に、該半導体
光素子を位置合せして固定すること、 を特徴とするハイブリッド光集積回路の組立方法。
1. An operating wavelength is set in a wavelength range in which a current is absorbed in a gap for mounting an optical element, which is provided in the middle of an optical waveguide formed on a substrate, and which is absorbed when a current is passed. When manufacturing a hybrid optical integrated circuit in which the semiconductor optical device having the semiconductor optical device is mounted, as a monitor light, a light in a wavelength range which is different from the operating wavelength of the semiconductor optical device and is transmitted through the semiconductor optical device even when no current is applied. The position where the intensity of the output light of the optical waveguide becomes maximum by inputting the monitor light to the semiconductor optical device via the optical waveguide and monitoring the output light from the optical waveguide via the semiconductor optical device. The method for assembling a hybrid optical integrated circuit, further comprising: aligning and fixing the semiconductor optical device.
【請求項2】該モニタ光は、該半導体光素子の動作波長
より長波長側の波長領域にあり、かつ、該半導体光素子
が光導波路として機能するためのカットオフ波長より短
波長側の波長領域にあること、 を特徴とする特許請求の範囲第1項記載のハイブリッド
光集積回路の組立方法。
2. The monitor light is in a wavelength region longer than the operating wavelength of the semiconductor optical device, and a wavelength shorter than a cutoff wavelength for the semiconductor optical device to function as an optical waveguide. The hybrid optical integrated circuit assembling method according to claim 1, wherein the hybrid optical integrated circuit is in the area.
JP17294287A 1987-07-13 1987-07-13 Method and apparatus for assembling hybrid optical integrated circuit Expired - Lifetime JP2532484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17294287A JP2532484B2 (en) 1987-07-13 1987-07-13 Method and apparatus for assembling hybrid optical integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17294287A JP2532484B2 (en) 1987-07-13 1987-07-13 Method and apparatus for assembling hybrid optical integrated circuit

Publications (2)

Publication Number Publication Date
JPS6418109A JPS6418109A (en) 1989-01-20
JP2532484B2 true JP2532484B2 (en) 1996-09-11

Family

ID=15951207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17294287A Expired - Lifetime JP2532484B2 (en) 1987-07-13 1987-07-13 Method and apparatus for assembling hybrid optical integrated circuit

Country Status (1)

Country Link
JP (1) JP2532484B2 (en)

Also Published As

Publication number Publication date
JPS6418109A (en) 1989-01-20

Similar Documents

Publication Publication Date Title
JP2533637B2 (en) Method for manufacturing device comprising optoelectronic device and optical waveguide coupled thereto
KR19980030121A (en) Optical module with lens aligned in V-groove and manufacturing method thereof
JPH0734495B2 (en) Optoelectronic integrated circuit subassembly
JPH1082930A (en) Optical module and its production
JPH09138325A (en) Optical fiber packaging structure and its production
JPH07110420A (en) Semiconductor laser element module and its assembling method
JP3042453B2 (en) Light receiving module
JP2532484B2 (en) Method and apparatus for assembling hybrid optical integrated circuit
US20050201668A1 (en) Method of connecting an optical element at a slope
Gates II et al. Uncooled laser packaging based on silicon optical bench technology
JP2000156510A (en) Optical semiconductor device, manufacture thereof, and optical electronic device
JP2002031731A (en) Hybrid optical integrated circuit
JP2002189148A (en) Optical semiconductor element module
US6839139B2 (en) Bench based integrated wavelength locker
JPH07209560A (en) Optical module
JPH04106978A (en) Optical circuit device
JP2002258118A (en) Manufacturing method and manufacturing apparatus for optical semiconductor module
JPH11271575A (en) Optical semiconductor module
GB2257260A (en) Optoelectronic assemblies.
JPH02277010A (en) Method for optical coupling between photosemiconductor chip and optical fiber
JPH04349674A (en) Optical semiconductor element and mounting method therefor
JPH10332983A (en) Optical waveguide device
JPH095582A (en) Semiconductor optically coupling device and its assembling method
JPH05259504A (en) Semiconductor device
JPH08327859A (en) Optical semiconductor device and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 12