JP2532038B2 - Method for flaw detection on inner surface of pipeline - Google Patents

Method for flaw detection on inner surface of pipeline

Info

Publication number
JP2532038B2
JP2532038B2 JP61312872A JP31287286A JP2532038B2 JP 2532038 B2 JP2532038 B2 JP 2532038B2 JP 61312872 A JP61312872 A JP 61312872A JP 31287286 A JP31287286 A JP 31287286A JP 2532038 B2 JP2532038 B2 JP 2532038B2
Authority
JP
Japan
Prior art keywords
electrodes
terminal
electrode
resistance
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61312872A
Other languages
Japanese (ja)
Other versions
JPS63153460A (en
Inventor
易之 谷口
豊 大和田
忍 佐伯
光徳 荒木
博隆 吉田
秀幸 高森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Publication of JPS63153460A publication Critical patent/JPS63153460A/en
Application granted granted Critical
Publication of JP2532038B2 publication Critical patent/JP2532038B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,内面被覆の施された管路の内面被覆損傷の
有無及びその存在位置を,管路を解体することなく,管
外或いは遠隔位置から検出することのできる管路内面被
覆の探傷方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention provides information on the presence or absence of inner surface coating damage of a pipe line coated with an inner surface and the position of the damage, outside the pipe or remotely without disassembling the pipe line. The present invention relates to a flaw detection method for a pipe line inner surface coating that can be detected from a position.

〔従来の技術〕[Conventional technology]

従来の管路内面被覆損傷の検出方法は,管路を解体し
て調査する方法が一般的であり,この他の方法として
は,管内にカメラを装入して観察する方法が実用できる
状態にある。
The conventional method for detecting the damage to the inner surface of the pipe is to disassemble the pipe and investigate it. As another method, a method of inserting a camera into the pipe and observing the pipe is practical. is there.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし,かかる従来の方法はいずれも手数がかかり,
特に管の全長,全周を走査する必要があることから手数
が膨大であると共に,常時の監視には適さない。また,
カメラを使用した方法ではカメラを装入するための入口
が必要であり,また管径にも制約があるという問題点が
ある。
However, all of these conventional methods are troublesome,
In particular, since it is necessary to scan the entire length and circumference of the tube, the number of steps is enormous, and it is not suitable for constant monitoring. Also,
The method using a camera has a problem that an inlet for inserting the camera is required and the pipe diameter is also limited.

管路を解体することなく,内面被覆の損傷を検出する
方法として,管内液体に接触する一つの電極を設け,こ
の電極と管体との通電の有無を検出する方法が,実開昭
58-165649号公報に開示されている。しかしながら,電
極と管体との通電性は,内面被覆損傷の位置及び大きさ
の影響を受けており,上記公報に開示のように単に一つ
の電極と管体との通電性を測定するのみでは,損傷の位
置の同定ができないという致命的な問題点があった。
As a method of detecting damage to the inner surface coating without disassembling the pipe, a method of providing one electrode in contact with the liquid in the pipe and detecting the presence or absence of energization between this electrode and the pipe is
No. 58-165649. However, the conductivity between the electrode and the tube is affected by the position and size of the inner surface coating damage, and it is not necessary to simply measure the conductivity between one electrode and the tube as disclosed in the above publication. However, there was a fatal problem that the location of the damage could not be identified.

内面被覆の損傷は管壁の腐食穿孔につながる重大な問
題であることから,損傷が生じてからなるべく短期日の
うちに発見し,部位を正確に同定して早急に補修するこ
とが望ましい。そのためには,損傷検査を頻繁に行う必
要があり,簡便に管路の全貌を探傷できる方法が切望さ
れていた。
Since damage to the inner surface coating is a serious problem that leads to corrosive perforation of the pipe wall, it is desirable to detect it within as short a day as possible after the damage has occurred, accurately identify the site, and repair it immediately. For that purpose, it is necessary to perform frequent damage inspections, and there has been a strong demand for a method that can easily detect the entire surface of the duct.

本発明者らはかかる状況に鑑み種々検討を行った結
果,管路内の液体の管路長手方向の電気抵抗が,管路長
さに比例する原理を利用して,被覆損傷の有無及びその
位置を同定することが可能なことを見出し,本発明を完
成するに至ったものである。
As a result of various studies in view of such a situation, the present inventors have used the principle that the electrical resistance of the liquid in the pipeline in the longitudinal direction of the pipeline is proportional to the pipeline length, and whether the coating is damaged or not. The inventors have found that it is possible to identify the position, and have completed the present invention.

〔問題点を解決するための手段〕[Means for solving problems]

本願第一の発明の要旨は,第1図に示すように,内面
に絶縁性被覆1を施した導電性管体2からなる管路の長
手方向に間隔をあけた2点A,Bに,それぞれ管路内液体
に接触するが導電性管体とは絶縁を保つように電極4,5
を配置して端子をとり,且つ導電性管体2にも端子6を
とり,前記電極4,5及び導電性管体2にそれぞれ接続し
た3端子の組み合わせになる3通りの端子対,即ち,2点
の電極間(4−5),一方の電極と導電性管体の端子の
間(4−6),他方の電極と導電性管体の端子の間(5
−6)のうち,少なくとも2つの端子対に関して,抵抗
の測定,抵抗比の測定,又は3端子対のうちの1つの端
子対に通電した状態での電位差の測定を行い,2点の電極
4,5間の距離l0,管路内面被覆損傷の位置と一方の電極
4との間の距離l1,他方の電極5との間の距離l2と,前
記測定で得られた抵抗値,抵抗比又は電位差値若しくは
それらの演算結果との比例関係から,距離l1及びl2を求
めて管路内面被覆損傷の存在位置を検出することを特徴
とする管路内面被覆の探傷方法にある。
The gist of the first invention of the present application is, as shown in FIG. 1, at two points A and B which are spaced in the longitudinal direction of a conduit consisting of a conductive tube body 2 having an inner surface coated with an insulating coating 1. Electrodes 4,5 to make contact with the liquid in the conduits but to maintain insulation from the conductive conduit
Is arranged to take a terminal, and the terminal 6 is also taken to the conductive tube 2, and three kinds of terminal pairs which are a combination of three terminals respectively connected to the electrodes 4 and 5 and the conductive tube 2, that is, Between two electrodes (4-5), between one electrode and terminal of conductive tube (4-6), between other electrode and terminal of conductive tube (5
-6), at least two terminal pairs, the resistance is measured, the resistance ratio is measured, or the potential difference is measured while one of the three terminal pairs is energized.
Distance l 0 between 4,5, the distance l 1 between the position and the one electrode 4 in line lined injury, the distance l 2 between the other electrode 5, the obtained resistance values measured , A resistance ratio, a potential difference value, or a proportional relationship with the calculation result thereof, the distances l 1 and l 2 are obtained to detect the existing position of the damage on the inner surface of the conduit. is there.

更に,本願第二の発明の要旨は,上記第一の発明の方
法において,更に,前記2電極4,5の外側にそれぞれ管
路内液体に接触するガード電極21,21′(第6a図,第6b
図参照)を配置するとともに各ガード電極21,21′をそ
れに近い側の測定用の電極4,5の電位に一致させ,この
状態で,上記第一の発明と同様に測定を行い,距離l1
びl2を求めて管路内面被覆損傷の存在位置を検出するこ
とを特徴とする管路内面被覆の探傷方法にある。
Further, the gist of the second invention of the present application is that, in the method of the first invention, guard electrodes 21, 21 '(FIG. 6a, FIG. 6b
(See the figure) and place each guard electrode 21, 21 'at the same potential as the measuring electrodes 4 and 5 on the side close to it, and in this state, perform measurement in the same manner as in the first aspect of the invention described above. This is a flaw detection method for a pipe inner surface coating, which is characterized by detecting 1 and l 2 and detecting the existing position of the pipe inner surface coating damage.

また,本願第三の発明の要旨は,第6c図に示すよう
に,測定用の電極4,5の外側にそれぞれ管路内液体に接
触するガード電極21,21′を配置し,前記電極のうち,2
つの測定用電極4,5同志,2つのガード電極21,21′同志を
短絡した上で,該測定用電極対4,5と導電性管体2の端
子6との間の抵抗を測定して管路内面被覆損傷の有無及
び概略の大きさを検出することを特徴とする管路内面被
覆の探傷方法にある。
In addition, the gist of the third invention of the present application is that, as shown in FIG. 6c, guard electrodes 21 and 21 'that come into contact with the liquid in the pipeline are arranged outside the electrodes 4 and 5 for measurement, respectively, and Of which, 2
Measure the resistance between the pair of measuring electrodes 4 and 5 and the terminal 6 of the conductive tube 2 after short-circuiting the two measuring electrodes 4 and 5 and the two guard electrodes 21 and 21 '. A flaw detection method for coating the inner surface of a pipeline is characterized by detecting the presence or absence of damage to the coating on the inner surface of the pipeline and detecting the approximate size.

〔作用〕[Action]

一般は液体は多少の導電性を有しており,このため,
管路上の2点A,B間は液体を通じて電気的に導通する。
A,B間の管内液抵抗をR0とすると,この抵抗R0は管内液
の比抵抗に関連し且つAB間距離l0に比例した有限の値で
あり,また,電極4,5間に所定量の電流を流すと両者間
には抵抗R0に応じた電位差(E0とする)が生じる。一
方,管路内面被覆1に損傷がなければ,管内液と導電性
管体2とは電気的に導通せず,このため,電極4,5と導
電性管体2に接続した端子6との間の抵抗は無限大とな
り,また電極4,5間に電流を流した場合にも端子6には
電位が生じない。しかし,第1図に示すように,管内面
の位置Dに損傷7があると電極4と端子6はAD間の液体
及びDC間の管体を経て導通することになる。今,AD間の
管内液抵抗をR1とすると,この抵抗R1はAD間距離l1に比
例した値となり,電極4と端子6間の抵抗はこの液抵抗
R1を含んだものとなる。同様にBD間の液抵抗をR2とする
と,この抵抗R2はBD間距離l2に比例した値となり,端子
6と電極5間の抵抗はこの液抵抗R2を含んだ値となる。
また,電極4,5間に電流を流した場合には,AD間には液抵
抗R1に応じた電位差(E1とする)が,DB間には液抵抗R2
に応じた電位差(E2とする)が生じ,D位置の液の電位は
端子6に現れることとなる。
In general, liquids have some conductivity, which is why
The two points A and B on the conduit are electrically connected through the liquid.
Letting R 0 be the liquid resistance in the pipe between A and B, this resistance R 0 is a finite value that is related to the specific resistance of the liquid in the pipe and is proportional to the distance l 0 between A and B. When a predetermined amount of current is applied, a potential difference (E 0 ) corresponding to the resistance R 0 occurs between the two. On the other hand, if there is no damage to the pipe inner surface coating 1, the liquid in the pipe and the conductive pipe body 2 are not electrically connected to each other, so that the electrodes 4 and 5 and the terminal 6 connected to the conductive pipe body 2 are not electrically connected. The resistance between them becomes infinite, and no potential is generated at the terminal 6 even when a current is passed between the electrodes 4 and 5. However, as shown in FIG. 1, when there is a damage 7 at the position D on the inner surface of the tube, the electrode 4 and the terminal 6 are electrically connected through the liquid between AD and the tube between DC. Now, assuming that the liquid resistance in the tube between AD is R 1 , this resistance R 1 becomes a value proportional to the distance l 1 between AD, and the resistance between electrode 4 and terminal 6 is this liquid resistance.
It includes R 1 . Similarly, assuming that the liquid resistance between BDs is R 2 , this resistance R 2 has a value proportional to the BD distance l 2 , and the resistance between the terminal 6 and the electrode 5 has a value including this liquid resistance R 2 .
When a current is applied between electrodes 4 and 5, there is a potential difference between AD (corresponding to liquid resistance R 1 ) (E 1 ) and between DB is liquid resistance R 2
A potential difference (denoted by E 2 ) corresponding to the above occurs, and the potential of the liquid at the D position appears at the terminal 6.

そこで,電極4,5及び端子6の3端子の組み合わせに
なる3通りの端子対,即ち,2点の電極間(4−5),一
方の電極と導電性管体の端子の間(4−6),他方の電
極と導電性管体の端子の間(5−6)のうち,少なくと
も2つの端子対に関して,抵抗の測定,抵抗比の測定,
又は3端子対のうち1つの端子対に通電した状態での電
位差の測定を行うと,2点の電極4,5間の距離l0,管路内
面被覆損傷の位置と一方の電極4との間の距離l1,他方
の電極5との間の距離l2と,前記測定で得られた抵抗
値,抵抗比又は電位差値若しくはそれらの演算結果とが
所定の比例関係を有しているから,距離l1及びl2を求め
ることができ,従って,管路内面被覆損傷の存在位置を
検出することができる。
Therefore, there are three types of terminal pairs that are combinations of the three terminals of the electrodes 4 and 5 and the terminal 6, that is, between two electrodes (4-5) and between one electrode and the terminal of the conductive tube (4-. 6), between at least two terminal pairs between the other electrode and the terminals of the conductive tube (5-6), measurement of resistance, measurement of resistance ratio,
Or, when the potential difference is measured with one of the three terminal pairs being energized, the distance l 0 between the two electrodes 4 and 5, the position of the coating damage on the inner surface of the conduit and one electrode 4 Since the distance l 1 between them, the distance l 2 between the other electrode 5 and the resistance value, resistance ratio or potential difference value obtained by the above-mentioned measurement, or the calculation result thereof have a predetermined proportional relationship. , The distances l 1 and l 2 can be obtained, and thus the position of the damage on the inner surface of the pipe can be detected.

なお、電極4或いは5と端子6の間で測定される抵抗
には,上記R1,R2の他に損傷7の大きさと関連した接液
抵抗RSが,R1,R2と直列した形で含まれる。この接液抵
抗RSは,上記した3通りの端子対のすべての間の抵抗を
測定し,その測定値から求めることが可能であり,求め
た接液抵抗RSの値から損傷の大きさを知ることもでき
る。
For the resistance measured between the electrode 4 or 5 and the terminal 6, in addition to R 1 and R 2 mentioned above, the liquid contact resistance R S related to the size of the damage 7 is connected in series with R 1 and R 2 . Included in form. This liquid contact resistance R S can be obtained by measuring the resistance between all of the above-mentioned three types of terminal pairs, and from the measured value, the magnitude of damage can be calculated from the calculated liquid contact resistance R S. You can also know

ところで,上記の電極4,5及び端子6間の抵抗値,抵
抗比又は電位差値を測定する際,管路内の液体が測定箇
所の延長上にあるバルブやポンプ等を介して導電性管体
に導通している場合があり,その場合には,電極4,5か
ら管内流体を通ってバルブやポンプに向かう電流が生じ
測定に乱れを生じることがある。そこで,本願第二の発
明では第6a図,第6b図の実施例に示すように,電極4,5
の外側にガード電極21,21′を配置し,その電位を電極
4,5と同じに保っており,これによって,測定の乱れを
防止することができる。
By the way, when measuring the resistance value, the resistance ratio or the potential difference value between the electrodes 4 and 5 and the terminal 6, the liquid in the conduit is connected to a conductive pipe through a valve or a pump on the extension of the measuring point. In some cases, current may flow from the electrodes 4 and 5 through the fluid in the pipe to the valve or pump, which may disturb the measurement. Therefore, in the second invention of the present application, as shown in the embodiment of FIGS. 6a and 6b, the electrodes 4, 5
The guard electrodes 21, 21 'are placed outside the
It is kept the same as 4,5, which can prevent the measurement disturbance.

また,本願第三の発明では第6c図の実施例に示すよう
に,ガード電極21,21′を配置した場合において,2つの
測定用電極4,5同志,2つのガード電極21,21′同志を短絡
した上で,該測定用電極対4,5と導電性管体2の端子6
との間の抵抗を測定している。これによって測定される
抵抗値r3は,後述するように, となっており,接液抵抗を含んだ値となっている。従っ
て,その抵抗値r3から,損傷の有無及び概略の大きさを
簡便に判定することができる。
Further, in the third invention of the present application, as shown in the embodiment of FIG. 6c, when the guard electrodes 21 and 21 'are arranged, two measuring electrodes 4 and 5 and two guard electrodes 21 and 21' are comrades. After short-circuiting, the measuring electrode pairs 4,5 and the terminal 6 of the conductive tube 2
The resistance between and is being measured. The resistance value r 3 measured by this is, as described later, Is a value including the liquid contact resistance. Therefore, the presence or absence of damage and the approximate size can be easily determined from the resistance value r 3 .

本発明の探傷方法を適用可能な管路は,金属製の管体
に絶縁体による内面被覆を施し,これをフランジ或いは
ビクトリック型接続具で接続し,或いは溶接接続した上
で溶接部の内面被覆補修を行った管路,或いは金属管体
による管路を敷設した後内面に連続被覆を施した管路な
ど,金属管体が管内液体に導通しないように設計された
ものである。更に,導電性繊維や線材によって強化或い
はシールドを行った絶縁性の非金属管からなる管路の穿
孔の検知も本発明の探傷方法の対象となりうるものであ
り,この場合には非金属管が内面の絶縁性被覆に相当
し,強化或いはシールド用の導電性繊維や線材が導電性
の管体に相当する。
The pipe line to which the flaw detection method of the present invention can be applied is such that a metal pipe is coated with an inner surface by an insulator, and this is connected with a flange or a victor type connector, or after welding connection, the inner surface of the welded portion. It is designed so that the metal pipe does not conduct to the liquid in the pipe, such as a pipe with a repaired coating or a pipe with a metal pipe that has a continuous coating on its inner surface. Further, the detection of the perforation of a pipeline made of an insulating non-metal pipe reinforced or shielded with a conductive fiber or a wire can also be a target of the flaw detection method of the present invention. It corresponds to the insulating coating on the inner surface, and conductive fibers or wires for reinforcement or shielding correspond to the conductive tube.

管路に配置する電極4,5の間隔は,管径や管内液体の
導電率にもよるが,大略10ジョイント(約55m)前後の
間隔で十分測定可能である。この場合,電極間に位置す
る管体は,ジョイント部をはさんで相互に導通している
ことが望ましい。金属管体同志は通常の配管方法によれ
ば,自ずと相互に導通することとなるが,万一絶縁箇所
が混在する場合は,絶縁箇所を一時的に短絡して測定を
行えばよい。また,この代わりに,絶縁箇所の両側の金
属管体を対象として,それぞれ別個に測定を行ってもよ
い。
The distance between the electrodes 4 and 5 arranged in the pipe line depends on the pipe diameter and the conductivity of the liquid in the pipe, but approximately 10 joints (about 55 m) can be measured sufficiently. In this case, it is desirable that the tubes located between the electrodes be electrically connected to each other with the joint section interposed therebetween. According to the ordinary piping method, the metal pipes are naturally connected to each other, but if there are mixed insulation points, the insulation points may be temporarily short-circuited for measurement. Alternatively, the metal pipes on both sides of the insulated portion may be measured separately.

導電性管体2に取付ける端子6は,上記したように内
面被覆の損傷部の管内液電位や電極までの液抵抗を測定
するための端子である。一般に管路に使用する導電性管
体は金属管体であり,管内液体に比べて導電率がはるか
に大であるため,上記端子6は管路上の任意箇所の管体
からとってよいが,雑音を極小化する趣旨からすれば,
前記2電極間の金属管体からとるのが最良である。
The terminal 6 attached to the conductive tube body 2 is a terminal for measuring the in-tube liquid potential of the damaged portion of the inner surface coating and the liquid resistance to the electrode as described above. Generally, the conductive tube used for the conduit is a metal tube and has a much higher conductivity than the liquid in the tube. Therefore, the terminal 6 may be taken from the tube at an arbitrary position on the conduit. From the point of minimizing noise,
It is best taken from a metal tube between the two electrodes.

本発明の探傷方法を適用可能な液体は,管路に沿った
方向に電気的導通を与えるものであれば任意であり,海
水,淡水,水道水,純水,中水,下水,薬剤水溶液,土
砂スラリー,極性有機液体などを例示することができ
る。管内の液体は流送状態,静止満水状態,管壁のみに
連続液膜のある状態のいずれであってもよい。
The liquid to which the flaw detection method of the present invention can be applied is arbitrary as long as it provides electrical conduction in the direction along the pipeline, and includes seawater, fresh water, tap water, pure water, tap water, sewage, an aqueous solution of chemicals, Examples include earth and sand slurry and polar organic liquids. The liquid in the tube may be in a flowing state, a static full state, or a state where there is a continuous liquid film only on the tube wall.

〔実施例〕〔Example〕

以下,本発明を図面の実施例を参照して更に詳細に説
明する。
Hereinafter, the present invention will be described in more detail with reference to the embodiments of the drawings.

第2図は本発明の第一実施例を示すものであり,10は
抵抗計である。第一実施例は,電極4と端子6との間の
抵抗,電極5と端子6との間の抵抗,電極4,5間の抵抗
をそれぞれ,抵抗計10で直接測定するものである。ここ
で,電極4,5間の抵抗測定値をr0,電極4と端子6との
間の抵抗測定値をr1,電極5と端子6との間の抵抗測定
値をr2とすれば,損傷位置から端子6までの管体2の抵
抗は液抵抗に比べて極めて微小であるので,これらの抵
抗測定値は,管内の液抵抗及び接液抵抗に対して次の関
係にある。即ち, r0=R0=R1+R2 r1=R1+RS r2=R2+RS 従って,この接液抵抗RSは, また,液抵抗R0,R1,R2は,距離l0,l1,l2に比例す
るので, となる。これを抵抗測定値を使って表すと, である。従って,上記したように,各電極4,5及び端子
6間の抵抗を測定し,上記(1)式より接液抵抗RSを求
め,次いで(3)式より被覆損傷までの距離l1,l2を求
めることができる。
FIG. 2 shows a first embodiment of the present invention, and 10 is an ohmmeter. In the first embodiment, the resistance between the electrode 4 and the terminal 6, the resistance between the electrode 5 and the terminal 6, and the resistance between the electrodes 4 and 5 are directly measured by the resistance meter 10. Here, if the resistance measurement value between the electrodes 4 and 5 is r 0 , the resistance measurement value between the electrode 4 and the terminal 6 is r 1 , and the resistance measurement value between the electrode 5 and the terminal 6 is r 2. Since the resistance of the tube body 2 from the damaged position to the terminal 6 is extremely small as compared with the liquid resistance, these resistance measurement values have the following relationship with the liquid resistance and the liquid contact resistance in the tube. That is, r 0 = R 0 = R 1 + R 2 r 1 = R 1 + R S r 2 = R 2 + R S Therefore, this liquid contact resistance R S is Further, since the liquid resistances R 0 , R 1 and R 2 are proportional to the distances l 0 , l 1 and l 2 , Becomes If this is expressed using the resistance measurement value, Is. Therefore, as described above, the resistance between the electrodes 4 and 5 and the terminal 6 is measured, the liquid contact resistance R S is obtained from the above equation (1), and then the distance l 1 to the coating damage from the equation (3), l 2 can be obtained.

ここで,接液抵抗RSは,被覆損傷の開口寸法と凹み深
さ(即ち被覆厚さ)に関連した値であるので,この接液
抵抗から損傷の大きさを検知することも可能である。
Here, since the liquid contact resistance R S is a value related to the opening size of the coating damage and the dent depth (that is, the coating thickness), it is possible to detect the damage size from this liquid contact resistance. .

なお,上記(3)式において,接液抵抗が抵抗測定値
に比べて小さい場合には, が近似的に成立する。この場合には,抵抗測定値r0
r1,r2の全てを測定する必要はなく,その内の二つの値
を測定することにより,l0を基準としてl1,l2を求める
ことができる。
In equation (3), if the liquid contact resistance is smaller than the resistance measurement value, Holds approximately. In this case, the measured resistance value r 0 ,
It is not necessary to measure all of r 1 and r 2 , but by measuring two of them, l 1 and l 2 can be obtained with l 0 as a reference.

ところで,この方法は,液抵抗と接液抵抗を含んだ抵
抗値を測定し,その抵抗値から損傷の位置を求める方法
であるが,被覆損傷の開口寸法が小さくなるにつれて,
接液抵抗RSは急激に増大し,その誤差範囲内に液抵抗が
入ってしまうこととなる。従って,損傷が小さい場合に
は,位置検出の誤差が増すこととなり,この方式は損傷
位置の同定に最適であることは言い難い。
By the way, this method is a method of measuring the resistance value including the liquid resistance and the liquid contact resistance and obtaining the position of the damage from the resistance value, but as the opening size of the coating damage becomes smaller,
The liquid contact resistance R S rapidly increases and the liquid resistance falls within the error range. Therefore, if the damage is small, the position detection error increases, and it is hard to say that this method is optimal for identifying the damaged position.

一方,上記方法は被覆損傷部7の通電性の大小が測定
結果に含まれているので,損傷の有無や大小を検知する
には極めて有用なものとなる。即ち,この計測において
端子6と電極4又は5間の抵抗が無限大(特定値以上)
であることを以て無損傷が証明される。
On the other hand, the above method is very useful for detecting the presence or absence of damage and the magnitude of the damage because the measurement result includes the magnitude of the conductivity of the damaged coating portion 7. That is, in this measurement, the resistance between the terminal 6 and the electrode 4 or 5 is infinite (above a specific value).
It is proved that no damage is caused.

第3図は本発明の第二実施例を示すもので,電極4と
端子6の間に,電源11,抵抗12,電位差計13を図示のよう
に接続し,電極4と端子6との間の抵抗を,絶縁計測手
法によって測定するものである。同様にして,端子6と
電極5間の抵抗及び電極4,5間の抵抗を測定することも
可能である。この実施例の場合にも,第2図の実施例の
場合と同様に各端子間の抵抗を測定することにより,被
覆損傷の有無,大きさ及びその位置を検出することが可
能である。なお,この場合にも,接液抵抗が管内液抵抗
に比べて著しく大きい場合には,管内液抵抗が誤差の範
囲内に入ってしまうので,第一実施例と同様に,このよ
うな抵抗測定方式が損傷位置の同定に最適であるとは言
い難い。
FIG. 3 shows a second embodiment of the present invention, in which a power source 11, a resistor 12 and a potentiometer 13 are connected between the electrode 4 and the terminal 6 as shown in FIG. The resistance of is measured by the insulation measurement method. Similarly, the resistance between the terminal 6 and the electrode 5 and the resistance between the electrodes 4 and 5 can be measured. In the case of this embodiment as well, by measuring the resistance between the terminals as in the case of the embodiment of FIG. 2, it is possible to detect the presence or absence of the coating damage, its size and its position. Also in this case, if the liquid contact resistance is significantly larger than the liquid resistance in the pipe, the liquid resistance in the pipe falls within the error range. Therefore, similar to the first embodiment, such resistance measurement is performed. It is hard to say that the method is the most suitable for identifying the damage location.

第4図は本発明の第三の実施例を示すもので,端子6
と各電極4,5との間の抵抗の比率を同時にブリッジ方式
により測定する方法である。同図において,14は電源,15
はものさし付可変抵抗器であり,抵抗体15a,その抵抗体
15a上を摺動する分割端子15b及び分割端子15bの位置を
示すものさし15cとからなる。16は検流計である。本実
施例では電源14により電極4,5間に適当な電位を与え,
可変抵抗器15の分割端子15bを抵抗体15a上を摺動させて
分割端子15bと端子6との間の電流が極小になるように
調整し,その時の分割端子15bの位置からその左右の抵
抗を読み取る。ここで,抵抗体15aの全体の抵抗を
r0′,分割端子15bより電極4側の抵抗成分をr1′,反
対側の抵抗成分をr2′とすると,端子6と分割端子15b
との間に電流が流れない状態では, となる。従って,この式(5)と前記した式(2)とか
が近似的に成り立つ。かくしくて,可変抵抗器15におけ
る分割端子15bの左右の抵抗比(すなわち,r2′/
r1′)から距離l1,l2を求めることができ,これによっ
て,被覆損傷の有無及び存在位置を検出することができ
る。この方式にあっては,被覆損傷を通る電流(即ち接
液抵抗RSを通る電流)が極小となる状態で,抵抗比を求
めので,接液抵抗RSによる誤差は生じにくい。
FIG. 4 shows a third embodiment of the present invention, in which the terminal 6
This is a method of simultaneously measuring the resistance ratio between the electrodes and the electrodes 4 and 5 by the bridge method. In the figure, 14 is a power supply and 15
A variable resistor with a scale
It comprises a split terminal 15b sliding on 15a and a scale 15c for indicating the position of the split terminal 15b. 16 is a galvanometer. In this embodiment, an appropriate potential is applied between the electrodes 4 and 5 by the power source 14,
Adjust the split terminal 15b of the variable resistor 15 by sliding it on the resistor 15a so that the current between the split terminal 15b and the terminal 6 is minimized. To read. Where the total resistance of resistor 15a is
If r 0 ′ and the resistance component on the electrode 4 side of the split terminal 15b are r 1 ′ and the resistance component on the opposite side is r 2 ′, then terminal 6 and split terminal 15b
In the condition that no current flows between Becomes Therefore, from this equation (5) and the above equation (2), Holds approximately. Thus, the resistance ratio of the right and left of the divided terminal 15b in the variable resistor 15 (that is, r 2 ′ /
The distances l 1 and l 2 can be obtained from r 1 ′), and the presence or absence of coating damage and the existing position can be detected by this. In the this system, with the current through the coating damage (i.e. the current through the wetted resistor R S) is minimum, since seek resistance ratio, error due wetted resistor R S is less likely to occur.

なお,この方式では,例えば電極4,5間に複数の損傷
がある場合,最外側の2個の損傷の間が金属管体で短絡
されてあたかも1点の損傷の如く計測され,一方の電極
からその電極側の最外側の損傷迄の距離l1′と,他方の
電極からその電極側の最外側の損傷までの距離l2′の関
係が, (ただし,l0′=l1′+l2′) の如く求められるに過ぎない。即ち,ここではl0′が未
知数であり,これを基準として真のl1′,l2′を求める
ことはできない。よって,l0′を同定するために,上記
状況下での2電極間の管内液抵抗を求める操作を付け加
える必要が生じる。
In this method, when there are multiple damages between the electrodes 4 and 5, for example, the outermost two damages are short-circuited by the metal tube and measured as if it were one damage, and one of the electrodes is damaged. To the outermost damage on the electrode side l 1 ′ and the distance l 2 ′ from the other electrode to the outermost damage on the electrode side are (However, it is simply obtained as l 0 ′ = l 1 ′ + l 2 ′). That is, here l 0 ′ is an unknown number, and true l 1 ′ and l 2 ′ cannot be found on the basis of this. Therefore, in order to identify l 0 ′, it becomes necessary to add an operation for obtaining the in-tube liquid resistance between the two electrodes under the above-mentioned circumstances.

しかし,上記方式は,第一実施例,第二実施例と同
様,簡易な計器で目的を達成しうるという利点がある。
However, the above method has an advantage that the object can be achieved with a simple instrument as in the first and second embodiments.

第5図は本発明の第四実施例を示すもので,17は電源,
18は電位差計である。本実施例では,電極4,5に電極17
を接続して一定の電流i0を通じ,電位差計18にて端子6
と電極4間,或いは端子6と電極5間,電極4,5間等の
電位差を測定する。ここで,電極4,5間で測定された電
位差をE0,端子6と電極4との間で測定された電位差を
E1,端子6と電極5との間で測定された電位差をE2とす
ると,これらの間には, の近似的関係が成立する。従って,上記電位差E0,E1
E2のうち,少なくとも二つを測定することにより,損傷
部の位置を検出することができる。
FIG. 5 shows a fourth embodiment of the present invention, in which 17 is a power source,
18 is a potentiometer. In this embodiment, the electrodes 17 are connected to the electrodes 4 and 5.
Connect a constant current i 0 , and connect the terminal 6 with the potentiometer 18.
The potential difference between the electrode and the electrode 4, or between the terminal 6 and the electrode 5, between the electrodes 4 and 5 is measured. Here, the potential difference measured between the electrodes 4 and 5 is E 0 , and the potential difference measured between the terminal 6 and the electrode 4 is
Let E 1 be the potential difference measured between terminal 6 and electrode 5, and let E 2 be: The approximate relationship of is established. Therefore, the potential difference E 0 , E 1 ,
The position of the damaged part can be detected by measuring at least two of E 2 .

ここで用いる電位差計に高入力インピーダンスのもの
を用いれば,損傷部の接液抵抗の影響は回避できる。計
器に必要な入力インピーダンスは管径や管内液の導電率
などによって異なるが,109〜1011Ωの計器ならば殆ど
の対象に適合する。電位測定に正確さを期するために
は,まず装入電極4,5と金属管体2の材質差に基づく自
然電位差を補正することが望ましい。補正すべき自然電
位差ΔEは,例えば2電極間の極性が逆の測定によって
得られたE1及びE2 *を用いて と求めることができる。次に,2電極面における電解分極
の影響も補正すれば万全であるが,分極電圧と管内液電
位降下の比率を通電電流の選定によって極小化し,補正
を省略することもできる。また,電極i0の通電を電極4,
5から行わず,電極4,5を挟む形で設置した別の電極対か
ら行えば,電極4,5に於ける分極は皆無となる。
If the potentiometer used here has a high input impedance, the effect of liquid contact resistance at the damaged part can be avoided. The input impedance required for the instrument depends on the tube diameter and the conductivity of the liquid in the tube, but any instrument with a resistance of 10 9 to 10 11 Ω is suitable for most targets. In order to ensure the accuracy of the potential measurement, it is desirable to first correct the natural potential difference based on the material difference between the charging electrodes 4, 5 and the metal tube 2. The self-potential difference ΔE to be corrected is calculated by using E 1 and E 2 * obtained by the measurement in which the polarities between the two electrodes are opposite. Can be asked. Next, it is sufficient to correct the effect of electrolytic polarization on the two-electrode surface, but the ratio of the polarization voltage to the liquid potential drop in the tube can be minimized by selecting the energizing current, and the correction can be omitted. In addition, energization of electrode i 0
If not performed from 5, but from another pair of electrodes placed so as to sandwich the electrodes 4 and 5, there will be no polarization at the electrodes 4 and 5.

この実施例によれば,複数個の損傷があっても,最外側
損傷から2電極に到る距離の合計l0′=l1′+l2′が, として簡単に把握されるため,複数個損傷の存在区間が
正確に同定できる。
According to this embodiment, even if there is a plurality of damage, total l 0 of the distance leading to the second electrode from the outermost damage '= l 1' + l 2 ', Therefore, it is possible to accurately identify the section where multiple damages exist.

以上に,本発明方法の実施態様として,2点の電極4,5
及び端子6の間の電気的特性測定の異なる方式を示した
が,本発明はこれらの方式に限定されるものでなく,こ
れらの方式を適宜組み合わせても良く,更にこの他にも
電位差規制→電流測定など種々の方式が適用可能である
ことは言うまでもない。また,実施例は全て直流電源を
用いた方式を示したが,交流方式とすることも差し支え
ない。なお,本発明に用いる計器及び電源に必要な精
度,安定性等を具備させることは当然である。
As described above, as an embodiment of the method of the present invention, two electrodes 4,5
Although different methods of measuring the electrical characteristics between the terminals 6 and 6 have been shown, the present invention is not limited to these methods, and these methods may be combined as appropriate. It goes without saying that various methods such as current measurement can be applied. Further, although all the examples show the method using the DC power supply, the AC method may be used. In addition, it is natural that the instrument and the power source used in the present invention are provided with necessary accuracy, stability and the like.

管路の途中のバルブやポンプなどにおいて,内面被覆
されていない箇所があり,これが管路の金属管体に導通
している時,或いは管路の両端の延長上で管路内の液体
が接地する結果,これが金属管体に導通する場合などに
は,測定に乱れが生じる場合がある。第6a図,第6b図,
第6c図はこのような場合に測定の乱れを防止するための
手段を備えた実施例を示すものである。図中,第5図ま
での実施例と同一部品には同一符号を付けて示してい
る。20,20′はバイパス接地される管路,21,21′は接地
箇所と測定電極4又は5の間に取付けられるガード電
極,22は電源,23は可変抵抗器,24,24′は電位差計であ
る。ガード電極21,21′の取付位置は特に限定されず,
測定用の電極4,5の外側であればよいが,外乱を効率良
く防止するためには,電極4,5に近い方がよい。
In the valve or pump in the middle of the pipeline, there is a part where the inner surface is not covered, and when this is conducting to the metal pipe body of the pipeline, or when the ends of the pipeline are extended, the liquid in the pipeline is grounded. As a result, when this is conducted to the metal tube, the measurement may be disturbed. 6a, 6b,
FIG. 6c shows an embodiment provided with means for preventing measurement disturbance in such a case. In the figure, the same parts as those in the embodiment up to FIG. 5 are designated by the same reference numerals. 20, 20 'are bypass-grounded conduits, 21 and 21' are guard electrodes mounted between the grounding point and the measuring electrode 4 or 5, 22 is a power source, 23 is a variable resistor, and 24, 24 'are potentiometers. Is. The mounting positions of the guard electrodes 21, 21 'are not particularly limited,
It may be outside the electrodes 4 and 5 for measurement, but in order to effectively prevent disturbance, it is better to be close to the electrodes 4 and 5.

第6a図は第3図の実施例と同様に2電極4,5間の抵抗r
0=R0を測定する方法を示したものである。
FIG. 6a shows the resistance r between the two electrodes 4 and 5 as in the embodiment shown in FIG.
It shows a method of measuring 0 = R 0 .

ここでは,電源22及び可変抵抗器23の調整を行って,
ガード電極21,21′を測定電極4,5と同電位とすることに
より,電極4,5の外側には電流が出入しなくなり,測定
の乱れを避けることができる。
Here, by adjusting the power supply 22 and the variable resistor 23,
By setting the guard electrodes 21 and 21 'to the same potential as the measurement electrodes 4 and 5, no current flows in and out of the electrodes 4 and 5, and measurement disturbance can be avoided.

第6b図は第5図の実施例に準じて,2電極4,5間に所定
の電流を流し,その際の電極4,5及び端子6間の電位差
を測定して損傷位置を求めようとするものである。測定
の乱れを避ける段取りは第6a図の場合と同じである。
FIG. 6b is based on the embodiment of FIG. 5 in that a predetermined current is made to flow between the two electrodes 4 and 5 and the potential difference between the electrodes 4 and 5 at that time is measured to determine the damaged position. To do. The setup to avoid measurement disturbance is the same as in Fig. 6a.

第6c図は第3図の実施例におけるR1,R2,RSの測定に
関するものである。この場合は第6a図,第6b図のような
構成によっては測定電極がガードされないので,電極4,
5を短絡し,又電極21,21′を短絡した構成としている。
ここで電極対21,21′の電位を電極対4,5の電位に一致さ
せれば電極4,5の外側に電流が出入しなくなり,測定の
乱れを防止できる。この状態で,短絡した電極4,5と端
子6との間の抵抗を測定すると,測定される抵抗r3は, となっている。R1,R2は第6a図,第6b図の方法による測
定結果を基に, と求められ,これによりRSも同定される。しかし,損傷
が小さくなれば,r3に対してRSが支配的となり,r3≒RS
と見なせる場合が多い。従って,抵抗値r3を測定するだ
けで,損傷の有無及び概略の大きさを簡便に判定するこ
とができる。
FIG. 6c relates to the measurement of R 1 , R 2 and R S in the embodiment of FIG. In this case, the measurement electrodes are not guarded by the configurations shown in Figs. 6a and 6b, so that the electrodes 4,
5 is short-circuited and electrodes 21 and 21 'are short-circuited.
Here, if the potentials of the electrode pairs 21 and 21 'are made to coincide with the potentials of the electrode pairs 4,5, current will not flow in and out of the electrodes 4,5, and disturbance of measurement can be prevented. When the resistance between the short-circuited electrodes 4 and 5 and the terminal 6 is measured in this state, the measured resistance r 3 is Has become. R 1 and R 2 are based on the measurement results by the method shown in Figs. 6a and 6b. Then, R S is also identified. However, if the damage is small, R S becomes dominant with respect to r 3 , and r 3 ≈ R S
Can often be regarded as Therefore, the presence or absence of damage and the approximate size can be easily determined simply by measuring the resistance value r 3 .

なお,第6b図に於いて,可変抵抗器の移動端子23aを
あらかじめガード電極21′側へ寄せておき,次いで電源
22の電圧E0′を電源17の電圧E0に等しく調整すると,被
覆に損傷がない場合は,電位差計24,24′が共にゼロに
至り,同時に電位差計18の指示値Eは, E=E0=E0′ となる。しかし損傷がある場合は,電位差計24,24′が
共にゼロとはならず,又,電位差計18の指示値は,E=
E0′を下回る値となる。即ち,電位差計測手法の範囲内
のこのような操作によってまず損傷の有無を知った上
で,損傷位置の同定を行うという段取りも可能である。
Incidentally, in FIG. 6b, the moving terminal 23a of the variable resistor is brought close to the guard electrode 21 'side in advance, and then the power source is turned on.
'When the equal adjustment to the voltage E 0 of the power supply 17, if there is no damage to the coating, potentiometer 24, 24' 22 voltage E 0 reaches to zero both at the same time the potentiometer 18 instruction value E is E = E 0 = E 0 ′. However, if there is damage, neither of the potentiometers 24, 24 'will be zero, and the indication of the potentiometer 18 will be E =
The value is below E 0 ′. That is, it is also possible to make a setup in which the presence or absence of damage is first known by such an operation within the range of the potential difference measuring method, and then the damage position is identified.

第6a図,第6b図,第6c図に於けるガード電極21或いは
21′の電位調整は,手動で行ってもよいが,サーボ機構
やフィードバック機構を利用した構成とすることによ
り,測定操作を容易にすることができる。
The guard electrode 21 shown in FIGS. 6a, 6b and 6c or
The potential of 21 'may be adjusted manually, but by using a servo mechanism or a feedback mechanism, the measurement operation can be facilitated.

なお,これまで,管路上に2電極ないしは4電極を設
置する基本形について詳述して来たが,管路上に適宜間
隔で多数の電極を連設しておき,管路の状況に応じて2
電極法或いは4電極法による本発明方法を順次実施して
行くことも,勿論本発明方法の実用的な一態様である。
この場合の電極設置間隔も基本形について前述した10ジ
ョイント(約55m)前後が適切である。上述のような形
で管路の全長に亘って探傷を行なおうとする時,測定中
の区間に隣接する区間に存在する損傷がデータを歪ませ
ることがあるが,これは管路全体に亘るシリーズデータ
の解析によって補正すればよい。また,この代りに測定
区間の長さを変えることも有効である。例えば,ある区
間の測定によって,損傷が有ると判断されるようなデー
タが得られた場合,それが,その区間内の損傷によるも
のか,隣接区間内の損傷による誤差であるかを判定する
ため,測定区間を広げて再度測定するとか,或いは逆
に,最初に広い区間での測定を行い,その後狭い区間で
の測定を行う方法等がある。
Up to now, the basic form in which 2 or 4 electrodes are installed on the pipeline has been described in detail, but a large number of electrodes are arranged in series on the pipeline at appropriate intervals, and the number of electrodes can be set to 2 depending on the situation of the pipeline.
It is also a practical aspect of the method of the present invention to sequentially carry out the method of the present invention by the electrode method or the four-electrode method.
In this case, about 10 joints (approx. 55 m) described above for the basic shape is also suitable for the electrode installation interval. When the flaw detection is attempted over the entire length of the pipeline in the above-mentioned manner, the damage existing in the section adjacent to the section under measurement may distort the data, but this may occur over the entire pipeline. It may be corrected by analyzing the series data. It is also effective to change the length of the measurement section instead. For example, if the measurement of a section yields data that is determined to be damaged, to determine whether it is due to damage within that section or due to damage within adjacent sections. There is a method such that the measurement section is widened and the measurement is performed again, or conversely, the measurement is first performed in the wide section and then in the narrow section.

以上詳述した通り,従来の湿式ピンホール検出技術を
単に管路内面被覆に適用しただけでは,損傷の大きさ,
位置の検出は無論のこと,損傷の有無の検出にさえも,
多くの場合過誤を伴うことになる。従って,損傷の位置
の検出には,本発明の技術思想に基づき,管路上に設置
した少なくとも2電極及び管体端子を基本要素とした測
定,解析を行うことが決定的な効果をもたらすものであ
る。また,管路の延長上で管路内の液体が接地されるよ
うな状況においても,過誤なく損傷の有無,位置検出に
は,本発明の技術思想に基づき,管路上に配置した4電
極(内側の2電極が測定電極,外側の2電極がガード電
極)及び管体端子を基本要素とした測定,解析を行うこ
とにより,対象管路の電気的諸元の誤認を避けることが
必須の要件となるものである。
As described above in detail, if the conventional wet pinhole detection technology is simply applied to the inner surface of the conduit, the damage level
Of course, the detection of position, even the detection of the presence or absence of damage,
In many cases, it will be accompanied by an error. Therefore, in detecting the position of damage, it is important to perform measurement and analysis using at least two electrodes and a tube terminal installed on the conduit as basic elements, based on the technical idea of the present invention. is there. In addition, even in the situation where the liquid in the pipeline is grounded on the extension of the pipeline, the presence or absence of damage and the position detection can be accurately detected based on the technical concept of the present invention by four electrodes (). It is essential to avoid misidentification of electrical specifications of the target pipeline by performing measurement and analysis with the inner two electrodes as the measurement electrodes and the outer two electrodes as the guard electrodes) and the tube terminals as basic elements. It will be.

本発明において管路内液体に接触するように配置する
電極としては,形状,寸法,取付位置等,特に限定され
るものでなく,管体に対して絶縁を保ちながら管路内液
体に導通するものであれば任意であり,種々の構成で管
路に組み込むことが可能である.以下,その例を説明す
る。第7図,第8図は電極をフランジ接続部に装着する
ガスケットに組込んだ例を示すものであり,30はガスケ
ット,31はその中に封入された金属線,金属板等の導電
体,32は導電体31の先端に接続された外部接続端子であ
る。導電体31の一部31Aはガスケット内周面の複数箇所
から突出して接液露頭を形成している。このガスケット
30を通常のガスケットと同様に配管時にフランジ間に装
着することにより,導電体31はフランジに対しガスケッ
トによって絶縁され且つその接液露頭31Aが管内液に導
通することとなる。従って,この導通体31を電極として
作用させることができる。第9図は管体33の一端のフラ
ンジ34の端面の絶縁性被覆35上に金属線,金属板等の導
電体36をその一部が接液露頭36Aを形成するように配置
し,シール材37及びガスケット38ではさみ固定したもの
である。また,第10図は管体33のフランジ34端面に,管
内面の絶縁性被覆と同様な絶縁性被覆39を形成し,その
被覆内39に金属線,金属板等の導電体41をその一部が内
方に露出して接液露頭41Aを形成するように設けたもの
である。これらの構造では導電体36,41が電極として作
用するものであり,また,これらがフランジ34に固定さ
れているので,取付けが極めて容易である。第11図は管
体42,42を相互に接続するビクトリック型接続具43のハ
ウジング44の内側に配置されるシールリング45の管軸方
向の中央に絶縁性部材46を付設し,その中に金属線,金
属板等の導電体47を,その内方端が管内に露出して設液
露頭47Aを形成するように配置したものである。この場
合にも導電体47が電極として作用する。以上はいずれも
管体の接続部に電極を配置した場合を示したが,管体途
中の任意の位置に電極を配置しても良いことは言うまで
もない。第12図はその場合の例を示すものであり,管体
50の適当な位置にソケット51を設け,シール材52を介し
て電極となる導電体53をその下端が管内に露出するよう
に取付け,キャップ54でソケット51の開口を閉止したも
のである。なお,55は絶縁性被覆である。もちろん,温
度や流速,圧力などを計測する等のために設置されてい
るソケットや枝管,ティー管などに電極を配置すること
もできる。
In the present invention, the electrode arranged so as to come into contact with the liquid in the pipeline is not particularly limited in shape, size, mounting position, etc., and is electrically connected to the liquid in the pipeline while maintaining insulation with respect to the tubular body. It is arbitrary as long as it is one, and it is possible to incorporate it into the pipeline with various configurations. The example will be described below. 7 and 8 show an example in which an electrode is incorporated in a gasket that is attached to a flange connection portion, 30 is a gasket, 31 is a metal wire enclosed in the gasket, a conductor such as a metal plate, Reference numeral 32 is an external connection terminal connected to the tip of the conductor 31. A part 31A of the conductor 31 projects from a plurality of locations on the inner peripheral surface of the gasket to form a wetted outcrop. This gasket
By mounting 30 between flanges at the time of piping like a normal gasket, the conductor 31 is insulated from the flange by the gasket, and its liquid contact outcrop 31A is conducted to the liquid in the pipe. Therefore, the conductor 31 can act as an electrode. FIG. 9 shows that a conductor 36 such as a metal wire or a metal plate is arranged on the insulating coating 35 on the end face of the flange 34 at one end of the tube 33 so that a part of the conductor 36 forms a wetted outcrop 36A, and the sealing material is formed. 37 and gasket 38 are fixed with scissors. Further, FIG. 10 shows that an insulating coating 39 similar to the insulating coating on the inner surface of the tube is formed on the end surface of the flange 34 of the tube 33, and a conductor 41 such as a metal wire or a metal plate is provided in the coating 39. The portion is provided so as to be exposed inward to form the liquid contact outcrop 41A. In these structures, the conductors 36 and 41 act as electrodes, and since they are fixed to the flange 34, the mounting is extremely easy. FIG. 11 shows that an insulating member 46 is attached to the center of the seal ring 45 arranged inside the housing 44 of the victoric connector 43 that connects the pipes 42, 42 in the pipe axial direction. A conductor 47 such as a metal wire or a metal plate is arranged so that the inner end thereof is exposed inside the pipe to form a facility outcrop 47A. In this case also, the conductor 47 acts as an electrode. Although the above description shows the case where the electrodes are arranged at the connecting portions of the pipe body, it goes without saying that the electrodes may be arranged at arbitrary positions in the middle of the pipe body. Fig. 12 shows an example of such a case.
A socket 51 is provided at an appropriate position of 50, a conductor 53 serving as an electrode is attached through a sealing material 52 so that its lower end is exposed in the pipe, and an opening of the socket 51 is closed by a cap 54. Incidentally, 55 is an insulating coating. Of course, the electrodes can be arranged in sockets, branch pipes, tee pipes, etc. that are installed to measure temperature, flow velocity, pressure, etc.

これらの電極において,電極の接液は管周方向の少な
くとも一点で行われればよいが,接液点を円周方向に連
続的或いは等方的に配置した方が更に好ましい。接液露
頭の表面積は,流送そのものに支障のない限りは,大き
い方が電解分極及び接液抵抗を軽減でき有利である。電
極の材質は,少なくとも接液露頭に対して,管内液体に
侵されにくいものを使用する。銅−ニッケル合金,ステ
ンレス鋼などは海水他,多くの液体に適する。また,特
別な用途に対しては白金,白金メッキ材等を用いること
もできる。導電性の樹脂(それ自体が導電性の樹脂及び
導電性のフィラー等を添加して導電性を付与した樹脂)
やセラミック(それ自体が導電性のカーボン,ホウ化チ
タン,炭化珪素,炭化チタンなどの成形体や繊維及び金
属と複合したサーメットなど)を利用してもよい。
In these electrodes, liquid contact with the electrodes may be performed at at least one point in the circumferential direction of the tube, but it is more preferable to arrange the liquid contact points continuously or isotropically in the circumferential direction. It is advantageous that the surface area of the wetted outcrop is large so that electrolytic polarization and wetted resistance can be reduced as long as it does not hinder the flow itself. For the material of the electrode, use one that is not easily attacked by the liquid in the pipe, at least for the contact surface of the liquid. Copper-nickel alloy, stainless steel, etc. are suitable for many liquids such as seawater. In addition, platinum, a platinum-plated material, or the like can be used for special purposes. Conductive resin (resin to which conductivity is added by adding conductive resin and conductive filler etc.)
Alternatively, ceramics (ceramics such as electrically conductive carbon, titanium boride, silicon carbide, titanium carbide, etc. or cermets compounded with fibers and metals) may be used.

本発明方法を地上の管路に適用する時は,電極群をあ
らかじめ設置しておくだけでもよいが,埋設配管,暗き
ょ内配管などの場合には管路から地上まであらかじめ配
線を行っておくのがよい。また、この配線をマンホー
ル,ハンドホール等に集約しておけば,随時の探傷が容
易となる。更には,配線を1箇所に集約し,常設の機器
に,或いは測定を指示しデータを処理するコンピュータ
ーに接続しておけば刻々の探傷情報を得ることも容易と
なる。このように遠隔配線集約を行う場合にあっては,
状況に応じて管路の近傍にインピーダンス変換器,予備
増幅器,切換器などを設置した方が良いことがある。
When the method of the present invention is applied to a pipeline on the ground, it is only necessary to previously install the electrode group, but in the case of buried piping, piping in the underdrain, etc., wiring is carried out in advance from the pipeline to the ground. Is good. Further, if this wiring is integrated into a manhole, a handhole, etc., it is easy to detect flaws at any time. Furthermore, if the wires are integrated in one place and connected to a permanent device or to a computer for instructing measurement and processing data, it becomes easy to obtain the flaw detection information every moment. When performing remote wiring consolidation in this way,
Depending on the situation, it may be better to install an impedance converter, preamplifier, switch, etc. near the pipeline.

本発明方法によって管内面被覆に損傷を認めた時は,
即時補修を行うのが理想であるが,操業上或いは経済上
の理由でこれが困難な場合もある。このような事情を考
慮し,探傷を目的として設けた装入電極群及び配線群を
外部電源式電気防食用に随時切り換えうるように処置す
ることもできる。この場合は通電が長時間となるので,
電極材質は更に耐食的であった方が良い。通常は管路内
の電気防食は有効距離が短いため,多用されないが,本
発明方法の対象とする管路にあっては内面被覆による絶
縁が奏効し,殊に導電率の大な腐食性液体にあっては,
比較的長区間毎の電極でも必要な防食効果が得られるこ
ととなる。
When the inner surface of the pipe is damaged by the method of the present invention,
Ideally, immediate repairs are ideal, but this may be difficult for operational or economic reasons. In consideration of such a situation, the charging electrode group and the wiring group provided for the purpose of flaw detection can be treated so that they can be switched at any time to the external power source type electrolytic protection. In this case, energization will take a long time, so
The electrode material should be more corrosion resistant. Normally, cathodic protection in pipelines is not often used because the effective distance is short, but in the pipelines to which the method of the present invention is applied, the insulation by the inner surface is effective, and especially corrosive liquids with large conductivity are used. Then,
The required anticorrosion effect can be obtained even with electrodes in relatively long intervals.

以下に,実際の測定データによって本発明を更に具体
的に説明する。
Hereinafter, the present invention will be described more specifically with reference to actual measurement data.

内面に厚さ1〜1.5mmのポリエチレンを被覆した呼び
径150mm,単管長5.5mのフランジ付鋼管をボルト,ナット
で接続した管路において,10本の単管を挟む二つの接続
部に,0.5mm径の銅−30%ニッケル合金線をネオプレンゴ
ム中に封入した第7図に示すガスケットを装入した。ま
た,上流側から3番目の単管は内面被覆が(a)無損傷
のもの,(b)下流側の直近に0.3mm径の貫通損傷のあ
るもの,(c)損傷が1mm径のもの,(d)損傷が3mm径
のもの,の4種類に交換できるようにした。
In a pipe line in which a flanged steel pipe with a nominal diameter of 150 mm and a single pipe length of 5.5 m, whose inner surface is covered with polyethylene with a thickness of 1 to 1.5 mm, is connected with bolts and nuts, two connecting parts that sandwich 10 single pipes A gasket shown in FIG. 7 in which a copper-30% nickel alloy wire having a diameter of mm was enclosed in neoprene rubber was loaded. In addition, the third single pipe from the upstream side has (a) undamaged inner surface coating, (b) 0.3 mm diameter penetration damage in the immediate vicinity of the downstream side, (c) 1 mm diameter damage, (D) The damage can be changed to 4 types with a diameter of 3 mm.

次にこの管路に,管路内の水が入,出側に於いても接
地しない形で,水道水を流しながら以下の測定及び演算
を行った。
Next, the following measurements and calculations were performed while running tap water in such a way that the water in the pipeline entered and did not contact the outlet side.

上流側電極と下流側電極の間の電気抵抗r0を絶縁計
測手法(第3図参照)によって測定。
The electrical resistance r 0 between the upstream electrode and the downstream electrode was measured by an insulation measurement method (see FIG. 3).

鋼管管体と上流側電極の間の電気抵抗r1を測定。Measure the electrical resistance r 1 between the steel pipe body and the upstream electrode.

第5図において,両電極間に0.1mAの通電を行いな
がら,入力インパーダンス109Ωの電位差計によって電
極間電位差E0を測定。
In Fig. 5, measure the interelectrode potential difference E 0 with a potentiometer with an input impedance of 10 9 Ω while energizing 0.1 mA between both electrodes.

電極間の通電を続けながら鋼管管体と上流側電極の
間の電位差E1を測定。(電極−管体間自然電位差の補正
を含む) を算出。
While continuing to energize between the electrodes, measure the potential difference E 1 between the steel tube and the upstream electrode. (Including correction of the self-potential difference between the electrode and tube) Calculate.

RS=r1−R1 により,損傷部の接液抵抗RSを概算。 Estimate the wetted resistance R S of the damaged part from R S = r 1 −R 1 .

上記実験結果を第1表に示す。 The above experimental results are shown in Table 1.

実際の損傷は上流側電極より16.5mの位置にあったの
で,第1表より明らかなように,1m以内の誤差で微小な
損傷を検出でき,接液抵抗RSにより損傷の大きさも判定
できたこととなる。
Since the actual damage was at a position 16.5 m from the upstream electrode, it is clear from Table 1 that a minute damage can be detected with an error of 1 m or less, and the size of the damage can also be determined by the wetted resistance R S. It will be.

〔発明の効果〕〔The invention's effect〕

以上述べた通り,本発明は管路の長手方向に離れた2
点に管内液体に接触するようにしかし管体には絶縁する
ように電極を配置し,且つ管体には端子を接続し,これ
らの電極及び端子間の抵抗,電位差等の電気的特性を測
定することによって,管路内面被覆の損傷を,有無及び
存在位置にわたって正しく検出することができ,従来の
ように管路の分解或いは管内への機器挿入等を必要とせ
ず,簡単な操作で早期に被覆損傷を発見できる。この結
果,各種管路の腐食穿孔事故を未然に防ぐことが可能と
なり,また,システム化によって無損傷の確認が無用な
保守の省略につながるなど,産業界に多大な貢献をもた
らすものである。
As described above, the present invention has two pipes separated in the longitudinal direction of the pipeline.
Electrodes are arranged at the points so that they come into contact with the liquid in the tube but are insulated from the tube, and terminals are connected to the tube, and the electrical characteristics such as resistance and potential difference between these electrodes and terminals are measured. By doing so, it is possible to correctly detect the damage on the inner surface of the pipeline, regardless of the presence or absence and the existing position, without the need for disassembling the pipeline or inserting a device into the tube as in the conventional case, and it is possible to quickly perform a simple operation. Can detect coating damage. As a result, it is possible to prevent corrosion and piercing accidents in various pipelines, and systematization makes a great contribution to the industry, such as confirmation of no damage leads to omission of unnecessary maintenance.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の原理を説明するための管路及びそれに
取付けた電極,端子を示す断面図,第2図〜第5図はそ
れぞれ本発明の実施例を概略的に示す管路断面及び配線
図,第6a図,第6b図,第6c図はそれぞれ,更に他の実施
例を概略的に示す管路側面及び配線図,第7図は本発明
の実施に使用する電極を備えたガスケットの側面図,第
8図はその断面図,第9図,第10図はそれぞれ,本発明
の実施に使用する電極を備えた管路端部を示す断面図,
第11図は本発明の実施例に使用する電極を備えたビクト
リック型接続具を示す断面図,第12図は本発明の実施に
使用する電極を管路途中に装着する状態を示す断面図で
ある。 1……絶縁性被覆、2……導電性管体、3……管路 4,5……電極、6……端子、7……損傷部 10……抵抗計、11……電源、12……抵抗 13……電位差計、14……電源、15……可変抵抗器 16……検流計、17……電源、18……電位差計 21,21′……ガード電極
FIG. 1 is a sectional view showing a conduit for explaining the principle of the present invention and electrodes and terminals attached thereto, and FIGS. 2 to 5 are sectional views schematically showing the embodiment of the present invention. Wiring diagrams, FIGS. 6a, 6b, and 6c are schematic side views and wiring diagrams of yet another embodiment, respectively, and FIG. 7 is a gasket provided with electrodes used in the practice of the present invention. FIG. 8 is a side view, FIG. 8 is a cross-sectional view thereof, and FIGS. 9 and 10 are cross-sectional views showing an end portion of a conduit provided with an electrode used for carrying out the present invention.
FIG. 11 is a cross-sectional view showing a victoric connector equipped with an electrode used in the embodiment of the present invention, and FIG. 12 is a cross-sectional view showing a state in which the electrode used in the embodiment of the present invention is mounted in the middle of a pipeline. Is. 1 ... Insulating coating, 2 ... Conductive tube, 3 ... Pipe line 4,5 ... Electrode, 6 ... Terminal, 7 ... Damaged part 10 ... Resistance meter, 11 ... Power supply, 12 ... … Resistance 13 …… Potentiometer, 14 …… Power supply, 15 …… Variable resistor 16 …… Galvanometer, 17 …… Power supply, 18 …… Potentiometer 21,21 ′ …… Guard electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高森 秀幸 横浜市鶴見区尻手3−8−33 (56)参考文献 特開 昭55−66747(JP,A) 特開 昭55−82959(JP,A) 実開 昭58−165649(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideyuki Takamori 3-8-33 Shiritate, Tsurumi-ku, Yokohama (56) References JP-A-55-66747 (JP, A) JP-A-55-82959 (JP, A) ) Actual development Sho 58-165649 (JP, U)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内面に絶縁性被覆(1)を施した導電性管
体(2)からなる管路の長手方向に間隔をあけた2点A,
Bに,それぞれ管路内液体に接触するが導電性管体とは
絶縁を保つように電極(4,5)を配置して各電極から端
子をとり,且つ導電性管体(2)にも端子(6)をと
り,前記電極(4,5)及び導電性管体(2)にそれぞれ
接続した3端子の組み合わせになる3通りの端子対,即
ち,2点の電極間(4−5),一方の電極と導電性管体の
端子の間(4−6),他方の電極と導電性管体の端子の
間(5−6)のうち,少なくとも2つの端子対に関し
て,抵抗の測定,抵抗比の測定,又は3端子対のうちの
1つの端子対に通電した状態での電位差の測定を行い,2
点の電極(4,5)間の距離l0,管路内面被覆損傷の位置
と一方の電極(4)との間の距離l1,他方の電極(5)
との間の距離l2と,前記測定で得られた抵抗値,抵抗比
又は電位差値若しくはそれらの演算結果との比例関係か
ら,距離l1及びl2を求めて管路内面被覆損傷の存在位置
を検出することを特徴とする管路内面被覆の探傷方法。
1. Two points A, which are spaced from each other in the longitudinal direction of a conduit made of a conductive tube body (2) having an inner surface coated with an insulating coating (1),
Electrodes (4,5) are placed in B so that they are in contact with the liquid in the conduits but keep insulation from the conductive tubes, and terminals are taken from each electrode, and also in the conductive tubes (2). The terminal (6) is taken, and three kinds of terminal pairs which are combinations of three terminals respectively connected to the electrodes (4,5) and the conductive tube body (2), that is, between two electrodes (4-5) Measuring resistance of at least two terminal pairs between one electrode and a terminal of the conductive tube (4-6) and between the other electrode and a terminal of the conductive tube (5-6), Measure the resistance ratio or measure the potential difference with one of the three terminal pairs energized.
Distance l 0 between the points of the electrodes (4,5), the distance l 1 between the position and the one electrode of the pipe inner surface coating damage (4), the other electrode (5)
Presence of the coating on the inner surface of the pipeline by calculating the distances l 1 and l 2 from the proportional relationship between the distance l 2 between the and and the resistance value, the resistance ratio or the potential difference value obtained in the above measurement, or the calculation result thereof. A method for detecting flaws on the inner surface of a pipeline, which is characterized by detecting the position.
【請求項2】前記3つの端子対(4−5),(4−
6),(5−6)に関して抵抗測定を行い,それぞれの
端子対にて得られた測定値r0,r1,r2から (ただし, の比例関係により前記距離l1及びl2を求めることを特徴
とする特許請求の範囲第1項記載の管路内面被覆の探傷
方法。
2. The three terminal pairs (4-5), (4-
6) and (5-6) were measured, and from the measured values r 0 , r 1 , r 2 obtained at each terminal pair, (However, The flaw detection method for coating the inner surface of a pipe line according to claim 1, wherein the distances l 1 and l 2 are obtained by a proportional relationship.
【請求項3】前記2点の電極(4,5)に可変抵抗器(1
5)の両端を接続すると共に,前記可変抵抗器(15)の
可動分割端子(15b)と管体(2)に接続された端子
(6)とを検流計(16)を介して接続し,前記2点の電
極(4,5)に電源(14)を接続した状態で前記検流計(1
6)を通る電流が極小となるように可変抵抗器(15)を
調整し,その時の可変抵抗器の分割端子による分割抵抗
の比と前記距離l1,l2との比例関係から前記距離l1,l2
を求めることを特徴とする特許請求の範囲第1項記載の
管路内面被覆の探傷方法。
3. A variable resistor (1) is attached to the two electrodes (4,5).
Connect both ends of 5), and connect the movable split terminal (15b) of the variable resistor (15) and the terminal (6) connected to the tube body (2) through a galvanometer (16). , The galvanometer (1 with the power supply (14) connected to the two electrodes (4,5).
6) Adjust the variable resistor (15) so that the current passing through it becomes a minimum, and then use the proportional relationship between the ratio of the dividing resistance by the dividing terminals of the variable resistor and the distances l 1 and l 2 above. 1 , l 2
The flaw detection method for coating the inner surface of a pipe line according to claim 1, wherein
【請求項4】前記2点の電極(4,5)に電源(17)を接
続して一定電流を流した状態で前記3つの端子対(4−
5),(4−6),(5−6)に関して電位差測定を行
い,それぞれの端子対にて得られた測定値E0,E1,E2
ら, の比例関係により前記距離l1及びl2を求めることを特徴
とする特許請求の範囲第1項記載の管路内面被覆の探傷
方法。
4. The three terminal pairs (4-) in a state where a power source (17) is connected to the two electrodes (4,5) and a constant current is applied.
5), (4-6), and (5-6) were measured for the potential difference, and from the measured values E 0 , E 1 , E 2 obtained at the respective terminal pairs, The flaw detection method for coating the inner surface of a pipe line according to claim 1, wherein the distances l 1 and l 2 are obtained by a proportional relationship.
【請求項5】内面に絶縁性被覆(1)を施した導電性管
体(2)からなる管路の長手方向に間隔をあけた2点A,
Bに,それぞれ管路内液体に接触するが導電性管体とは
絶縁を保つように測定用の電極(4,5)を配置して各電
極から端子をとり,且つ導電性管体(2)にも端子
(6)をとり,更に,前記2電極(4,5)の外側にそれ
ぞれ管路内液体に接触するガード電極(21,21′)を配
置するとともに各ガード電極(21,21′)をそれに近い
側の測定用の電極(4,5)の電位に一致させ,この状態
にて,前記電極(4,5)及び導電性管体(2)にそれぞ
れ接続した3端子の組み合わせになる3通りの端子対,
即ち,2点の電極間(4−5),一方の電極と導電性管体
の端子の間(4−6),他方の電極と導電性管体の端子
の間(5−6)のうち,少なくとも2つの端子対に関し
て,抵抗の測定,抵抗比の測定,又は3端子対のうちの
1つの端子対に通電した状態での電位差の測定を行い,2
点の電極(4,5)間の距離l0,管路内面被覆損傷の位置
と一方の電極(4)との間の距離l1,他方の電極(5)
との間の距離l2と,前記測定で得られた抵抗値,抵抗比
又は電位差値若しくはそれらの演算結果との比例関係か
ら,距離l1及びl2を求めて管路内面被覆損傷の存在位置
を検出することを特徴とする管路内面被覆の探傷方法。
5. Two points A, which are spaced apart in the longitudinal direction of a conduit made of a conductive tube body (2) having an inner surface coated with an insulating coating (1),
In B, the measuring electrodes (4,5) are arranged so as to contact the liquid in the conduits respectively, but to keep the insulation from the conductive tubes, and terminals are taken from the electrodes, and the conductive tubes (2 ) Also has a terminal (6), and further, guard electrodes (21, 21 ') that come into contact with the liquid in the pipeline are arranged outside the two electrodes (4,5), and the guard electrodes (21, 21) are arranged. ′) Is made to match the potential of the measuring electrodes (4,5) on the side close to it, and in this state, a combination of three terminals respectively connected to the electrodes (4,5) and the conductive tube (2). 3 different terminal pairs,
That is, between the two electrodes (4-5), between one electrode and the terminal of the conductive tube (4-6), and between the other electrode and the terminal of the conductive tube (5-6) , For at least two terminal pairs, measuring the resistance, measuring the resistance ratio, or measuring the potential difference with one of the three terminal pairs energized, 2
Distance l 0 between the points of the electrodes (4,5), the distance l 1 between the position and the one electrode of the pipe inner surface coating damage (4), the other electrode (5)
Presence of the coating on the inner surface of the pipeline by calculating the distances l 1 and l 2 from the proportional relationship between the distance l 2 between the and and the resistance value, the resistance ratio or the potential difference value obtained in the above measurement, or the calculation result thereof. A method for detecting flaws on the inner surface of a pipeline, which is characterized by detecting the position.
【請求項6】内面に絶縁性被覆(1)を施した導電性管
体(2)からなる管路の長手方向に間隔をあけた2点A,
Bに,それぞれ管路内液体に接触するが導電性管体とは
絶縁を保つように測定用の電極(4,5)を配置して各電
極から端子をとり,且つ導電性管体(2)にも端子
(6)をとり,更に,前記2電極(4,5)の外側にそれ
ぞれ管路内液体に接触するガード電極(21,21′)を配
置し,前記電極のうち,2つの測定用電極(4,5)同志,2
つのガード電極(21,21′)同志を短絡した上で,該測
定用電極対(4,5)と導電性管体(2)の端子(6)と
の間の抵抗を測定して管路内面被覆損傷の有無及び概略
の大きさを検出することを特徴とする管路内面被覆の探
傷方法。
6. Two points A, which are spaced apart in the longitudinal direction of a pipe line made of a conductive pipe body (2) having an inner surface coated with an insulating coating (1),
In B, the measuring electrodes (4,5) are arranged so as to contact the liquid in the conduits respectively, but to keep the insulation from the conductive tubes, and terminals are taken from the electrodes, and the conductive tubes (2 ) Also has a terminal (6), and further, guard electrodes (21, 21 ') that come into contact with the liquid in the pipeline are arranged outside the two electrodes (4,5), respectively. Measuring electrodes (4,5) Comrade, 2
The two guard electrodes (21, 21 ') are short-circuited together, and the resistance between the measuring electrode pair (4,5) and the terminal (6) of the conductive tube (2) is measured to determine the conduit. A flaw detection method for a pipe inner surface coating, which comprises detecting the presence or absence of an inner surface coating damage and an approximate size.
JP61312872A 1986-08-08 1986-12-29 Method for flaw detection on inner surface of pipeline Expired - Fee Related JP2532038B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18516386 1986-08-08
JP61-185163 1986-08-08

Publications (2)

Publication Number Publication Date
JPS63153460A JPS63153460A (en) 1988-06-25
JP2532038B2 true JP2532038B2 (en) 1996-09-11

Family

ID=16165931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61312872A Expired - Fee Related JP2532038B2 (en) 1986-08-08 1986-12-29 Method for flaw detection on inner surface of pipeline

Country Status (1)

Country Link
JP (1) JP2532038B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038687A1 (en) 2012-09-10 2014-03-13 三菱電機株式会社 Anticorrosive performance deterioration detection sensor, and hot-water supply and heating system provided with same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4989310B2 (en) * 2007-05-22 2012-08-01 日本電信電話株式会社 Reinforcing bar diagnostic equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566747A (en) * 1978-11-15 1980-05-20 Nippon Kokan Kk <Nkk> Lining defect detection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038687A1 (en) 2012-09-10 2014-03-13 三菱電機株式会社 Anticorrosive performance deterioration detection sensor, and hot-water supply and heating system provided with same
JP5837211B2 (en) * 2012-09-10 2015-12-24 三菱電機株式会社 Anti-corrosion performance deterioration detection sensor and hot water heating / heating system provided with the same
JPWO2014038687A1 (en) * 2012-09-10 2016-08-12 三菱電機株式会社 Anti-corrosion performance deterioration detection sensor and hot water heating / heating system provided with the same

Also Published As

Publication number Publication date
JPS63153460A (en) 1988-06-25

Similar Documents

Publication Publication Date Title
EP2800963B1 (en) Monitoring a conductive fluid conduit
US20200378885A1 (en) Multielectrode Probes For Monitoring Fluctuating Stray Current Effects And Ac Interference On Corrosion Of Burried Pipelines And Metal Structures
US7768270B2 (en) In-pipe coating integrity monitor for very long pipes
WO2008083409A1 (en) System for assessing pipeline condition
EP2917717B1 (en) Field measurement of corrosion and erosion
US4061965A (en) Method and apparatus for monitoring a cathodically protected corrodible hollow member
US4912418A (en) Method and device for detecting the location of a fault within a dielectric layer of an electrically conducting pipe
JP4857136B2 (en) Abnormally low ground contact point detection method and detection system for buried metal pipeline
JP2010266342A (en) Metal corrosion diagnostic method
JP2532038B2 (en) Method for flaw detection on inner surface of pipeline
US7104147B2 (en) System and method for measuring electric current in a pipeline
EP0148267A1 (en) Method and device for detecting damage to buried object
US2987672A (en) Impedance test apparatus
EP0199717B1 (en) Electrode system for the measurement of corrosion rate
JP2004198410A (en) Method for inspecting defect in coated pipe, and method for diagnosing corrosion
JP3105666B2 (en) Diagnosis method for corrosion of buried metal
JP4698318B2 (en) Anticorrosion state monitoring method and system
JP2005091191A (en) Method of detecting defective part in coating of embedded metal pipe
RU2781137C1 (en) Method for determining the integrity of pipeline protective casings at intersections with roads and railways
JPS60111949A (en) Method for detecting coating defect of coated embedded pipe
RU2244297C1 (en) Method of detection of corrosion on underground pipe lines
US12098995B2 (en) Method and measuring arrangement for determining the internal corrosion rate of steel structures
JPH10213559A (en) Method and device for judging sticking of scale
JPS62288558A (en) Method for detecting coating flaw part of metal pipe having coating layer
JPS62140059A (en) Method for detecting flaw of lining

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees