JP2531646B2 - Liquid crystal composition and liquid crystal device using the same - Google Patents

Liquid crystal composition and liquid crystal device using the same

Info

Publication number
JP2531646B2
JP2531646B2 JP61246759A JP24675986A JP2531646B2 JP 2531646 B2 JP2531646 B2 JP 2531646B2 JP 61246759 A JP61246759 A JP 61246759A JP 24675986 A JP24675986 A JP 24675986A JP 2531646 B2 JP2531646 B2 JP 2531646B2
Authority
JP
Japan
Prior art keywords
phase
liquid crystal
smectic
compound
crystal composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61246759A
Other languages
Japanese (ja)
Other versions
JPS63101481A (en
Inventor
健司 新庄
明雄 吉田
俊治 内海
明 坪山
幸子 二見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61246759A priority Critical patent/JP2531646B2/en
Publication of JPS63101481A publication Critical patent/JPS63101481A/en
Application granted granted Critical
Publication of JP2531646B2 publication Critical patent/JP2531646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal Substances (AREA)
  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液晶表示素子や液晶−光シヤツター等に利用
される液晶素子に用いる液晶組成分に関し、更に詳しく
は、表示ならびに駆動特性が改善された新規な液晶組成
物に関するものである。
The present invention relates to a liquid crystal composition used in a liquid crystal display device, a liquid crystal device used in a liquid crystal-optical shutter, or the like. More specifically, the display and driving characteristics are improved. And a novel liquid crystal composition.

〔従来技術〕[Prior art]

双安定性を有する液晶素子の使用が、クラーク(Clar
k)及びラガウエル(Lagerwall)により提案されている
(特開昭56−107216号公報、米国特許第4367924号明細
書等)。双安定性を有する液晶としては、一般にカイラ
ルスメクチツクC相(SmC)又はH相(SmH)を有す
る強誘電性液晶が用いられる。
The use of a liquid crystal element having bistability is described by Clar (Clar
k) and Lagerwall (JP-A-56-107216, U.S. Pat. No. 4,367,924, etc.). As a liquid crystal having bistability, a ferroelectric liquid crystal having a chiral smectic C phase (SmC * ) or H phase (SmH * ) is generally used.

この液晶は電界に対して第1の光学的安定状態と第2
の光学安定状態からなる双安定状態を有し、例えば一方
の電界ベクトルに対して第1の光学的安定状態に液晶が
配向し、他方の電界ベクトルに対しては第2の光学的安
定状態に液晶が配向される。またこの型の液晶は、加え
られる電界に応答して、電界の印加のないときは、上記
2つの安定状態のいずれかの状態を維持する性質を有す
る。又、以上のような双安定性を有する特徴に加えて、
強誘電液晶は高速応答性であるという優れた特徴を持
つ。それは強誘電液晶の持つ自発分極と印加電場が直接
作用して配向状態の転移を誘起するためであり、誘電率
異方性と電場の作用による応答速度より3〜4オーダー
速い。
This liquid crystal has a first optically stable state and a second
Has a bistable state consisting of an optical stable state of, for example, the liquid crystal is aligned in the first optical stable state with respect to one electric field vector, and is in the second optical stable state with respect to the other electric field vector. The liquid crystal is aligned. In addition, this type of liquid crystal has a property of responding to an applied electric field and maintaining one of the two stable states when no electric field is applied. Also, in addition to the above-mentioned features having bistability,
Ferroelectric liquid crystal has an excellent feature of high-speed response. This is because the spontaneous polarization of the ferroelectric liquid crystal and the applied electric field directly act to induce the transition of the alignment state, which is 3 to 4 orders faster than the response speed due to the action of the dielectric anisotropy and the electric field.

このように強誘電液晶はきわめて優れた特性を潜在的
に有しており、このような性質を利用することによりか
なり有用な改善が得られる。特に高速光学光シヤツター
や、高密度,大画面デイスプレイへの応用が期待され
る。
Thus, ferroelectric liquid crystals potentially have very good properties, and the use of such properties provides a fairly useful improvement. In particular, it is expected to be applied to high-speed optical optical shutters and high-density, large-screen displays.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

このため強誘電性を持つ液晶材料に関しては広く研究
がなされているが、現在までに開発された強誘電性液晶
材料は、低温作動特性、高速応答性等を含めて液晶素子
に用いるために十分な特性を備えているとは云い難い。
For this reason, there has been extensive research on liquid crystal materials with ferroelectric properties, but the ferroelectric liquid crystal materials developed to date are sufficient for use in liquid crystal elements, including their low-temperature operating characteristics and high-speed response. It is hard to say that it has such characteristics.

一方、この双安定性を有する強誘電性液晶が所定の駆
動特性を発揮するためには、一対の平行基板間に配置さ
れる液晶が、電界の印加状態とは無関係に、上記2つの
安定状態の間での光間が効果的に起こるような分子配列
状態にあることが必要である。例えばSmC又はSmH
を有する強誘電性液晶については、SmC又はSmHを有
する液晶分子層が基板面に対して垂直で、したがって液
晶分子軸が基板面にほぼ平行に配列した領域(モノドメ
イン)が形成される必要がある。しかしながら、従来の
双安定性を有する強誘電性液晶素子においては、このよ
うなドメイン構造を有する液晶の配向状態が必ずしも満
足に形成されなかった。
On the other hand, in order for the ferroelectric liquid crystal having the bistability to exhibit a predetermined driving characteristic, the liquid crystal disposed between the pair of parallel substrates should have the two stable states regardless of the electric field application state. It is necessary that the molecular arrangement state is such that the light between them effectively occurs. For example, for a ferroelectric liquid crystal having an SmC * or SmH * phase, a region in which the liquid crystal molecular layer having SmC * or SmH * is perpendicular to the substrate surface, and therefore the liquid crystal molecular axis is aligned substantially parallel to the substrate surface ( Mono domain) needs to be formed. However, in the conventional ferroelectric liquid crystal device having bistability, the alignment state of the liquid crystal having such a domain structure is not always formed satisfactorily.

本発明の目的は、特定の液晶化合物を混合することに
よって、配向性に重要なスメクチツクA相を効果的に導
入し、かつ低い温度領域でスメクチツクC相を呈する
液晶組成物を提供し、同時に単独の液晶化合物では得ら
れない種々の表示特性を有する液晶組成物ならびに該組
成物を使用する液晶素子を提供することである。
An object of the present invention is to provide a liquid crystal composition which, by mixing a specific liquid crystal compound, effectively introduces a smectic A phase important for orientation and exhibits a smectic C * phase in a low temperature region. It is intended to provide a liquid crystal composition having various display characteristics which cannot be obtained by a single liquid crystal compound, and a liquid crystal device using the composition.

又、従来問題であったモノドメイン形成性ないしは、
初期配向性を改善した強誘電性液晶素子を提供すること
である。
In addition, monodomain formation or a conventional problem,
It is intended to provide a ferroelectric liquid crystal device having improved initial alignment.

〔問題点を解決するための手段及び作用〕[Means and Actions for Solving Problems]

つまり本発明は、降温過程でスメクチックA相からス
メクチックC相より秩序度の高い相に順次相転移を生じ
る化合物(A)の少なくとも1種と、カイラルスメクチ
ック相を示す化合物(B)の少なくとも1種とを含有
し、前記化合物(A)の混合比率が50重量%未満である
ことを特徴とする液晶組成物、ならびに該液晶組成物
を、配向制御層を介して一対の基板間に配置してなる液
晶素子を提供するものである。
That is, the present invention relates to at least one compound (A) which sequentially undergoes a phase transition from a smectic A phase to a phase having a higher degree of order than the smectic C phase in the temperature decreasing process, and at least one compound (B) showing a chiral smectic phase. And a liquid crystal composition characterized in that the mixing ratio of the compound (A) is less than 50% by weight, and the liquid crystal composition is disposed between a pair of substrates via an alignment control layer. The present invention provides a liquid crystal element.

上記の液晶組成物を用いることによりスメクチツクA
相の温度範囲を広げることができ、これにより該液晶組
成物を配置してなる液晶素子は、液晶層のモノドメイン
性を両立した液晶素子とすることができる。
By using the above liquid crystal composition, smectic A
The temperature range of the phase can be widened, whereby the liquid crystal element in which the liquid crystal composition is arranged can be a liquid crystal element having both the monodomain property of the liquid crystal layer.

又、上記の液晶組成物は、カイラルスメクチツク相を
低温域まで広げることができる。
Further, the above liquid crystal composition can extend the chiral smectic phase to a low temperature range.

特にカイラルスメクチツク相がカイラルスメクチツク
C相の場合は、優れた高速応答性を示すことができる。
In particular, when the chiral smectic phase is the chiral smectic C phase, excellent high-speed response can be exhibited.

更に又、SmA相の温度範囲を広げるには2種以上のSmA
相を有する液晶を混合させた組成物が有効であり、特に
カイラル分子を有しSmA相を示す液晶を用いるとより顕
著な効果が現われる。
Furthermore, to expand the temperature range of the SmA phase, use two or more types of SmA.
A composition in which a liquid crystal having a phase is mixed is effective, and particularly when a liquid crystal having a chiral molecule and exhibiting an SmA phase is used, a more remarkable effect appears.

以下、本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.

本発明で用いる(A)および(B)の液晶性化合物の
構造式と相転移温度の具体例を表1,表2に示す。
Specific examples of structural formulas and phase transition temperatures of the liquid crystal compounds (A) and (B) used in the present invention are shown in Tables 1 and 2.

表1からわかるように、本発明の液晶性化合物(A)
のスメクチツクC相より秩序度の高い相とは、スメクチ
ックC相以外の例えばCryst.相のようなものをいう。
As can be seen from Table 1, the liquid crystal compound (A) of the present invention
The phase having a higher degree of order than the smectic C phase refers to, for example, a Cryst. Phase other than the smectic C phase.

表中の記号はそれぞれ以下の相を示す。 The symbols in the table indicate the following phases, respectively.

Cryst:結晶相 SmA:スメクチツクA相 Iso:等方相 SmCカイラルスメクチツクC相 ch:コレステリツク相 Sm3:SmA,SmC以外のスメクチツク相(未同定) 表1 降温過程で等方相からスメクチックA相及びスメ
クチックC相より秩序度の高い相に相転移を示す液晶性
化合物(A)の具体例 P′−ヘプチルビフェニルカルボン酸−P″−(2−オ
クチルオキシプロピルオキシ)カルボニルフェニルエス
テル P−n−ドデシルオキシ安息香酸−P′−(2−ペンチ
ルオキシプロピルオキシカルボニル)フェニルエステル 表2 降温過程で等方相からカイラルスメクチツク相を
示す液晶性化合物(B)の具体例 本発明で用いる液晶組成物の前記Aの化合物と前記B
液晶の割合は使用する液晶の種類によっても相違する
が、一般的に前記Aの液晶を得られる液晶組成物の1〜
99重量%、特に2〜80重量%で使用することが好まし
い。
Cryst: crystalline phase SmA: smectic A phase Iso: isotropic phase SmC * chiral smectic C phase ch: cholesteric phase Sm3: SmA, SmC * smectic phase other than * (unidentified) Table 1 smectic from isotropic phase during cooling process Specific examples of the liquid crystal compound (A) exhibiting a phase transition to a phase having a higher degree of order than the A phase and the smectic C phase P'-heptylbiphenylcarboxylic acid-P "-(2-octyloxypropyloxy) carbonylphenyl ester P-n-dodecyloxybenzoic acid-P '-(2-pentyloxypropyloxycarbonyl) phenyl ester Table 2 Specific examples of the liquid crystal compound (B) exhibiting a chiral smectic phase from an isotropic phase in the temperature decreasing process The compound of A and the compound of B of the liquid crystal composition used in the present invention
The ratio of the liquid crystal varies depending on the type of liquid crystal used, but in general, 1 to
It is preferred to use 99% by weight, especially 2-80% by weight.

又、前記A化合物におけるSmAの温度範囲は1℃以
上、好ましくは3℃以上であるとよい。
The temperature range of SmA in the compound A is 1 ° C or higher, preferably 3 ° C or higher.

本発明の液晶素子は上記のようにして得られた本発明
の液晶組成物を一対の電極基板間に配置することにより
得られる。なお、液晶素子のセル厚ではできるだけ薄い
方が好ましく、一般的には0.5μ〜20μ、特に1μ〜5
μが適している。
The liquid crystal element of the present invention is obtained by disposing the liquid crystal composition of the present invention obtained as described above between a pair of electrode substrates. The cell thickness of the liquid crystal element is preferably as thin as possible, generally 0.5 μ to 20 μ, particularly 1 μ to 5 μm.
μ is suitable.

又、基板はガラス板あるいはプラスチツク板などから
なり、さらに基板の上には透明電極が形成されている。
The substrate is made of a glass plate or a plastic plate, and a transparent electrode is formed on the substrate.

そしてこのような透明電極を設けた基板には例えば、
一酸化硅素、二酸化硅素、、酸化アルミニウム、ジルコ
ニア、フツ化マグネシウム、酸化セリウム、フツ化セリ
ウム、シリコン窒化物、シリコン炭化物、ホウ素窒化物
などの無機絶縁物質やポリビニルアルコール、ポリイミ
ド、ポリアミドイミド、ポリエステルイミド、ポリパラ
キシリレン、ポリエステル、ポリカーボネート、ポリビ
ニルアセタール、ポリ塩化ビニル、ポリアミド、ポリス
チレン、セルロース樹脂、メラミン樹脂、ユリア樹脂や
アクリル樹脂などの有機絶縁物質を用いて皮膜形成した
配向制御膜を設けることができる。
And a substrate provided with such a transparent electrode, for example,
Inorganic insulating materials such as silicon monoxide, silicon dioxide, aluminum oxide, zirconia, magnesium fluoride, cerium oxide, cerium fluoride, silicon nitride, silicon carbide, boron nitride, polyvinyl alcohol, polyimide, polyamideimide, polyesterimide It is possible to provide an orientation control film formed by using an organic insulating substance such as polyparaxylylene, polyester, polycarbonate, polyvinyl acetal, polyvinyl chloride, polyamide, polystyrene, cellulose resin, melamine resin, urea resin or acrylic resin. it can.

この配向制御膜に付与する一軸性配向処理軸は前述の
如き無機絶縁物質又は有機絶縁物質を被膜形成した後
に、その表面をビロード、布や紙で一方向に摺擦(ラビ
ング)することによって得られる。特に本発明では配向
制御膜としてラビング処理によって一軸性配向処理軸が
付与されたポリイミド膜、ポリアミド膜又はポリビニル
アルコール膜を用いるのが好ましい。又、この配向制御
膜105は一方の基板のみに設けてもよい。
The uniaxial alignment treatment axis imparted to this alignment control film is obtained by forming a film of the above-mentioned inorganic insulating material or organic insulating material and then rubbing the surface in one direction with velvet, cloth or paper. To be In particular, in the present invention, it is preferable to use a polyimide film, a polyamide film, or a polyvinyl alcohol film having a uniaxial alignment treatment axis provided by a rubbing treatment as the alignment control film. The orientation control film 105 may be provided on only one substrate.

本発明の別の好ましい具体例では、SiOやSiO2などの
無機絶縁物質を基板の上に斜め蒸着法によって被膜形成
することによって、一軸性配向処理軸が付与された配向
制御膜を得ることができる。
In another preferred embodiment of the present invention, an inorganic insulating substance such as SiO or SiO 2 is formed on the substrate by oblique vapor deposition to obtain an alignment control film having a uniaxial alignment treatment axis. it can.

又、前述した無機絶縁物質や有機絶縁物質を被膜形成
した後に、該被膜の表面を斜方エツチング法によりエツ
チングすることにより、その表面に配向制御効果を付与
することができる。
Further, after forming a film of the above-mentioned inorganic insulating material or organic insulating material, the surface of the film is etched by the oblique etching method, whereby the orientation control effect can be imparted to the surface.

前述の配向制御膜は、同時に絶縁膜としても機能させ
ることが好ましく、このためにこの配向制御膜の膜厚は
一般に100Å〜1μ、好ましくは500Å〜5000Åの範囲に
設定することができる。この絶縁膜は、液晶層に微量に
含有される不純物等の為に生ずる電流の発生を防止でき
る利点をも有しており、従って動作を繰り返し行なって
も液晶化合物を劣化させることがない。
It is preferable that the above-mentioned orientation control film also functions as an insulating film at the same time. For this reason, the thickness of the orientation control film can be set generally in the range of 100Å to 1 µ, and preferably in the range of 500Å to 5000Å. This insulating film also has an advantage of being able to prevent the generation of a current generated due to impurities contained in the liquid crystal layer in a trace amount, and therefore does not deteriorate the liquid crystal compound even if the operation is repeated.

また、本発明の液晶素子では前述の配向制御膜と同様
のものをもう一方の基板aの設けることができる。
In the liquid crystal element of the present invention, the same substrate as the above-mentioned alignment control film can be provided on the other substrate a.

以下実施例により、本発明を更に具体的に説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例1 前記表1に記載の該Aの液晶化合物と前記表2に記
載の該Bの液晶化合物(16)とを混合した。得られた液
晶組成物の相転移温度(昇温過程)の変化を相図として
第1図に示す。
Example 1 The liquid crystal compound of A described in Table 1 and the liquid crystal compound of B described in Table 2 (16) were mixed. The change in phase transition temperature (temperature rising process) of the obtained liquid crystal composition is shown in FIG. 1 as a phase diagram.

第1図より明らかな通り液晶化合物と(16)を24:7
6の比率で混合すると配向性向上に必要なスメクチツク
A相の温度範囲は広がった。また、SmCの温度範囲も
室温付近まで大きく広がり過冷却温度でもSmCを比較
的安定に保った。
As is clear from FIG. 1, the liquid crystal compound and (16) were mixed at 24: 7.
When mixed at a ratio of 6, the temperature range of the smectic A phase necessary for improving the orientation was widened. In addition, the temperature range of SmC * expanded widely to around room temperature and kept SmC * relatively stable even at the supercooling temperature.

実施例2 ピツチ100μmで幅62.5μmでストライプ状のITO膜を
電極として設けたガラス基板上にポリイミド形成溶液
(日立化成工業(株)製の「PIQ」;不揮発分濃度14、5
wt%)をスピナー塗布機で塗布し、120℃で30分間、200
℃で60分間、そして350℃で30分間加熱を行なって塗膜
を形成した。
Example 2 A polyimide-forming solution ("PIQ" manufactured by Hitachi Chemical Co., Ltd .; nonvolatile concentration: 14, 5) on a glass substrate provided with an ITO film in a stripe shape having a width of 62.5 μm and a width of 62.5 μm as an electrode.
wt%) with a spinner coater, and 200 at 120 ℃ for 30 minutes.
The coating was formed by heating at 60 ° C for 60 minutes and then at 350 ° C for 30 minutes.

次に塗膜を形成した一対のガラス基板を100g/cm2の押
圧下でラビングし、このラビングした一対のガラス基板
の上下のラビング方向が平行になる様に重ね合せ、注入
口となる個所を除いたその周辺をシールした。この時の
一対のガラス基板の間隔は2μであった。
Next, rub the pair of glass substrates with the coating film under a pressure of 100 g / cm 2 , and stack the pair of rubbed glass substrates so that the upper and lower rubbing directions are parallel to each other. The removed area was sealed. The distance between the pair of glass substrates at this time was 2 μm.

次に実施例1の液晶組成物を加熱して等方相とし、上
記で作製したセル内に減圧下で注入口から注入し注入口
を封口した。このセルを徐冷によって降温させ、温度を
約35℃で維持させた状態で一対の偏光子をクロスニコル
状態で設置してから顕微鏡観察したところモノドメイン
の非らせん構造のSmCが形成されている事が確認でき
た。
Next, the liquid crystal composition of Example 1 was heated to form an isotropic phase, and the liquid crystal composition was injected into the cell prepared above under reduced pressure from the injection port and the injection port was sealed. This cell was gradually cooled to lower the temperature, and a pair of polarizers were placed in a crossed Nicols state while maintaining the temperature at about 35 ° C, and microscopic observation revealed that SmC * with a monodomain non-helical structure was formed. I was able to confirm that

また、上記液晶素子につきピーク・トウ・ピーク電圧
として10Vの電圧印加により直交ニコル下での光学的な
応答を検知して応答速度を測定した。
Further, the response speed was measured by detecting an optical response under a crossed Nicols by applying a voltage of 10 V as a peak-to-peak voltage for the above liquid crystal element.

その結果を下表3に示す。 The results are shown in Table 3 below.

以上からわかるように単体の液晶化合物より本発明に
従う混合液晶組成物よりなる液晶素子の方が、応答が速
く特に低温においても応答速度が改善された液晶素子を
得ることができた。
As can be seen from the above, a liquid crystal device composed of the mixed liquid crystal composition according to the present invention has a faster response than a single liquid crystal compound, and a liquid crystal device having an improved response speed can be obtained particularly at a low temperature.

実施例3 前記表1に記載の該Aの液晶と、前記表2に記載の
該Bの液晶(22)とを40:60の比率で混合して液晶組成
物を得た。54〜66℃でSmA相を有していた。
Example 3 The liquid crystal of A described in Table 1 and the liquid crystal of B described in Table 2 (22) were mixed at a ratio of 40:60 to obtain a liquid crystal composition. It had an SmA phase at 54-66 ° C.

また21〜54℃と室温までの広い温度範囲でSmC相を
有し、過冷却温度でもSmCを比較的安定に保ってい
た。
In addition, it has SmC * phase in a wide temperature range from 21 to 54 ℃ and room temperature, and maintains SmC * relatively stable even at supercooling temperature.

実施例4 ピツチ100μmで幅62.5μmでストライプ状のITO膜を
電極として設けたガラス基板上にポリビニルアルコール
形成水溶液(クラレ(株)製の「R−2105」;不揮発分
濃度2wt%)をスピナー塗布機で塗布し、180℃で60分間
加熱を行なって塗膜を形成した。
Example 4 A polyvinyl alcohol-forming aqueous solution (“R-2105” manufactured by Kuraray Co., Ltd .; nonvolatile content concentration 2 wt%) was applied onto a glass substrate having a pitch of 100 μm and a width of 62.5 μm and provided with a striped ITO film as an electrode. It was applied by a machine and heated at 180 ° C. for 60 minutes to form a coating film.

以下、実施例2と同様に素子を作成した。 Hereinafter, an element was prepared in the same manner as in Example 2.

次に、実施例3の液晶組成物を用い実施例2と同様の
方法で液晶素子を作成してから顕微鏡観察を行なったと
ころ、モノドメインの非らせん構造のSmCが形成され
ていることが確認できた。
Next, a liquid crystal device was prepared by using the liquid crystal composition of Example 3 in the same manner as in Example 2 and then observed under a microscope. As a result, it was found that SmC * having a monodomain non-helical structure was formed. It could be confirmed.

さらに上記液晶素子につき、実施例2と同様な方法で
応答速度を26℃において測定したところ350μsと応答
速度が改善されていた。(単体での液晶化合物(22)の
30℃における応答速度は470μsであった。) 実施例5 前記表1に記載の該Aの液晶と前記表2に記載の該
Bの液晶(19)を25:75の比率で混合して液晶組成物を
得た。40〜47℃でSmAを有していた。また29〜40℃と室
温付近までの温度範囲でSmC相を有し、過冷却温度で
もSmCを比較的安定に保っていた。
Furthermore, when the response speed of the above liquid crystal element was measured at 26 ° C. by the same method as in Example 2, the response speed was improved to 350 μs. (Of liquid crystal compound (22) by itself
The response speed at 30 ° C. was 470 μs. Example 5 The liquid crystal of A described in Table 1 and the liquid crystal of B described in Table 2 (19) were mixed at a ratio of 25:75 to obtain a liquid crystal composition. It had SmA at 40-47 ° C. In addition, it has a SmC * phase in the temperature range from 29 to 40 ° C, which is close to room temperature, and maintains SmC * relatively stable even at supercooling temperatures.

実施例6 ピツチ100μmで幅62.5μmでストライプ状のITO膜を
電極として設けたガラス基板上にポリビニルアルコール
形成水溶液(日本合成化学工業(株)製の「EG−25」;
不揮発分濃度2wt%)をスピナー塗布機で塗布し、180℃
で60分間加熱を行なって塗膜を形成した。
Example 6 A polyvinyl alcohol-forming aqueous solution (“EG-25” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) was formed on a glass substrate having a 100 μm pitch, a 62.5 μm width and a striped ITO film as an electrode.
Nonvolatile content (2 wt%) is applied with a spinner coater and 180 ℃
Was heated for 60 minutes to form a coating film.

以下、実施例2と同様な方法で素子を形成した。 Hereinafter, an element was formed by the same method as in Example 2.

次に実施例5の液晶組成物を用いて実施例5と同様の
方法で液晶素子を作成してから顕微鏡観察を行なったと
ころ、モノドメインの非らせん構造のSmCが形成され
ていることが確認できた。
Next, a liquid crystal element was prepared by using the liquid crystal composition of Example 5 in the same manner as in Example 5 and then observed under a microscope. As a result, it was found that SmC * having a monodomain non-helical structure was formed. It could be confirmed.

さらに上記液晶素子につき、実施例2と同様な方法で
応答速度を35℃において測定したところ170μsecと応答
速度が改善されていた。(単体での液晶化合物(19)の
35℃における応答速度は250μsであった。) 実施例7 表1の該Aの液晶と表2の該Bの液晶(22)と該B
に属する以下の式で表わされる液晶(23)とを4:3:3の
比率で混合して液晶組成物を得た。−35℃〜54℃の広い
温度範囲でSmC相を有していた。
Furthermore, when the response speed of the above liquid crystal element was measured at 35 ° C. in the same manner as in Example 2, the response speed was improved to 170 μsec. (Of the liquid crystal compound (19) alone
The response speed at 35 ° C. was 250 μs. Example 7 The liquid crystal of A in Table 1, the liquid crystal of B in Table 2 (22) and the liquid crystal of B
And a liquid crystal (23) represented by the following formula, which belongs to, were mixed in a ratio of 4: 3: 3 to obtain a liquid crystal composition. It had a SmC * phase in a wide temperature range of -35 ° C to 54 ° C.

比較実験 下記の組成物を用いたことを除いて実施例2と同様に
して液晶素子を作成し、応答速度を測定した。
Comparative Experiment A liquid crystal device was prepared in the same manner as in Example 2 except that the following composition was used, and the response speed was measured.

組成物A(本発明) 表1の液晶化合物(Aに相当する化合物) 30重量部 表2の液晶化合物(16)(Bに相当する化合物)70重量
部 組成物B(比較例) 30重量部 表2の液晶化合物(16)(Bに相当する化合物)70重量
部 組成物A 組成物B 応答速度(40℃) 313μs 335μs (30℃) あ75μs 442μs 上記の結果から、組成物Aは組成物Bよりも低温(30
℃)における応答速度が一層速く、しかも温度変化(30
℃と40℃)に伴う応答速度の変動がより一層小さい。
Composition A (invention) Liquid crystal compound of Table 1 (compound corresponding to A) 30 parts by weight Liquid crystal compound (16) of Table 2 (compound corresponding to B) 70 parts by weight Composition B (comparative example) 30 parts by weight Liquid crystal compound (16) in Table 2 (compound corresponding to B) 70 parts by weight Composition A Composition B Response speed (40 ° C) 313 μs 335 μs (30 ° C.) 75 μs 442 μs From the above results, composition A Is lower than composition B (30
Response speed at ℃) is faster, and temperature change (30
The fluctuation of the response speed with ℃ and 40 ℃) is smaller.

〔発明の効果〕〔The invention's effect〕

以上の実施例からわかるように光学活性基を有し、降
温過程で等方相からスメクチツクA相およびスメクチツ
クC相より秩序度の高い相に相転移を生じる化合物とカ
イラルスメクチツク相を示す化合物とを混合することに
より、配向性向上に必要なスメクチツクA相の温度範囲
を広げることができ、さらにはカイラルスメクチック相
を低温域に広げることが可能となった。それにより応答
速度の面でも改善が見出され、単独の液晶化合物にはな
い優れた特性を持つ液晶組成物が得られた。
As can be seen from the above examples, a compound having an optically active group and causing a phase transition from an isotropic phase to a phase having a higher degree of order than the smectic A phase and the smectic C phase and a compound exhibiting a chiral smectic phase By mixing and, the temperature range of the smectic A phase necessary for improving the orientation can be expanded, and further, the chiral smectic phase can be expanded to a low temperature range. As a result, an improvement in response speed was also found, and a liquid crystal composition having excellent characteristics not found in a single liquid crystal compound was obtained.

また上記液晶組成物を用いる本発明の液晶素子によれ
ば、強誘電性液晶の双安定性に基づく素子の作動と液晶
層のモノドメイン性とを両立し得ることが可能である。
Further, according to the liquid crystal device of the present invention using the above liquid crystal composition, it is possible to achieve both the operation of the device based on the bistability of the ferroelectric liquid crystal and the monodomain property of the liquid crystal layer.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例1による液晶化合物と液晶化合物(1
6)の混合による相転移温度の組成による変化を示す相
図である。
FIG. 1 shows the liquid crystal compound and the liquid crystal compound (1
FIG. 6 is a phase diagram showing changes in composition of phase transition temperature due to mixing in 6).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内海 俊治 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 坪山 明 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 二見 幸子 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 昭60−32748(JP,A) 特開 昭59−128357(JP,A) 特開 昭61−203984(JP,A) ─────────────────────────────────────────────────── (72) Inventor Shunji Utsumi 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Akira Tsuboyama 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. Incorporated (72) Inventor Sachiko Futami 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (56) Reference JP-A-60-32748 (JP, A) JP-A-59-128357 (JP , A) JP 61-203984 (JP, A)

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】降温過程でスメクチックA相からスメクチ
ックC相より秩序度の高い相に順次相転移を生じる化合
物(A)の少なくとも1種と、カイラルスメクチック相
を示す化合物(B)の少なくとも1種とを含有し、前記
化合物(A)の混合比率が50重量%未満であることを特
徴とする液晶組成物。
1. At least one compound (A) and a compound (B) exhibiting a chiral smectic phase, which sequentially undergo phase transitions from a smectic A phase to a phase having a higher degree of order than the smectic C phase in the course of cooling. And a mixture ratio of the compound (A) is less than 50% by weight.
【請求項2】前記化合物(B)を2種以上含有する特許
請求の範囲第1項記載の液晶組成物。
2. The liquid crystal composition according to claim 1, which contains two or more kinds of the compound (B).
【請求項3】前記液晶組成物が降温過程でスメクチック
A相からカイラルスメクチック相に順次相転移を生じる
液晶組成物である特許請求の範囲第1項記載の液晶組成
物。
3. The liquid crystal composition according to claim 1, wherein the liquid crystal composition is a liquid crystal composition which sequentially undergoes a phase transition from a smectic A phase to a chiral smectic phase during a temperature lowering process.
【請求項4】前記カイラルスメクチック相がC相、H
相、F相、J相、K相、I相、又はG相である特許請求
の範囲第1項記載の液晶組成物。
4. The chiral smectic phase is C phase and H
The liquid crystal composition according to claim 1, which is a phase, an F phase, a J phase, a K phase, an I phase, or a G phase.
【請求項5】前記化合物(A)の降温過程におけるスメ
クチックA相の温度範囲が1℃以上である特許請求の範
囲第1項記載の液晶組成物。
5. The liquid crystal composition according to claim 1, wherein the temperature range of the smectic A phase in the temperature lowering process of the compound (A) is 1 ° C. or higher.
【請求項6】一対の基板間に、配向制御層を介して、降
温過程でスメクチックA相からスメクチックC相より秩
序度の高い相に順次相転移を生じる化合物(A)の少な
くとも1種とカイラルスメクチック相を示す化合物
(B)の少なくとも1種とを含有し、前記化合物(A)
の配合比率が50重量%未満である液晶組成物を配置した
ことを特徴とする液晶素子。
6. A chiral compound and at least one compound (A) which sequentially undergo phase transition from a smectic A phase to a phase having a higher degree of order than the smectic C phase in a temperature lowering process between a pair of substrates via an orientation control layer. The compound (A) containing at least one compound (B) exhibiting a smectic phase,
And a liquid crystal composition having a blending ratio of less than 50% by weight.
【請求項7】前記液晶組成物が、前記化合物(B)を2
種以上含有する特許請求の範囲第6項記載の液晶素子。
7. The liquid crystal composition comprises the compound (B) 2
The liquid crystal device according to claim 6, which contains at least one species.
【請求項8】前記液晶組成物が降温過程でスメクチック
A相からカイラルスメクチック相に順次相転移を生じる
液晶組成物である特許請求の範囲第6項記載の液晶素
子。
8. The liquid crystal device according to claim 6, wherein the liquid crystal composition is a liquid crystal composition which sequentially undergoes a phase transition from a smectic A phase to a chiral smectic phase during a temperature lowering process.
【請求項9】前記液晶組成物におけるカイラルスメクチ
ック相がC相、H相、F相、J相、K相、I相、又はG
相である特許請求の範囲第6項記載の液晶素子。
9. The chiral smectic phase in the liquid crystal composition is C phase, H phase, F phase, J phase, K phase, I phase, or G phase.
The liquid crystal element according to claim 6, which is in a phase.
【請求項10】前記化合物(A)の降温過程におけるス
メクチックA相の温度範囲が1℃以上である特許請求の
範囲第6項記載の液晶素子。
10. The liquid crystal device according to claim 6, wherein the temperature range of the smectic A phase in the temperature lowering process of the compound (A) is 1 ° C. or higher.
【請求項11】前記配向制御膜が一軸性のラビング処理
が施されたポリイミド膜、ポリアミド膜又はポリビニル
アルコール膜である特許請求の範囲第6項記載の液晶素
子。
11. The liquid crystal device according to claim 6, wherein the alignment control film is a polyimide film, a polyamide film or a polyvinyl alcohol film which has been uniaxially rubbed.
JP61246759A 1986-10-16 1986-10-16 Liquid crystal composition and liquid crystal device using the same Expired - Fee Related JP2531646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61246759A JP2531646B2 (en) 1986-10-16 1986-10-16 Liquid crystal composition and liquid crystal device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61246759A JP2531646B2 (en) 1986-10-16 1986-10-16 Liquid crystal composition and liquid crystal device using the same

Publications (2)

Publication Number Publication Date
JPS63101481A JPS63101481A (en) 1988-05-06
JP2531646B2 true JP2531646B2 (en) 1996-09-04

Family

ID=17153232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61246759A Expired - Fee Related JP2531646B2 (en) 1986-10-16 1986-10-16 Liquid crystal composition and liquid crystal device using the same

Country Status (1)

Country Link
JP (1) JP2531646B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011060496A (en) 2009-09-08 2011-03-24 Yamaichi Electronics Co Ltd Electric connection device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032748A (en) * 1983-07-29 1985-02-19 Hitachi Ltd Liquid crystal compound
JPS59128357A (en) * 1983-01-06 1984-07-24 Chisso Corp Liquid crystal substance and liquid crystal composition
JPH07100791B2 (en) * 1985-12-28 1995-11-01 キヤノン株式会社 Liquid crystal composition

Also Published As

Publication number Publication date
JPS63101481A (en) 1988-05-06

Similar Documents

Publication Publication Date Title
US4783148A (en) Ferroelectric liquid crystal device
JPS61249019A (en) Liquid crystal element
JPH05224241A (en) Liquid crystal element and display device formed by using this element
JP2531646B2 (en) Liquid crystal composition and liquid crystal device using the same
JP2796753B2 (en) Chiral smectic liquid crystal composition and liquid crystal device using the same
JP2510664B2 (en) Liquid crystalline compound, liquid crystal composition containing the same, and liquid crystal device
JP2692815B2 (en) Liquid crystal composition and liquid crystal device containing the same
JPS61241727A (en) Liquid crystal element
JP2953624B2 (en) Ferroelectric liquid crystal composition
JPH04272989A (en) Liquid crystal composition, liquid crystal element containing same, and display method and display device using same
JP2704821B2 (en) Liquid crystal element
JP2683223B2 (en) Liquid crystal composition and liquid crystal device containing the same
JP2683222B2 (en) Liquid crystal composition and liquid crystal device containing the same
JPH01252690A (en) Liquid crystal composition and liquid crystal element
JPS63101483A (en) Liquid crystal composition and liquid crystal element containing same
JP3597556B2 (en) Liquid crystal composition and liquid crystal device
JP2799034B2 (en) Ferroelectric liquid crystal composition and ferroelectric liquid crystal device
JP3111610B2 (en) Ferroelectric liquid crystal composition and device
JP2547974B2 (en) Smectic liquid crystal device and manufacturing method thereof
JPS63256688A (en) Liquid crystal composition
JPH01207280A (en) Liquid crystal-formable compound, liquid crystal composition containing said compound and liquid crystal element using said compound
JPS61208032A (en) Liquid crystal element
JPS61205920A (en) Liquid crystal element
JP4155534B2 (en) Antiferroelectric liquid crystal composition and liquid crystal device having the same
JPS62181389A (en) Liquid crystal element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees