JPH07100791B2 - Liquid crystal composition - Google Patents

Liquid crystal composition

Info

Publication number
JPH07100791B2
JPH07100791B2 JP20398486A JP20398486A JPH07100791B2 JP H07100791 B2 JPH07100791 B2 JP H07100791B2 JP 20398486 A JP20398486 A JP 20398486A JP 20398486 A JP20398486 A JP 20398486A JP H07100791 B2 JPH07100791 B2 JP H07100791B2
Authority
JP
Japan
Prior art keywords
liquid crystal
formula
crystal composition
carbon atoms
crystal compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20398486A
Other languages
Japanese (ja)
Other versions
JPS62230883A (en
Inventor
明 坪山
宏之 北山
一春 片桐
和夫 吉永
健司 新庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of JPS62230883A publication Critical patent/JPS62230883A/en
Publication of JPH07100791B2 publication Critical patent/JPH07100791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は液晶表示素子や液晶−光シャッター等に利用さ
れる液晶素子に用いる液晶組成物に関し、更に詳しく
は、電界に対する応答特性が改善された新規な液晶組成
物に関するものである。
TECHNICAL FIELD The present invention relates to a liquid crystal composition used for a liquid crystal display device, a liquid crystal device used for a liquid crystal-optical shutter, or the like, and more specifically, a novel liquid crystal composition having improved response characteristics to an electric field. It is about things.

背景技術 従来より、液晶は電気光学素子として種々の分野で応用
されている。現在実用化されている液晶素子はほとんど
が、例えばM.SchadtとW.Helfrich著“Applied Physics
Letters" Vo.18、No.4(1971.2.15)、P.127〜128の
“Voltage−Dpendent Optical Activity of a Tw
isted Nematic Liquid Crystal"に示されたTN(twis
ted nematic)型の液晶を用いたものである。
BACKGROUND ART Liquid crystals have been conventionally applied as electro-optical elements in various fields. Most of the liquid crystal devices currently in practical use are, for example, “Applied Physics” by M. Schadt and W. Helfrich.
Letters "Vo.18, No.4 (1971.2.15), P.127-128" Voltage-Dpendent Optical Activity of a Tw "
TN (twis shown in isted Nematic Liquid Crystal)
ted nematic) type liquid crystal is used.

これらは、液晶の誘電的配列効果に基づいており、液晶
分子の誘電異方性のために平均分子軸方向が、加えられ
た電場により特定の方向を向く効果を利用している。こ
れらの素子の光学的な応答速度の限界はミリ秒であると
いわれ、多くの応用のためには遅すぎる。一方、大型平
面ディスプレイへの応用では、価格、生産性などを考え
合せると単純マトリクス方式による駆動が最も有力であ
る。単純マトリクス方式においては、走査電極群と信号
電極群をマトリクス状に構成した電極構成が採用され、
その駆動のあめには、走査電極群に順次周期的にアドレ
ス信号を選択印加し、信号電極群には所定の情報信号を
アドレス信号と同期させて並列的に選択印加する時分割
駆動方式が採用される。
These are based on the dielectric alignment effect of liquid crystals, and utilize the effect that the average molecular axis direction is directed in a specific direction by an applied electric field due to the dielectric anisotropy of liquid crystal molecules. The optical response speed limit of these devices is said to be milliseconds, which is too slow for many applications. On the other hand, in the application to a large flat panel display, the drive by the simple matrix method is the most effective in consideration of price and productivity. In the simple matrix system, an electrode configuration in which the scanning electrode group and the signal electrode group are configured in a matrix is adopted,
For the driving, a time-division drive method is adopted in which an address signal is sequentially and selectively applied to the scanning electrode group and a predetermined information signal is selectively applied to the signal electrode group in parallel in synchronization with the address signal. To be done.

しかしこのような駆動方式の素子に前述したTN型の液晶
を採用すると走査電極が選択され、信号電極が選択され
ない領域、或いは走査電極が選択されず、信号電極が選
択される領域(所謂“半選択点”)にも有限に電界がか
かってしまう。選択点にかかる電圧と、半選択点にかか
る電圧の差が充分に大きく、液晶分子を電界に垂直に配
列させるのに要する電圧閾値がこの中間の電圧値に設定
されるならば、表示素子は正常に動作するわけである
が、走査線数(N)を増やして行なった場合、画面全体
(1フレーム)を走査する間に一つの選択点に有効な電
界がかかっている時間(duty比)が1/Nの割合で減少し
てしまう。このために、くり返し走査を行った場合の選
択点と非選択点にかかる実効値としての電圧差は、走査
線数が増えれば増える程小さくなり、結果的には画像コ
ントラストの低下やクロストークが避け難い欠点となっ
ている。このような現象は、双安定性を有さない液晶
(電極面に対し、液晶分子が水平に配向しているのが安
定状態であり、電界が有効に印加されている間のみ垂直
に配向する)を時間的蓄積効果を利用して駆動する(即
ち、繰り返し走査する)ときに生ずる本質的には避け難
い問題点である。この点を改良するために、電圧平均化
法、2周波駆動法や、多重マトリクス法等が既に提案さ
れているが、いずれの方法でも不充分であり、表示素子
の大画面化や高密度化は、走査線数が充分に増やせない
ことによって頭打ちになっているのが現状である。
However, when the above-mentioned TN type liquid crystal is adopted for the element of such a driving system, the scan electrode is selected and the signal electrode is not selected, or the scan electrode is not selected and the signal electrode is selected (so-called “half-area”). A finite electric field is also applied to the selection point "). If the difference between the voltage applied to the selection point and the voltage applied to the semi-selection point is sufficiently large and the voltage threshold value required to align the liquid crystal molecules perpendicularly to the electric field is set to the intermediate voltage value, the display element is Although it operates normally, when the number of scanning lines (N) is increased, the time (duty ratio) that an effective electric field is applied to one selection point while scanning the entire screen (1 frame) Will decrease at a rate of 1 / N. For this reason, the voltage difference as the effective value applied to the selected point and the non-selected point in the case of performing repeated scanning becomes smaller as the number of scanning lines increases, and as a result, lowering of image contrast and crosstalk occur. It is an unavoidable drawback. Such a phenomenon is caused by a liquid crystal having no bistability (a stable state in which liquid crystal molecules are horizontally aligned with respect to an electrode surface, and vertically aligned only when an electric field is effectively applied. Is an inherently unavoidable problem that occurs when (1) is driven by utilizing the temporal accumulation effect (that is, repeated scanning). In order to improve this point, a voltage averaging method, a two-frequency driving method, a multiple matrix method, etc. have already been proposed, but none of them is sufficient, and the display element has a large screen and high density. The current situation is that the number of scanning lines has reached a ceiling because the number of scanning lines cannot be increased sufficiently.

このような従来型の液晶素子の欠点を改善するものとし
て、双安定性を有する液晶素子の使用がClarkおよびLag
erwallにより提案されている(特開昭56−107216号公
報、米国特許第4367924号明細書等)。双安定性液晶と
しては、一般に、カイラルスメクティックC相(Sm
C)又はH相(SmH)を有する強誘電性液晶が用いら
れる。この強誘電性液晶は電界に対して第1の光学的安
定状態と第2の光学的安定状態からなる双安定状態を有
し、従って前述のTN型の液晶で用いられた光学変調素子
とは異なり、例えば一方の電界ベクトルに対して第1の
光学的安定状態に液晶が配向し、他方の電界ベクトルに
対しては第2の光学的安定状態に液晶が配向される。ま
たこの型の液晶は、加えられる電界に応答して、上記2
つの安定状態のいずれかを取り、且つ電界の印加のない
ときはその状態を維持する性質(双安定性)を有する。
As a solution to these drawbacks of conventional liquid crystal devices, the use of bistable liquid crystal devices is explained by Clark and Lag.
proposed by Erwall (Japanese Patent Laid-Open No. 56-107216, US Pat. No. 4,367,924, etc.). As a bistable liquid crystal, a chiral smectic C phase (Sm
Ferroelectric liquid crystal having C * ) or H phase (SmH * ) is used. This ferroelectric liquid crystal has a bistable state consisting of a first optical stable state and a second optical stable state with respect to an electric field. Therefore, it is different from the optical modulation element used in the above-mentioned TN type liquid crystal. Differently, for example, the liquid crystal is aligned in the first optically stable state with respect to one electric field vector, and is aligned with the second optically stable state in the other electric field vector. This type of liquid crystal also responds to the applied electric field by
It has the property (bistability) of taking one of the two stable states and maintaining that state when no electric field is applied.

以上のような双安定性を有する特徴に加えて、強誘電液
晶は高速応答性であるという優れた特徴を持つ。それは
強誘電液晶の持つ自発分極と印加電場が直接作用して配
向状態の転移を誘起するためであり、誘電率異方性と電
場の作用による応答速度より3〜4オーダー速い。
In addition to the above-mentioned characteristic of having bistability, the ferroelectric liquid crystal has an excellent characteristic of high-speed response. This is because the spontaneous polarization of the ferroelectric liquid crystal and the applied electric field directly act to induce the transition of the alignment state, which is 3 to 4 orders faster than the response speed due to the action of the dielectric anisotropy and the electric field.

このように強誘電液晶はきわめて優れた特性を潜在的に
有しており、このような性質を利用することにより、上
述した従来のTN型素子の問題点の多くに対して、かなり
本質的な改善が得られる。特に、高速光学光シャッター
や、高密度、大画面ディスプレイへの応用が期待され
る。このため強誘電性を持つ液晶材料に関しては広く研
究がなされているが、現在までに開発された強誘電性液
晶材料は、低温作動特性、高速応答性等を含めて液晶素
子に用いるに十分な特性を備えているとは言い難い。
As described above, the ferroelectric liquid crystal potentially has extremely excellent characteristics, and by utilizing such characteristics, it is considerably essential to many of the problems of the conventional TN type element described above. You get an improvement. In particular, it is expected to be applied to high-speed optical optical shutters and high-density, large-screen displays. For this reason, although extensive research has been conducted on liquid crystal materials having ferroelectricity, the ferroelectric liquid crystal materials developed to date are sufficient for use in liquid crystal elements, including low-temperature operating characteristics and high-speed response. It is hard to say that it has characteristics.

発明の目的 本発明の目的は、特定の液晶化合物を混合することによ
って、低い温度領域でスメクチックC相を呈する液晶
組成物を提供し、同時に単独の液晶化合物では得られな
い種々の表示特性を有する液晶組成物ならびに該組成物
を使用する液晶素子を提供することである。
Object of the Invention An object of the present invention is to provide a liquid crystal composition exhibiting a smectic C * phase in a low temperature region by mixing a specific liquid crystal compound, and at the same time, to obtain various display characteristics which cannot be obtained by a single liquid crystal compound. A liquid crystal composition having the same and a liquid crystal device using the composition.

発明の概要 すなわち本発明は、下記一般式(I) (式中、R1は炭素数4〜18の直鎖アルキル基または直鎖
アルコキシ基でありR2は炭素数1〜18の直鎖状アルキル
基、Cは不斉炭素原子を表わしlおよびmは1または
2である)で表わされる光学活性な液晶化合物の少なく
とも1種と 下記一般式(II) (式中、R3は炭素数4〜18の直鎖アルキル基または直鎖
アルコキシ基でありR4は炭素数1〜18の直鎖状アルキル
基、Cは不斉炭素原子を表わす)で表わされる光学活
性な液晶化合物の少なくとも1種と、を含有することを
特徴とする液晶組成物、ならびに該液晶組成物を一対の
電極基板間に配置してなる液晶素子を提供するものであ
る。
SUMMARY OF THE INVENTION That is, the present invention provides the following general formula (I) (In the formula, R 1 is a linear alkyl group or a linear alkoxy group having 4 to 18 carbon atoms, R 2 is a linear alkyl group having 1 to 18 carbon atoms, C * is an asymmetric carbon atom, and l and m is 1 or 2) and at least one of the optically active liquid crystal compounds represented by the following general formula (II) (In the formula, R 3 is a linear alkyl group having 4 to 18 carbon atoms or a linear alkoxy group, R 4 is a linear alkyl group having 1 to 18 carbon atoms, and C * is an asymmetric carbon atom.) The present invention provides a liquid crystal composition containing at least one of the optically active liquid crystal compounds represented, and a liquid crystal element comprising the liquid crystal composition arranged between a pair of electrode substrates.

本発明者等の研究によれば、上記(I)式と(II)式の
液晶化合物を混合することにより、それぞれの液晶化合
物を単独で用いる場合に比べ、カイラルスメクチック相
を与える温度領域が、特に低温側において、広がり、且
つ応答速度が向上し、表示特性が改善されることが見出
されたのである。
According to the study by the present inventors, by mixing the liquid crystal compounds of the above formulas (I) and (II), the temperature range that gives a chiral smectic phase is It has been found that the display characteristics are improved by expanding the spread and the response speed, especially on the low temperature side.

特に前記(I)式でl=1、m=2であるところの下記
一般式(III) (式中、R1、R2は式(I)におけるものと同じ)で表わ
される液晶化合物の少なくとも1種と、前記(II)式で
表わされる光学活性な液晶化合物の少なくとも1種との
組合せの場合に、特に優れた特性の液晶組成物が得られ
る。特にかかる液晶組成物は、下述する様に低温域で強
誘電性を示すSmCを形成することができ、しかもSmC
の時に優れた高速応答性を示すことができる。
In particular, the following general formula (III) where l = 1 and m = 2 in the above formula (I) (In the formula, R 1 and R 2 are the same as those in formula (I)), and a combination of at least one liquid crystal compound represented by the formula (II) and at least one liquid crystal compound represented by the formula (II). In this case, a liquid crystal composition having particularly excellent characteristics can be obtained. In particular such a liquid crystal composition may form a SmC * exhibiting ferroelectric properties in a low temperature range as described below, moreover SmC *
At that time, excellent high-speed response can be exhibited.

以下、本発明を更に詳細に説明する。以下の記載におい
て量比を表わす「%」および「部」は、いずれも重量基
準とする。
Hereinafter, the present invention will be described in more detail. In the following description, “%” and “part” representing the quantitative ratio are based on weight.

発明の具体的説明 前記(I)式に示される液晶化合物は、本発明者等によ
る特願昭60−247994号の明細書に記載されるものであ
り、好ましくは同明細書に記載された下記一般式(A) (上記一般式中、R2は炭素数1〜18の直鎖状、分岐状も
しくは環状の飽和または不飽和の炭化水素基を示す。C
は不斉炭素原子を示す。XはOH基、ハロゲン、ベンジ
ルオキシ基、フェノキシ基、トルエンスルホン酸基、ア
セチルオキシ基、トリフルオロアセチルオキシ基から選
択される着脱可能な置換基を示す) で表わされる光学活性物質を経由して形成されることが
好ましい。例えば上記式(A)でXがOH基である光学活
性物質を経由して、以下の反応により合成することがで
きる。
DETAILED DESCRIPTION OF THE INVENTION The liquid crystal compound represented by the formula (I) is described in the specification of Japanese Patent Application No. 60-247994 by the present inventors, and preferably the following compound described in the specification. General formula (A) (In the above general formula, R 2 represents a linear, branched or cyclic saturated or unsaturated hydrocarbon group having 1 to 18 carbon atoms. C
* Indicates an asymmetric carbon atom. X represents a removable substituent selected from an OH group, a halogen, a benzyloxy group, a phenoxy group, a toluenesulfonic acid group, an acetyloxy group, and a trifluoroacetyloxy group) via an optically active substance represented by It is preferably formed. For example, it can be synthesized by the following reaction via an optically active substance in which X is an OH group in the above formula (A).

(ここでR1、R2、l、mは、前記で定義した通りであ
る。) また、一般式(II)で表わされる液晶化合物は、下記一
般式(B) (上記一般式中、R4は1〜18の直鎖状、分岐状もしくは
環状の飽和または不飽和の炭化水素基を示す。Cは不
斉炭素原子を示す。Yは、OH基、ハロゲン(Br、Cl、
I)、ベンジルオキシ基、フェノキシ基、トルエンスル
ホン酸基、アセチルオキシ基、トリフルオロアセチルオ
キシ基から選択される着脱可能な置換基を示す) で表わされる光学活性物質を経由して形成されることが
好ましい。例えば上記式(B)で、YがOH基である光学
活性物質を経由して、以下の反応により合成することが
できる。
(Here, R 1 , R 2 , 1, and m are as defined above.) The liquid crystal compound represented by the general formula (II) has the following general formula (B). (In the above general formula, R 4 represents a linear, branched, or cyclic saturated or unsaturated hydrocarbon group of 1 to 18. C * represents an asymmetric carbon atom. Y represents an OH group or halogen. (Br, Cl,
I), a benzyloxy group, a phenoxy group, a toluenesulfonic acid group, an acetyloxy group, and a trifluoroacetyloxy group, which is a removable substituent selected from the following). Is preferred. For example, in the above formula (B), it can be synthesized by the following reaction via an optically active substance in which Y is an OH group.

(ここで、R3及びR4は前記と同義である。) 一般式(I)および(II)で表わされる具体的な液晶化
合物例の構造式と液晶の相転移温度を下表1および表1
に示す。
(Here, R 3 and R 4 have the same meanings as described above.) The structural formulas of the specific liquid crystal compound examples represented by the general formulas (I) and (II) and the phase transition temperatures of the liquid crystals are shown in Table 1 and Table 1 below. 1
Shown in.

液晶化合物は一般式(I)および(II)で表わされるも
のであり、ここにあげたもののみに本発明が限られるわ
けではない。
The liquid crystal compound is represented by the general formulas (I) and (II), and the present invention is not limited to the compounds listed here.

表中、相転移温度の欄における記号は、それぞれ以下の
相を示す。
In the table, the symbols in the column of phase transition temperature indicate the following phases, respectively.

Cryst.:結晶相、SmA:スメクチックA相、 SmC:カイラルスメクチックC相、 N:ネマチック相、Ch:コレステリック相、 Iso:等方相、Sm1、Sm2、SmA、SmC以外のスメクチック
相(未同定)。
Cryst .: Crystal phase, SmA: Smectic A phase, SmC * : Chiral smectic C phase, N: Nematic phase, Ch: Cholesteric phase, Iso: Isotropic phase, Sm1, Sm2, SmA, smectic phase other than SmC * (not yet Identification).

本発明の液晶組成物は、上記式(I)の液晶化合物の少
なくとも1種1〜99%と、上記式(II)の液晶化合物の
少なくとも99〜1%を混合することにより形成すること
が好ましい。
The liquid crystal composition of the present invention is preferably formed by mixing at least one 1 to 99% of the liquid crystal compound of the above formula (I) and at least 99 to 1% of the above liquid crystal compound of the formula (II). .

また本発明の液晶素子は、上記式(I)および上記式
(II)の液晶化合物のほか、下式(1)〜(13)で示さ
れるような強誘電性液晶と組合わせると、SmCを低温
度化し、温度範囲を拡大することが可能となる。
In addition to the liquid crystal compounds of the above formulas (I) and (II), the liquid crystal device of the present invention is combined with a ferroelectric liquid crystal represented by the following formulas (1) to (13) to obtain SmC *. It is possible to lower the temperature and expand the temperature range.

このような場合においては、上記式(I)の液晶化合物
と上記式(II)の液晶化合物の合計量を、得られる液晶
組成物の1〜99%、特に5〜99%となる割合で使用する
ことが好ましい。
In such a case, the total amount of the liquid crystal compound of the above formula (I) and the liquid crystal compound of the above formula (II) is used in a proportion of 1 to 99%, particularly 5 to 99% of the obtained liquid crystal composition. Preferably.

また下式1)〜5)で示されるようなそれ自体はカイラ
ルでないスメクチック液晶に配合することにより強誘電
性液晶として使用可能な組成物が得られる。
Further, a composition that can be used as a ferroelectric liquid crystal can be obtained by blending with a smectic liquid crystal which is not itself chiral as represented by the following formulas 1) to 5).

この場合、一般式(I)および(II)で示される本発明
の液晶化合物を得られる液晶組成物の1〜99重量%、特
に5〜95重量%で使用することが好ましい。
In this case, it is preferable to use the liquid crystal compound of the present invention represented by the general formulas (I) and (II) in an amount of 1 to 99% by weight, particularly 5 to 95% by weight of the liquid crystal composition.

また本発明の液晶素子は、上記のようにして得られた本
発明の液晶組成物を一対の電極基板間に配置することに
より得られる。例えば、単純マトリクス駆動の液晶素子
を構成するためには、一方の基板上に走査電極群を、他
方の基板上に信号電極群を形成すればよい。
Further, the liquid crystal element of the present invention is obtained by disposing the liquid crystal composition of the present invention obtained as described above between a pair of electrode substrates. For example, in order to form a liquid crystal element of simple matrix drive, a scan electrode group may be formed on one substrate and a signal electrode group may be formed on the other substrate.

以下、実施例により、本発明を更に具体的に説明する。Hereinafter, the present invention will be described in more detail with reference to examples.

製造例1 前記表1に記載の液晶化合物3(p′−デシルオキシビ
フェニルカルボン酸p″(2−エトキシプロピルオキシ
カルボニル)フェニルエステル)を製造した。
Production Example 1 The liquid crystal compound 3 (p′-decyloxybiphenylcarboxylic acid p ″ (2-ethoxypropyloxycarbonyl) phenyl ester) shown in Table 1 was produced.

すなわちデシルオキシビフェニルカルボン酸4g(1.13×
10-2mol)にSOCl220mlを加え、3.5時間加熱還流した。
過剰のSOCl2を留去してデシルオキシビフェニルカルボ
ン酸クロライドを得た。
That is, 4 g of decyloxybiphenylcarboxylic acid (1.13 ×
20 ml of SOCl 2 was added to 10 −2 mol) and the mixture was heated under reflux for 3.5 hours.
Excessive SOCl 2 was distilled off to obtain decyloxybiphenylcarboxylic acid chloride.

得られた酸クロライドをトルエン10mlに溶かし、ピリジ
ン16mlに溶かした光学活性なp−ハイドロキシ安息香酸
2−エトキシプロピルエステル2.35g(1.13×10-2mol)
に滴下し、室温で55分放置した後3時間50分攪拌した。
The obtained acid chloride was dissolved in 10 ml of toluene, and dissolved in 16 ml of pyridine. 2.35 g (1.13 × 10 -2 mol) of optically active p-hydroxybenzoic acid 2-ethoxypropyl ester.
The mixture was added dropwise to the mixture, allowed to stand at room temperature for 55 minutes, and then stirred for 3 hours and 50 minutes.

反応混合物を冷水に抽入し、6NのHCl溶液、水で洗浄
し、乾燥し溶媒を留去して4.4gのp′−デシルオキシビ
フェニルカルボン酸p″(2−エトキシプロピルオキシ
カルボニル)フェニルエステルを得た。さらにシリカゲ
ルカラムクロマトグラフィーにより精製後、再結晶し1.
8gの精製物を得た。
The reaction mixture was extracted into cold water, washed with 6N HCl solution and water, dried and evaporated to remove 4.4 g of p'-decyloxybiphenylcarboxylic acid p "(2-ethoxypropyloxycarbonyl) phenyl ester. After further purification by silica gel column chromatography, recrystallization was performed 1.
8 g of purified product was obtained.

生成物について、以下のIRおよびNMRデータを得た。The following IR and NMR data were obtained on the product.

IR: 2940、2870、1740、1610、1515、1480、1395、1295、11
35、1090。1 H−NMR: 6.8〜8.2ppm(12H)、3.3〜4.3ppm(7H)、0.8〜1.8ppm
(25H)。
IR: 2940, 2870, 1740, 1610, 1515, 1480, 1395, 1295, 11
35, 1090. 1 H-NMR: 6.8 to 8.2 ppm (12H), 3.3 to 4.3 ppm (7H), 0.8 to 1.8 ppm
(25H).

製造例2 前記表2の液晶化合物12(4(2′−オクチルオキシプ
ロポキシ)フェニル−4′−ドデシルオキシビフェニル
−4−カーボキシレート)を合成した。
Production Example 2 The liquid crystal compound 12 (4 (2′-octyloxypropoxy) phenyl-4′-dodecyloxybiphenyl-4-carboxylate) in Table 2 was synthesized.

4−オキシビフェニル85gを1.5N−NaOH溶液1.5に溶解
し、温度が60℃をこえないようにして、メチル硫酸2モ
ルと反応させ、それから30分を要して70℃に温度をあげ
た。エタノールから再結晶することにより、融点80.5℃
(収率90〜95%)の4−メトキシビフェニル結晶を得
た。
85 g of 4-oxybiphenyl was dissolved in 1.5N-NaOH solution 1.5, reacted with 2 mol of methylsulfuric acid so that the temperature did not exceed 60 ° C, and then raised to 70 ° C over 30 minutes. Recrystallized from ethanol, melting point 80.5 ℃
4-methoxybiphenyl crystals (yield 90-95%) were obtained.

11.5gの4−メトキシビフェニルを、75mlの蒸留したば
かりの二硫化炭素に溶解したのち、0〜2℃に冷却し、
無水塩化アルミニウム9.5gを攪拌しながらすばやく加え
た。その後、アセチルクロライド5.8mlを5〜10分間で
滴下した。それから温度を徐々に35℃に上げ、反応を完
結させた。約45分間還流してから冷却し、冷濃塩酸60ml
を加えて分解した。水蒸気を溶媒中に吹き込み溶媒を除
いた後、良く攪拌しながら急速に冷却することにより、
褐色がかったピンク色の結晶を生じた。異性体の3−ケ
トンを除くために、エーテル40mlで2回抽出した後、イ
ソプロピルアルコールから再結晶した。その結果、融点
156.5℃の4−アセチル−4′−メトキシビフェニルが
収率60〜77%で得られた。
11.5 g of 4-methoxybiphenyl was dissolved in 75 ml of freshly distilled carbon disulfide and then cooled to 0-2 ° C,
9.5 g of anhydrous aluminum chloride was quickly added with stirring. Then, 5.8 ml of acetyl chloride was added dropwise over 5 to 10 minutes. Then the temperature was gradually raised to 35 ° C. to complete the reaction. Reflux for about 45 minutes and then cool to 60 ml of cold concentrated hydrochloric acid.
Was added and disassembled. By blowing water vapor into the solvent to remove the solvent, by rapidly cooling with good stirring,
This produced brownish pink crystals. To remove the isomeric 3-ketone, it was extracted twice with 40 ml of ether and then recrystallized from isopropyl alcohol. As a result, the melting point
4-Acetyl-4'-methoxybiphenyl at 156.5 ° C was obtained with a yield of 60-77%.

285mlのジオキサンに18gの4−アセチル−4′−メトキ
シビフェニルを溶解して、稀薄次亜臭素酸ナトリウムで
酸化した。エタノールと酢酸から再結晶することによ
り、融点285℃の4′−メトキシビフェニル−4−カル
ボン酸が得られた。
18 g of 4-acetyl-4'-methoxybiphenyl was dissolved in 285 ml of dioxane and oxidized with dilute sodium hypobromite. Recrystallization from ethanol and acetic acid gave 4'-methoxybiphenyl-4-carboxylic acid with a melting point of 285 ° C.

4′−メトキシビフェニル−4−カルボン酸25g、酢酸
1、48%臭素酸200mlを12〜14時間還流した後、2.5
の水中に投入する。冷却後、結晶を集めることにより、
融点288〜291℃の4′−ハイドロキシビフェニルカルボ
ン酸が収率90〜95%で得られた。
After refluxing 25 g of 4'-methoxybiphenyl-4-carboxylic acid, 200 ml of acetic acid and 48% bromic acid for 12 to 14 hours, 2.5
Put into the water. After cooling, by collecting the crystals,
4'-Hydroxybiphenylcarboxylic acid having a melting point of 288 to 291 ° C was obtained with a yield of 90 to 95%.

p−オキシビフェニルカルボン酸0.01モル、水酸化カリ
ウム0.02モルをアルコール300mlと水3ml中に溶解した。
その後、n−ドデシルブロマイド1.2モルを加え、12時
間還流した。1.12gの水酸化カリウムを含む10%溶液を
2時間還流して加水分解した後、エタノールと氷酢酸で
再結晶を行なって、4′−n−ドデシルオキシビフェニ
ル−カルボン酸を得た。
0.01 mol of p-oxybiphenylcarboxylic acid and 0.02 mol of potassium hydroxide were dissolved in 300 ml of alcohol and 3 ml of water.
Then, 1.2 mol of n-dodecyl bromide was added, and the mixture was refluxed for 12 hours. A 10% solution containing 1.12 g of potassium hydroxide was refluxed for 2 hours to be hydrolyzed and then recrystallized with ethanol and glacial acetic acid to obtain 4'-n-dodecyloxybiphenyl-carboxylic acid.

4′−n−ドデシルオキシビフェニルカルボン酸1.23g
に塩化チオニル40mlを加え、5時間加熱還流した。塩化
チオニルを留去し、さらに乾燥ベンゼン40mlを加え再度
留去した。乾燥ピリジン40mlを加え、冷却したのち、ハ
イドロキノンモノ(2′−ドデシルオキシプロピル)エ
ーテル1.37gを36mlの乾燥ベンゼンに溶解したものを滴
下し、16時間攪拌したのち4時間加熱還流した。冷却後
10%HCl水溶液150mlを加え、ベンゼンで抽出し、水、Na
2CO3水溶液、水で洗浄し無水Na2SO4で乾燥した。ベンゼ
ンを留去し、エタノールにて再結晶することにより、
(4(2′−オクチルオキシプロポキシ)フェニル−
4′−ドデシルオキシビフェニル−4−カーボキシレー
ト)を得た。生成物について、以下のIRおよびNMRデー
タを得た。
4'-n-dodecyloxybiphenylcarboxylic acid 1.23 g
To the mixture was added thionyl chloride (40 ml) and the mixture was heated under reflux for 5 hours. Thionyl chloride was distilled off, 40 ml of dry benzene was further added, and the mixture was distilled off again. After adding 40 ml of dry pyridine and cooling, a solution of 1.37 g of hydroquinone mono (2'-dodecyloxypropyl) ether dissolved in 36 ml of dry benzene was added dropwise, and after stirring for 16 hours, the mixture was heated under reflux for 4 hours. After cooling
Add 150 ml of 10% HCl aqueous solution and extract with benzene.
It was washed with a 2 CO 3 aqueous solution and water, and dried over anhydrous Na 2 SO 4 . By distilling off benzene and recrystallizing with ethanol,
(4 (2'-octyloxypropoxy) phenyl-
4'-dodecyloxybiphenyl-4-carboxylate) was obtained. The following IR and NMR data were obtained on the product.

IR(cm-1): 2920、2840、1730、1600、1520、1290、1200、1085、76
5。
IR (cm -1 ): 2920, 2840, 1730, 1600, 1520, 1290, 1200, 1085, 76
Five.

NMR: 8.3〜6.9ppm(12H)、4.0〜3.5ppm(7H)、1.6〜0.9ppm
(41H)。
NMR: 8.3-6.9ppm (12H), 4.0-3.5ppm (7H), 1.6-0.9ppm
(41H).

実施例1 上記の製造例1および2で得た液晶化合物3と液晶化合
物12とを混合した。得られた液晶組成物の相転移温度
(昇温過程)の変化を相図として第1図に示す。また第
2図に組成物の自発分極の組成による変化を示す。
Example 1 The liquid crystal compound 3 and the liquid crystal compound 12 obtained in the above Production Examples 1 and 2 were mixed. The change in phase transition temperature (temperature rising process) of the obtained liquid crystal composition is shown in FIG. 1 as a phase diagram. Further, FIG. 2 shows the change in spontaneous polarization of the composition depending on the composition.

自発分極は、K.ミヤサト外「三角波による強誘電性液晶
の自発分極の直接測定法」(日本応用物理学会誌22、10
号、L(661)1983、(“Direct Method with Triangul
ar Waves for Measuring Spontaneous Polarization
in Ferroelectric Liquid Crystal",as described by
K.Miyasato et al.(Jap.J.Appl.Phys.22,No.10,L661
(1983)))により測定した。
Spontaneous polarization is described by K. Miyasato et al. “Direct measurement method of spontaneous polarization of ferroelectric liquid crystal by triangular wave” (Journal of the Japan Society of Applied Physics 22 and 10).
Issue, L (661) 1983, (“Direct Method with Triangul
ar Waves for Measuring Spontaneous Polarization
in Ferroelectric Liquid Crystal ", as described by
K. Miyasato et al. (Jap.J.Appl.Phys.22, No.10, L661
(1983))).

第1図より明らかな通り、液晶化合物3と12を1:2の比
率で混合すると、SmC)の温度範囲が大きく広がり、
過冷却温度でもSmCを比較的安定に保つ。
As is clear from FIG. 1, when the liquid crystal compounds 3 and 12 are mixed in a ratio of 1: 2, the temperature range of SmC * ) is greatly expanded,
Keeps SmC * relatively stable even at supercooling temperatures.

上記液晶組成物(1:2混合物)について応答速度を測定
した。すなわち電極を覆うポリイミド被膜にラビング処
理を施した一対の電極基板間に上記液晶組成を挟持し、
液晶層厚を2μmとして、ピーク・トウ・ピーク電圧と
して10Vの電圧印加により直交ニコル下での光学的な応
答を検知して応答速度を測定した。
The response speed of the above liquid crystal composition (1: 2 mixture) was measured. That is, the liquid crystal composition is sandwiched between a pair of electrode substrates that have been subjected to a rubbing treatment on a polyimide coating covering the electrodes,
With a liquid crystal layer thickness of 2 μm, a voltage of 10 V was applied as a peak-to-peak voltage, and an optical response under a crossed Nicols was detected to measure the response speed.

その結果を下表3に示す。The results are shown in Table 3 below.

以上からわかるように単体の液晶化合物より本発明に従
う混合液晶組成物(3+12(1:2))の方が低温におい
ても応答が早く応答速度が改善されている。
As can be seen from the above, the mixed liquid crystal composition (3 + 12 (1: 2)) according to the present invention has a faster response and a better response speed than a single liquid crystal compound even at a low temperature.

実施例2 液晶化合物3と液晶化合物15を、28:72の割合で混合し
て液晶組成物を得た。この液晶組成物は、昇温過程で70
〜137℃でSmC相を示していた。この組成物を用い実施
例1と同様に素子を作成し、全す同じ条件で応答速度を
80℃の温度において測定したところ、210μsecと単体の
液晶化合物を用いる場合に比べて、特性が改善されてい
た。(なお液晶番号15の化合物単体の100℃での応答速
度は270μsecである。) 実施例3 前記表1に記載の液晶化合物7と前記液晶化合物12を、
30:70の割合で混合して、液晶組成物を得た。55〜95℃
でSmC相を有していた。
Example 2 Liquid crystal compound 3 and liquid crystal compound 15 were mixed at a ratio of 28:72 to obtain a liquid crystal composition. This liquid crystal composition is
It showed a SmC * phase at ~ 137 ° C. A device was prepared using this composition in the same manner as in Example 1, and the response speed was changed under the same conditions.
When measured at a temperature of 80 ° C., it was 210 μsec and the characteristics were improved compared to the case where a single liquid crystal compound was used. (Note that the response speed of the liquid crystal compound 15 alone at 100 ° C. is 270 μsec.) Example 3 The liquid crystal compound 7 and the liquid crystal compound 12 shown in Table 1 were
Mixing was performed at a ratio of 30:70 to obtain a liquid crystal composition. 55 to 95 ° C
Had an SmC * phase.

この液晶組成物を用いて実施例1と同様に素子を作成
し、全く同じ条件で応答速度80℃において測定したとこ
ろ、200μsecであり応答速度が改善された。
Using this liquid crystal composition, a device was prepared in the same manner as in Example 1, and the measurement was carried out under the same conditions at a response speed of 80 ° C., and it was 200 μsec, and the response speed was improved.

実施例4 液晶化合物3、10および12を31:7:62の割合で混合して
液晶組成物を得た。この組成物を用いて実施例1と同様
に素子を作成し、全く同じ条件で応答速度を、70℃の温
度において測定したところ、190μsecと液晶化合物10を
用いる場合に比べて特性が改善されていた。
Example 4 Liquid crystal compounds 3, 10 and 12 were mixed at a ratio of 31: 7: 62 to obtain a liquid crystal composition. A device was prepared using this composition in the same manner as in Example 1, and the response speed was measured at a temperature of 70 ° C. under exactly the same conditions. As a result, 190 μsec was obtained and the characteristics were improved as compared with the case of using the liquid crystal compound 10. It was

発明の効果 以上の実施例からも分るとうり、本発明に従い一般式
(I)と一般式(II)で表わされる液晶化合物を混合す
ることにより、それぞれの単独の液晶化合物に比べて、
低温側に広がったカイラルスメクティックC相と、改善
された応答速度などの単独の液晶化合物にはない優れた
特性を持つ液晶組成物が得られる。
Effects of the Invention As can be seen from the above examples, by mixing the liquid crystal compounds represented by the general formulas (I) and (II) according to the present invention, as compared with the individual liquid crystal compounds,
A liquid crystal composition having a chiral smectic C phase spread to the low temperature side and excellent characteristics such as an improved response speed which are not found in a single liquid crystal compound can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は、実施例1による液晶化合物3と液晶化合物12
の混合による相転移温度の組成による変化を示す相図、
第2図は同様に自発分極の組成との相関図である。 代表図:第1図
FIG. 1 shows the liquid crystal compound 3 and the liquid crystal compound 12 according to Example 1.
Phase diagram showing the change in composition of the phase transition temperature due to the mixing of
Similarly, FIG. 2 is a correlation diagram with the composition of spontaneous polarization. Representative figure: Figure 1

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉永 和夫 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 新庄 健司 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (56)参考文献 特開 昭62−123141(JP,A) 特開 昭62−209044(JP,A) ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Kazuo Yoshinaga 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Kenji Shinjo 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Incorporated (56) References JP 62-123141 (JP, A) JP 62-209044 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】下記一般式(I) (式中、R1は炭素数4〜18の直鎖アルキル基または直鎖
アルコキシ基でありR2は炭素数1〜18の直鎖状アルキル
基、Cは不斉炭素原子を表わし、lおよびmは1また
は2である)で表わされる光学活性な液晶化合物の少な
くとも1種と下記一般式(II) (式中、R3は炭素数4〜18の直鎖アルキル基または直鎖
アルコキシ基でありR4は炭素数1〜18の直鎖状アルキル
基、Cは不斉炭素原子を表わす)で表わされる光学活
性な液晶化合物の少なくとも1種と、を含有することを
特徴とする液晶組成物。
1. The following general formula (I): (In the formula, R 1 is a linear alkyl group or a linear alkoxy group having 4 to 18 carbon atoms, R 2 is a linear alkyl group having 1 to 18 carbon atoms, C * is an asymmetric carbon atom, and l is And m is 1 or 2) and at least one optically active liquid crystal compound represented by the following general formula (II) (In the formula, R 3 is a linear alkyl group or a linear alkoxy group having 4 to 18 carbon atoms, R 4 is a linear alkyl group having 1 to 18 carbon atoms, and C * is an asymmetric carbon atom.) And at least one kind of the optically active liquid crystal compound represented by the formula.
【請求項2】前記一般式(I)において、mが2で、l
が1である光学活性な液晶化合物の少なくとも一種と、
前記一般式(II)で表わされる光学活性な液晶化合物の
少なくとも1種とを含有することを特徴とする特許請求
の範囲第1項に記載の液晶組成物。
2. In the general formula (I), m is 2 and l
And at least one kind of optically active liquid crystal compound in which 1 is 1,
The liquid crystal composition according to claim 1, containing at least one kind of the optically active liquid crystal compound represented by the general formula (II).
【請求項3】下記一般式(I) (式中、R1は炭素数4〜18の直鎖アルキル基または直鎖
アルコキシ基であり、R2は炭素数1〜18の直鎖状アルキ
ル基、Cは不斉炭素原子を表わし、lおよびmは1ま
たは2である)で表わされる光学活性な液晶化合物の少
なくとも1種と、 一般式(II) (式中、R3は炭素数4〜18の直鎖アルキル基または直鎖
アルコキシ基であり、R4は炭素数1〜18の直鎖状アルキ
ル基、Cは不斉炭素原子を表わす)で表わされる光学
活性な液晶化合物の少なくとも1種と、を含有する液晶
組成物を一対の電極基板間に配置してなることを特徴と
する液晶素子。
3. The following general formula (I) (In the formula, R 1 is a linear alkyl group or a linear alkoxy group having 4 to 18 carbon atoms, R 2 is a linear alkyl group having 1 to 18 carbon atoms, C * is an asymmetric carbon atom, l and m are 1 or 2) and at least one of the optically active liquid crystal compounds represented by the general formula (II) (In the formula, R 3 is a linear alkyl group having 4 to 18 carbon atoms or a linear alkoxy group, R 4 is a linear alkyl group having 1 to 18 carbon atoms, and C * is an asymmetric carbon atom.) A liquid crystal device comprising a liquid crystal composition containing at least one kind of an optically active liquid crystal compound represented by the formula, and a liquid crystal composition containing the liquid crystal composition, the liquid crystal composition being disposed between a pair of electrode substrates.
JP20398486A 1985-12-28 1986-08-30 Liquid crystal composition Expired - Fee Related JPH07100791B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP29900385 1985-12-28
JP60-299003 1985-12-28

Publications (2)

Publication Number Publication Date
JPS62230883A JPS62230883A (en) 1987-10-09
JPH07100791B2 true JPH07100791B2 (en) 1995-11-01

Family

ID=17866976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20398486A Expired - Fee Related JPH07100791B2 (en) 1985-12-28 1986-08-30 Liquid crystal composition

Country Status (1)

Country Link
JP (1) JPH07100791B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2531646B2 (en) * 1986-10-16 1996-09-04 キヤノン株式会社 Liquid crystal composition and liquid crystal device using the same

Also Published As

Publication number Publication date
JPS62230883A (en) 1987-10-09

Similar Documents

Publication Publication Date Title
JPH0533943B2 (en)
US5938973A (en) Swallow-tailed compound and ferrielectric liquid crystal composition containing the same
US4710585A (en) Liquid crystal compound
JPH0669988B2 (en) Ester compound and liquid crystal composition containing the same
JP2610467B2 (en) Liquid crystal compound, liquid crystal composition containing the same, and liquid crystal device using the same
EP0445037A2 (en) Liquid crystal compound
JPH07100791B2 (en) Liquid crystal composition
JPH0564134B2 (en)
US5118442A (en) Optically active compound
JP2812398B2 (en) Novel ether compound and liquid crystal composition containing the same
JPS63165370A (en) Pyrimidine compound
JP2698459B2 (en) Novel ether compound and liquid crystal composition containing the same
JPH058706B2 (en)
JP3095435B2 (en) Liquid crystal compound
JPH02209873A (en) Optically active 2,5-disubstituted pyrimidine derivative
JP2796722B2 (en) Liquid crystal for optical elements
JP2556371B2 (en) Optically active compound and its use
JP2989324B2 (en) Novel naphthylpyridine compound, liquid crystal composition containing the same, and optical switching device
JPH0730051B2 (en) Liquid crystal compound and liquid crystal composition
JPH06102635B2 (en) Novel liquid crystal compound and liquid crystal composition
JPH09301929A (en) Antiferroelectric liquid crystal compound large in response speed and antiferroelectric liquid crystal composition containing the same
JPS6388161A (en) Fluoroalkane derivative
JPS60204780A (en) 4-(trans-5-alkyl-1,3-dioxa-2-yl)benzoic acid derivative
JP2688697B2 (en) Optically active compound and its use
JP2865891B2 (en) Novel ester compound, liquid crystal composition containing the same, and optical switching element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees