JP2530927B2 - Optical wavelength converter - Google Patents

Optical wavelength converter

Info

Publication number
JP2530927B2
JP2530927B2 JP2072039A JP7203990A JP2530927B2 JP 2530927 B2 JP2530927 B2 JP 2530927B2 JP 2072039 A JP2072039 A JP 2072039A JP 7203990 A JP7203990 A JP 7203990A JP 2530927 B2 JP2530927 B2 JP 2530927B2
Authority
JP
Japan
Prior art keywords
wavelength
optical
conversion device
wavelength range
black body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2072039A
Other languages
Japanese (ja)
Other versions
JPH03273220A (en
Inventor
仁一郎 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2072039A priority Critical patent/JP2530927B2/en
Publication of JPH03273220A publication Critical patent/JPH03273220A/en
Application granted granted Critical
Publication of JP2530927B2 publication Critical patent/JP2530927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、太陽光の波長を特定波長域に揃える波長変
換装置に係り、特に太陽光発電装置に組込まれる波長変
換装置に関する。
TECHNICAL FIELD The present invention relates to a wavelength conversion device that aligns the wavelength of sunlight in a specific wavelength range, and more particularly to a wavelength conversion device incorporated in a solar power generation device.

「従来の技術] 従来より、石油若しくは原子力等の代替エネルギーと
して太陽光発電が注目されている。
“Prior Art” Solar power generation has been attracting attention as an alternative energy source such as oil or nuclear power.

確かに太陽エネルギーを利用した太陽光発電は単に太
陽電池表面に太陽光を受光するのみで光起電力を得る事
が出来るために、石油や原子力のように環境汚染の心配
もなく極めてクリーンであり而もメインテナンスや寿命
の面からも他の発電装置に比較して極めて大なる優位性
を有するにもかかわらず、尚離島や砂漠の極めて限定さ
れた地域にしか設置されていない。
Certainly, solar power generation using solar energy can obtain photovoltaic power simply by receiving sunlight on the surface of the solar cell, so it is extremely clean without worrying about environmental pollution like oil and nuclear power. Even though it has an extremely great advantage in terms of maintenance and life compared to other power generators, it is installed only in a very limited area such as a remote island or a desert.

この光電変換効率の低い主な理由に下記2点があると
思慮する。
It is considered that there are the following two main reasons for the low photoelectric conversion efficiency.

即ちその第1は、太陽光は500nm付近に波長別エネル
ギー分布のピークがあり、一方太陽電池のスペクトル感
度は第2図に示すような分布特性を有するために、500n
m以下の波長の太陽光エネルギーの利用率が低い。
That is, the first is that the sunlight has a peak of energy distribution by wavelength in the vicinity of 500 nm, while the spectral sensitivity of the solar cell has a distribution characteristic as shown in FIG.
Low utilization of solar energy with wavelengths below m.

この点を改善するために、内部電界を印加したSi太陽
電池では500nm以下の短波長光の収集効率は大幅に向上
するけれども950nmより長波長光の収集効率は、なお低
い。
In order to improve this point, in a Si solar cell to which an internal electric field is applied, the collection efficiency of light with a short wavelength of 500 nm or less is significantly improved, but the collection efficiency of light with a wavelength longer than 950 nm is still low.

その第2は太陽光のエネルギーがSi結晶のバンドギャ
ップ1.1電子ボルト(eV)に相当する光波長1127nmより
かなり短波長の領域に主として分布しているため、吸収
された光子エネルギーが電子エネルギーに変換される割
合が低いこと、及び1127nmより長波長の太陽光はSi太陽
電池に吸収されないので全く利用されない。
The second is that the energy of sunlight is mainly distributed in the region of wavelength much shorter than the light wavelength of 1127 nm, which corresponds to the band gap 1.1 electron volt (eV) of Si crystal, so the absorbed photon energy is converted into electron energy. It is not used at all because the proportion of light emitted is low and sunlight with wavelengths longer than 1127 nm is not absorbed by Si solar cells.

そこで本発明者は先に、例えば第3図に示すように、
集光器1により集光した太陽光を波長変換器2によりSi
太陽電池のバンドギャップより短い波長領域、より具体
的には650nm〜950nmに波長を揃えた後、該波長変換後の
太陽光を拡大鏡3により所定集光倍率に拡大した後、太
陽電池4に入射させるようにした装置を提案し(特願平
1−278481号、以下基本技術という)、そして特に本基
本技術においては、太陽光を特定波長域に揃えるため
に、該特定波長域の短波長端を透過限界波長とするフィ
ルタガラス中に黒体から成る微粒子を均等分散させた構
造を持つ光スクリーン部材と、前記特定波長域の長波長
端より短波の光を透過させ、該端より長波の光を反射し
て、前記黒体微粒子含有フィルタガラスに還流させる作
用を持つ反射板とを対向配置して高温の密閉された容器
内に保持すること、そして集光状態の太陽光を光スクリ
ーン部材に照射して該特定波長域の短波長端より長波の
光を透過する一方で、該端より短波長であるためにフィ
ルタガラスに吸収されて熱に変換しているエネルギーを
黒体微粒子群に伝達し、そこからの黒体輻射として再度
放射する過程、更に対向配置された反射板の持つ透過光
波長選択能、の組合せによる光波長変換技術を提案して
いる。
Therefore, the present inventor has previously described, for example, as shown in FIG.
The sunlight collected by the condenser 1 is converted into Si by the wavelength converter 2.
After adjusting the wavelength to a wavelength region shorter than the band gap of the solar cell, more specifically, 650 nm to 950 nm, the wavelength-converted sunlight is magnified by the magnifying glass 3 to a predetermined condensing magnification, and then the solar cell 4 is provided. We have proposed a device that makes it incident (Japanese Patent Application No. 1-278481, hereinafter referred to as basic technology), and in particular, in this basic technology, in order to align sunlight with a specific wavelength range, a short wavelength of the specific wavelength range is used. An optical screen member having a structure in which fine particles composed of a black body are evenly dispersed in a filter glass whose end has a transmission limit wavelength, and transmits short-wave light from the long-wavelength end of the specific wavelength range, and has a long-wavelength from the end. A reflecting plate having a function of reflecting light and causing the black glass fine particle-containing filter glass to circulate is disposed so as to be opposed and held in a high-temperature sealed container, and sunlight in a condensed state is an optical screen member. Irradiate the While transmitting long-wave light from the short-wavelength end of the wavelength range, the energy that is absorbed by the filter glass and converted into heat is transmitted to the blackbody fine particle group because the wavelength is shorter than this end, We propose a light wavelength conversion technology by the combination of the process of re-emitting as black body radiation and the transmitted light wavelength selection capability of the reflectors arranged oppositely.

しかしながら、かかる波長変換技術による場合、 a)フィルタガラスの耐熱性による制約から、輻射体で
ある黒体微粒子を含有するフィルタガラスの温度をあま
り高くすることができない。
However, in the case of using such a wavelength conversion technique, a) the temperature of the filter glass containing the black body particles, which is a radiator, cannot be raised too much because of the restriction due to the heat resistance of the filter glass.

一方、黒体輻射の温度依存性は良く知られているよう
に第4図に示す特性を有しており、前記の制約を勘案し
て、可能な最高温度として1400゜Kを設定した場合、所
望の特定波長域である650nm〜950nm域の輻射量は、1400
゜Kにおける黒体輻射総量の僅か0.5%に過ぎ、従って
波長変換装置の容積効率が悪いという問題点がある。
On the other hand, the temperature dependence of blackbody radiation has the characteristics shown in Fig. 4 as is well known, and in consideration of the above restrictions, when the maximum possible temperature is set to 1400 ° K, The radiation amount in the desired specific wavelength range of 650 nm to 950 nm is 1400
There is a problem that the volume efficiency of the wavelength converter is poor because it is only 0.5% of the total amount of black body radiation at K.

b)フィルタガラス中に分散している黒体微粒子の濃度
をかなり高くしなければならないので、各微粒子から放
射される輻射が他の微粒子群により進路を妨害される結
果、微粒子群の全表面積と有効輻射表面積との乖離が大
きくなり、表面積効率が低下するという問題点もある。
b) Since the concentration of the black body particles dispersed in the filter glass must be increased to a considerably high level, the radiation emitted from each particle is blocked by another particle group, resulting in a total surface area of the particle group. There is also a problem that the deviation from the effective radiation surface area becomes large and the surface area efficiency decreases.

本発明は、かかる先願技術の欠点を解消し得る光波長
変換装置を提供する事を目的とする。
An object of the present invention is to provide an optical wavelength conversion device that can overcome the drawbacks of the prior application technique.

「課題を解決する為の技術手段」 かかる技術的課題を達成するために本発明は、例えば
太陽光を600nm〜1100nmの波長域の光に変換する装置に
おいて、入射太陽光のうち略600nm以上より具体的には6
50nm以上の波長を持つ光を透過し、650nm以下の波長を
持つ光を吸収して熱輻射に変換するという作用を為す前
記基本技術に記載の黒体微粒子含有フィルタガラスに代
えて、入射太陽光をほぼ全て吸収してこれを熱輻射に変
換する高い耐熱性と高い熱輻射率を併せ持つ材質から成
る黒体輻射体を採用した点を特徴とするものである。
(請求項1)及び2)) この場合、所望する650nm〜1100nmの波長域に在る輻
射光のワンパス取得割合を高めるために、前記黒体輻射
体の温度は1500゜K以上に設定するのがよい。
"Technical means for solving the problem" In order to achieve the technical problem, the present invention is, for example, a device for converting sunlight into light in the wavelength range of 600 nm to 1100 nm, in which incident sunlight is approximately 600 nm or more. Specifically 6
Instead of the black body fine particle-containing filter glass described in the basic technology, which transmits light having a wavelength of 50 nm or more and absorbs light having a wavelength of 650 nm or less and converts it into heat radiation, incident sunlight Is characterized by the fact that a blackbody radiator made of a material having both high heat resistance and high thermal emissivity that absorbs almost all of the above and converts it into heat radiation is adopted.
(Claims 1) and 2)) In this case, in order to increase the one-pass acquisition ratio of the radiant light in the desired wavelength range of 650 nm to 1100 nm, the temperature of the black body radiator is set to 1500 ° K or more. Is good.

更に、本発明はエネルギー効率の向上を図るために、
請求項3において、前記黒体輻射体のうち、光フィルタ
と対面しない、太陽光入射面及び側面を、熱輻射率の低
い材料から成る薄層体により被覆して、黒体輻射体及び
光フィルタを対向配置状に収容している高温室の内壁面
に向けて、黒体輻射体から放射される輻射熱流束を低減
させる手段を提案し(請求項3)、 更に前記黒体輻射体及び光フィルタを収納し、高温雰
囲気下を形成する高温室の内壁面を、高い耐熱性と高い
熱線反射率を持つ材料から成る薄層体により被覆する技
術を提案する。(請求項4) 「作用」 黒体輻射は波長別輻射エネルギー密度の温度依存性を
有し、例えばSi太陽電池に対して好適な波長域である略
650nm〜1100nmの波長域の輻射を効果的に取得するのに
は、輻射体の温度を少なくとも1400゜K以上に設定する
必要がある。
Furthermore, in order to improve the energy efficiency of the present invention,
The black body radiator and the optical filter according to claim 3, wherein among the black body radiator, the sunlight incident surface and the side surface which do not face the optical filter are covered with a thin layer body made of a material having a low thermal emissivity. A means for reducing the radiant heat flux radiated from the black body radiator toward the inner wall surface of the high temperature chamber that houses the black body radiator and the black body radiator and the light. We propose a technique to cover the inner wall surface of a high temperature chamber that houses a filter and forms a high temperature atmosphere with a thin layer made of a material having high heat resistance and high heat ray reflectance. (Claim 4) "Action" Blackbody radiation has a temperature dependence of the radiation energy density for each wavelength, and is a wavelength range suitable for, for example, a Si solar cell.
In order to effectively obtain radiation in the wavelength range of 650 nm to 1100 nm, it is necessary to set the temperature of the radiator to at least 1400 ° K.

更に輻射温度を1400゜Kに設定する事により下限波長
を650nmに規定できる。言い換えれば特定波長の下限波
長は温度によって設定できるために、スクリーン部材を
用いてわざわざ下限波長をカットしなくても該黒体輻射
体に太陽光を直接照射させればよい。
Furthermore, by setting the radiation temperature to 1400 ° K, the lower limit wavelength can be specified to 650 nm. In other words, since the lower limit wavelength of the specific wavelength can be set by the temperature, it is sufficient to directly irradiate the black body radiator with sunlight without using the screen member to cut the lower limit wavelength.

そして、黒体輻射体に吸収された太陽光のエネルギー
は、黒体保持温度における輻射エネルギーとなって放射
されて、対面する光フィルタに到達し、そこで1100nmよ
り短波長の光は透過し、1100nmより長波長の光は反射さ
れて黒体輻射体に向け還流し、再吸収される。この還流
エネルギーは再び保持温度に対応する輻射となって黒体
から放射され光フィルタに至る。
Then, the energy of the sunlight absorbed by the blackbody radiator is radiated as radiant energy at the blackbody holding temperature and reaches the facing optical filter, where light with a wavelength shorter than 1100 nm is transmitted and 1100 nm. Light of longer wavelengths is reflected back towards the blackbody radiator and reabsorbed. This reflux energy again becomes radiation corresponding to the holding temperature and is radiated from the black body to reach the optical filter.

このような循環を経て、入射する太陽光のエネルギー
は、高いエネルギー効率を以って所望の波長域である65
0nm〜1100nmの光エネルギーに変換する。
Through such circulation, the energy of the incident sunlight is in the desired wavelength range with high energy efficiency.
Converts light energy from 0nm to 1100nm.

即ち、黒体輻射体と、1100nmの波長で光透過と反射の
選択作用をもつ光フィルタを対向配置させることにより
100%に近いエネルギー効率を以って太陽光を650nm〜11
00nmの光に変換することを得る。
That is, by arranging a black body radiator and an optical filter having a selective action of light transmission and reflection at a wavelength of 1100 nm by facing each other.
650nm to 11 sunlight with energy efficiency close to 100%
Get converted to 00nm light.

尚、前記輻射体や反射体を酸化から保護するために真
空雰囲気に収納するように構成するのがよい。
It is preferable that the radiator and the reflector are housed in a vacuum atmosphere in order to protect them from oxidation.

「実施例」 以下、図面に基づいて本発明の実施例を例示的に詳し
く説明する。但しこの実施例に記載されている構成部品
の寸法、材質、形状、その相対配置などは特に特定的な
記載がない限りは、この発明の範囲をこれのみに限定す
る趣旨ではなく単なる説明例に過ぎない。
[Examples] Examples of the present invention will be exemplarily described in detail below with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative positions, etc. of the components described in this embodiment are not intended to limit the scope of the present invention to this, but are merely illustrative examples. Not too much.

本発明を円滑に達成する為にはその主要構成要素の材
料の選択が極めて重要な要素を占める。
In order to achieve the present invention smoothly, the selection of the material of its main constituents is a very important factor.

従って前記各部材の材料について先ず検討する。 Therefore, the material of each member will be first examined.

(1)反射板の材料選択 伝導性物質における自由電子密度をN m-3、対応する
特性振動数をνρs-1とする場合、光の振動数をν s-1
として、ν>νρの光は当該物質を透過し、νρ>ν>
ντの光は当該物質により反射されることが知られてい
る。ここでντは緩和振動数である。自由電子論によれ
ば、νρ次の式により算出される。
(1) Material Selection of Reflector If the free electron density in the conductive material is N m -3 and the corresponding characteristic frequency is ν ρ s -1 , the light frequency is ν s -1.
, The light of ν> ν ρ transmits through the substance, and ν ρ >ν>
It is known that the light of ν τ is reflected by the substance. Where ν τ is the relaxation frequency. According to the free electron theory, it is calculated by [nu [rho following equation.

ここで、 εo:真空の誘電率8.854×10-12Fm-1 e:電子の電荷1.6021892×10-19 C Me:電子の静止質量9.109534×10-31 kg λρ=C/νρ:特性振動数に対応する波長 m C:光速度、真空中で2.99792458×108 ms-1 特性振動数を、光波長1100nmに対応させるには νρ=C/(11000×10-9)=2.725×1014 s-1 また、対応する自由電子密度は、 N(1100)=9.213×1026Z m-3 Zの値は物質に依って異なり、例えば黒鉛ではZ=0.
03〜0.04でありIII〜V族化合物半導体であるGaPでは、
0.25である。
Where ε o : dielectric constant in vacuum 8.854 × 10 -12 Fm -1 e: electronic charge 1.6021892 × 10 -19 CM e : static mass of electron 9.109534 × 10 -31 kg λ ρ = C / ν ρ : Wavelength corresponding to the characteristic frequency m C: Light speed, 2.99792458 × 10 8 ms −1 in vacuum To make the characteristic frequency correspond to the light wavelength of 1100 nm, ν ρ = C / ( 11000 × 10 -9 ) = 2.725 × 10 14 s -1 In addition, the corresponding free electron density is N (1100) = 9.213 × 10 26 Z m -3 The value of Z differs depending on the substance, for example, in graphite, Z = 0.
GaP, which is 03-0.04 and is a III-V compound semiconductor,
It is 0.25.

a)金属の場合には、自由電子密度は1028 m-3の大きさ
であり、1025〜1026 m-3が得られない。
a) In the case of metal, the free electron density is 10 28 m −3 , and 10 25 to 10 26 m −3 cannot be obtained.

b)半導体の場合には、n型ドーパントを高濃度にドー
プして、熱励起により電子をドナーレベルから伝導帯に
上げることにより、1026 m-3台の自由電子密度が得られ
る。
b) In the case of a semiconductor, a free electron density of the order of 10 26 m −3 can be obtained by doping an n-type dopant in a high concentration and raising electrons from the donor level to the conduction band by thermal excitation.

ただし、半導体の場合には、透過すべき光である650n
mの光(1.91eVに相当)を吸収することの無いよう、バ
ンドギャップが2 eV以上の物質であることを必要とす
る。
However, in the case of semiconductors, the light that should be transmitted is 650n.
It must be a substance with a bandgap of 2 eV or more so as not to absorb m light (corresponding to 1.91 eV).

幾かの物質について比較したのが第1表である。 Table 1 is a comparison of some substances.

第1表から、好適な物質として、n型ドーパントを添
加した黒鉛あるいは、GaPを選択する。
From Table 1, graphite or GaP with an n-type dopant added is selected as the preferred material.

c)又、基板上に高屈折率材料例えばTiO2と低屈折率材
料例えばSiO2を夫々λ/4の厚さで交互に重ねて蒸着して
製作した誘電体反射鏡も、本発明の構成における光フィ
ルタ(以下反射板という。)として採用できる。この場
合、誘電体反射鏡の特徴として中心波長の±10%ぐらい
の狭い波長域だけで高い反射率が実現されるので反射光
の中心波長が1200nmになるように各層の厚さλ/4を設定
し1300nmより長波長側の光の反射は、前出の黒鉛など
を、誘電体多層膜の基板として使用するのが良い。
c) Further, the dielectric reflector made by alternately vapor depositing a high refractive index material such as TiO 2 and a low refractive index material such as SiO 2 on the substrate with a thickness of λ / 4, is also the structure of the present invention. Can be used as an optical filter (hereinafter referred to as a reflector). In this case, the characteristic of the dielectric reflector is that a high reflectance is realized only in a narrow wavelength range of about ± 10% of the center wavelength, so the thickness λ / 4 of each layer is set so that the center wavelength of the reflected light is 1200 nm. For reflection of light having a wavelength longer than 1300 nm, it is preferable to use the above-mentioned graphite or the like as the substrate of the dielectric multilayer film.

(2)黒体輻射体の材料選択 黒体輻射体の役割は入射太陽光を吸収して、その受領
したエネルギーを黒体が保持されている温度における黒
体輻射エネルギーに変換して下流側に射出することであ
る。そこで、この輻射体は下記要件を満たすものでなけ
ればならない。
(2) Selection of material for blackbody radiator The role of the blackbody radiator is to absorb incident sunlight, convert the received energy into blackbody radiation energy at the temperature at which the blackbody is held, and to the downstream side. It is to eject. Therefore, this radiator must meet the following requirements.

イ、入射する太陽光を可及的に低い反射率で吸収するこ
と。さもないと反射された太陽光が高温室の内壁面で熱
に変り、損失する割合が大きくなる。
B. To absorb incident sunlight with a reflectance as low as possible. Otherwise, the reflected sunlight will be converted into heat on the inner wall surface of the high temperature room, and the loss rate will increase.

即ち、入射太陽光の吸収を良くするためには、熱輻射
率εが高い物質でなければならない。
That is, in order to improve the absorption of incident sunlight, the substance must have a high thermal emissivity ε.

SiCは、耐熱性が大きく、かつεも大きいので、本目
的に適う良い材料である。
Since SiC has high heat resistance and large ε, it is a good material for this purpose.

ロ、又本輻射体からは、当然熱輻射が上流側及び側面に
向けても放射される。これらの輻射流は高温室の内壁面
を構成する反射率の高い材料により99%程度反射されて
輻射体に還流するが、1%程度は熱損失になってしま
う。この1%の熱損失は、入射太陽光に対してはその数
10%に相当する大きい割合のものであるため、その低減
を図る必要があるが、輻射体からの輻射エネルギーQが Q=5.67×10-8εT4 Watt m-2 の公式により与えられる処から、熱輻射率εの小さい輻
射体を選べば前記の熱損失率の低減を図ることができよ
うが、これは、入射太陽光を効果的に吸収するために、
輻射体は高いεを持たねばならないとする要求と矛盾し
てしまう。
B. Of course, thermal radiation is radiated from the radiator even toward the upstream side and the side surface. These radiant flows are reflected by the material having a high reflectance constituting the inner wall surface of the high temperature chamber by about 99% and are returned to the radiator, but about 1% results in heat loss. This 1% heat loss is that number for incident sunlight.
Since it is a large proportion equivalent to 10%, it is necessary to reduce it, but from the process where the radiant energy Q from the radiator is given by the formula of Q = 5.67 × 10 -8 εT 4 Watt m -2 , If it is possible to reduce the heat loss rate by selecting a radiator with a small thermal emissivity ε, this is because in order to effectively absorb the incident sunlight,
The radiator is inconsistent with the requirement that it must have a high ε.

この矛盾を解決するために本発明者が考え且つ知見し
た所は、第1図に示すように、輻射体の前面及び側面
を、熱輻射率の低い材料により取囲むこと、ただし、前
面の被覆は全面にわたるものでなくて、入射太陽光の通
路のみを開いておくという構造にする事である。
In order to solve this contradiction, the present inventors have thought and found that, as shown in FIG. 1, the front surface and the side surface of the radiator are surrounded by a material having a low thermal emissivity, but the front surface is coated. Is not to cover the entire surface, but to open only the passage of incident sunlight.

次に前記材料を用いて構成された本発明の実施例を第
1図に基づいて説明する。
Next, an embodiment of the present invention constituted by using the above material will be described with reference to FIG.

11は、真空密閉空間を形成するカプセルで、その内部
の中央位置に、SiCから成る黒体輻射体12及びそれを取
り囲む形に構成したn型ドーパント含有のグラファイト
製円筒状被覆体14と対向する形で、反射板13を設置して
ある。
Reference numeral 11 denotes a capsule that forms a vacuum closed space, and faces a black body radiator 12 made of SiC and a cylindrical cylindrical covering body 14 containing n-type dopant and surrounding the black body radiator 12 at a central position inside the capsule. The reflector 13 is installed in the shape.

また、カプセル11の内壁面は熱線反射率が高く、かつ
高融点の金属例えばタングステンの研磨面を以て構成
し、その外側を断熱構造としてある。
Further, the inner wall surface of the capsule 11 is constituted by a polished surface of a metal having a high heat ray reflectance and a high melting point, for example, tungsten, and the outside thereof has a heat insulating structure.

太陽光は集光された状態で光ファイバ17を通って輻射
体12に入射し、これを加熱する。輻射体17の温度は太陽
光のみにより所望温度である1600゜Kに近付くが、尚ヒ
ータ16により加熱して1600゜Kに保持する。
The sunlight enters the radiating body 12 through the optical fiber 17 in a condensed state and heats it. The temperature of the radiator 17 approaches 1600 ° K which is the desired temperature only by sunlight, but it is still heated by the heater 16 and kept at 1600 ° K.

反射板13は、その温度を1600゜Kに合致させる必要は
無く、可及的に低温により具体的には600゜K以下に保
つことが、反射板13からの熱輻射損失を少なくするため
にも、また下流側に位置するSi太陽電池に対し、不必要
な熱線の供給を抑制するためにも、望ましい。このよう
な冷却手段は反射板13の周囲に冷却パイプを巻回させて
もよく、又ヒートパイプ等を用いる事も可能であり、特
に限定されない。
It is not necessary for the reflector 13 to match its temperature to 1600 ° K, and it is necessary to keep the temperature below 600 ° K by keeping the temperature as low as possible in order to reduce the heat radiation loss from the reflector 13. Also, it is desirable to suppress unnecessary supply of heat rays to the Si solar cells located on the downstream side. Such cooling means may be formed by winding a cooling pipe around the reflection plate 13, or a heat pipe or the like may be used, and is not particularly limited.

反射板13は、1100nmより長波長側の熱線を全て反射
し、それらを吸収することが無いように構成されている
から、高温に保持されたカプセル11からの伝導機構によ
る熱供給が無い限り、昇温しない筈である。本実施例で
は、反射板の材料として黒鉛アンモニウムをn型ドーパ
ントとして30×10-4分子/炭素1原子の割合でドープし
た黒鉛のa軸方向を使用し、その温度を550゜Kに保持
した。
The reflection plate 13 reflects all heat rays on the wavelength side longer than 1100 nm and is configured not to absorb them, so that heat is not supplied by the conduction mechanism from the capsule 11 held at a high temperature, It should not heat up. In the present embodiment, the a-axis direction of graphite doped with ammonium graphite as an n-type dopant at a ratio of 30 × 10 −4 molecule / one carbon atom was used as the material of the reflector, and the temperature was kept at 550 ° K. .

上記のような構成及び条件による、入射太陽光1kWに
見合う装置を運転し、650nm〜1100nm光出力として0.80k
W、そのエネルギー密度16kWm-2を得た。この650nm〜110
0nmの光を更に集光して40kWm-2のエネルギー密度に高め
た後、n+pp+型Si太陽電池に導いて、0.28kWの発電量
を得た。
With the above configuration and conditions, operate a device corresponding to 1kW of incident sunlight, and output 0.80k as 650nm ~ 1100nm light output.
W, its energy density of 16kWm -2 was obtained. This 650nm ~ 110
After further concentrating 0 nm light and raising the energy density to 40 kWm -2 , it was led to an n + pp + type Si solar cell to obtain a power generation of 0.28 kW.

このように、実施例により、本発明の効果を円滑に達
成し得ることが確認された。
As described above, it was confirmed that the effects of the present invention can be achieved smoothly by the examples.

「効果」 以上記載のごとく本発明によれば、特に600nm〜1100n
m等の特定波長域に配分されるエネルギーの割合が少な
い、1400゜K〜1600゜Kの温度域でも、極めて高い波長
変換効率を得る事が出来ると共に、単に反射体と輻射体
を対向配置するのみである為に、構成が簡単で且つ故障
が生じる余地もない。
“Effect” As described above, according to the present invention, particularly 600 nm to 1100 n
It is possible to obtain extremely high wavelength conversion efficiency even in the temperature range of 1400 ° K to 1600 ° K, where the proportion of energy distributed to specific wavelength ranges such as m is small, and simply place the reflector and radiator in opposition. Since there is only one, the structure is simple and there is no room for failure.

又前記部材は密閉空間、特に真空密閉空間内に配置さ
れているために、酸化や汚染等の劣化が生じる事なく半
永久的に使用可能である。
Further, since the member is arranged in a closed space, particularly a vacuum closed space, it can be used semipermanently without deterioration such as oxidation or contamination.

又請求項8)においては高温雰囲気下で波長変換した
場合においても前記波長変換光を常温近くにまで低下さ
せた後、太陽電池に入射させる事が出来るために太陽電
池の破損や劣化が生じる余地がなく半永久的な太陽光発
電装置の形成が可能である。
Further, in claim 8), even when wavelength conversion is performed in a high temperature atmosphere, the wavelength converted light can be incident on the solar cell after being lowered to near room temperature, so that there is room for damage or deterioration of the solar cell. Thus, it is possible to form a semi-permanent solar power generation device.

等の種々の著効を有す。It has various remarkable effects.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例に係わる波長変換器の内部構成
を示す概略図、第2図はSi太陽電池の収集効率を示す感
度分布図、第3図は先願技術の太陽光発電装置の概略を
示す全体ブロック図、第4図は黒体輻射の温度依存性を
示す分光特性図である。
FIG. 1 is a schematic diagram showing the internal configuration of a wavelength converter according to an embodiment of the present invention, FIG. 2 is a sensitivity distribution diagram showing the collection efficiency of Si solar cells, and FIG. 3 is a photovoltaic power generation device of the prior application. FIG. 4 is an overall block diagram showing the outline of FIG. 4, and FIG. 4 is a spectral characteristic diagram showing the temperature dependence of black body radiation.

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】太陽光の波長を特定波長域に揃える波長変
換装置において、 黒体輻射体と光フィルタとを高温雰囲気下で対向配置さ
せ、前記光フィルタから特定波長域の光を取り出し可能
に構成したことを特徴とする光波長変換装置。
1. In a wavelength conversion device for aligning the wavelength of sunlight in a specific wavelength range, a black body radiator and an optical filter are arranged to face each other in a high temperature atmosphere, and light in the specific wavelength range can be taken out from the optical filter. An optical wavelength conversion device characterized by being configured.
【請求項2】前記黒体輻射体が、入射太陽光を吸収して
これを熱輻射に変換する高耐熱性輻射体であり、一方前
記光フィルタが、特定波長域の長波長端より短波長の光
を透過し、該波長端より長波長の光を反射するフィルタ
板である請求項1)記載の光波長変換装置。
2. The black body radiator is a highly heat-resistant radiator that absorbs incident sunlight and converts it into heat radiation, while the optical filter has a wavelength shorter than a long wavelength end of a specific wavelength range. The optical wavelength conversion device according to claim 1, which is a filter plate that transmits the light of (1) and reflects the light of a wavelength longer than the wavelength end.
【請求項3】前記光フィルタと対向しない、入射太陽光
の通路を除く黒体輻射体の入射面と側面を、熱輻射率の
低い薄層体により被覆した事を特徴とする請求項1)記
載の光波長変換装置。
3. The incident surface and side surface of the black body radiator excluding the passage of incident sunlight, which does not face the optical filter, are covered with a thin layer having a low thermal emissivity. The optical wavelength conversion device described.
【請求項4】前記黒体輻射体と光フィルタを収納する高
温室の内壁面を、高耐熱性と高熱線反射率を有する薄層
体により被覆形成した請求項1)記載の光波長変換装
置。
4. An optical wavelength conversion device according to claim 1, wherein an inner wall surface of a high temperature chamber for accommodating the black body radiator and the optical filter is coated with a thin layer having high heat resistance and high heat ray reflectance. .
【請求項5】前記特定波長域が、600nm〜1100nmの波長
域である光変換装置において、前記光フィルタをn型ド
ーパントを高濃度にドープしたグラファイトで形成した
請求項1)記載の光波長変換装置
5. The optical wavelength conversion device according to claim 1, wherein in the optical conversion device in which the specific wavelength region is a wavelength region of 600 nm to 1100 nm, the optical filter is formed of graphite in which an n-type dopant is highly doped. apparatus
【請求項6】前記特定波長域が、600nm〜1100nmの波長
域である光変換装置において、前記光フィルタが、石英
ガラス基板上にn型GaP膜を形成したフィルタ部材であ
る請求項1)記載の光波長変換装置
6. The optical conversion device, wherein the specific wavelength range is a wavelength range of 600 nm to 1100 nm, wherein the optical filter is a filter member having an n-type GaP film formed on a quartz glass substrate. Optical wavelength converter
【請求項7】前記特定波長域が、600nm〜1100nmの波長
域である光変換装置において、前記光フィルタが、1200
nmに中心波長を持つように設計した多層積層の誘電体膜
による反射膜を、n型ドーパントを高濃度にドープした
グラファイト基板の上に形成したフィルタ部材であるこ
とを特徴とする請求項1)記載の光波長変換装置
7. The optical conversion device, wherein the specific wavelength range is a wavelength range of 600 nm to 1100 nm, wherein the optical filter is 1200
2. A filter member comprising a multilayer dielectric film designed to have a central wavelength of nm and a reflective film formed on a graphite substrate highly doped with an n-type dopant. Optical wavelength converter described
【請求項8】前記特定波長域が、600nm〜1100nmの波長
域である光変換装置において、前記黒体輻射体の温度を
1500゜K以上に、また前記光フィルタの温度を600゜K
以下に維持することを特徴とする請求項1)記載の光波
長変換装置
8. The temperature of the black body radiator in the optical conversion device, wherein the specific wavelength range is a wavelength range of 600 nm to 1100 nm.
More than 1500 ° K and the temperature of the optical filter is 600 ° K
The optical wavelength conversion device according to claim 1), characterized in that:
【請求項9】前記特定波長域が、600nm〜1100nmの波長
域である光変換装置において、前記黒体輻射体をSiC材
で形成するとともに、入射太陽光の通路を除く黒体輻射
体の入射面と側面を、n型ドーパントを高濃度にドープ
したグラファイト薄層体で被覆した事を特徴とする請求
項3)記載の光波長変換装置
9. The light conversion device, wherein the specific wavelength range is a wavelength range of 600 nm to 1100 nm, wherein the black body radiator is made of a SiC material, and the black body radiator except for the passage of incident sunlight is incident. The optical wavelength conversion device according to claim 3), wherein the surface and the side surface are coated with a graphite thin layer body in which an n-type dopant is highly doped.
JP2072039A 1990-03-23 1990-03-23 Optical wavelength converter Expired - Fee Related JP2530927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2072039A JP2530927B2 (en) 1990-03-23 1990-03-23 Optical wavelength converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2072039A JP2530927B2 (en) 1990-03-23 1990-03-23 Optical wavelength converter

Publications (2)

Publication Number Publication Date
JPH03273220A JPH03273220A (en) 1991-12-04
JP2530927B2 true JP2530927B2 (en) 1996-09-04

Family

ID=13477861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2072039A Expired - Fee Related JP2530927B2 (en) 1990-03-23 1990-03-23 Optical wavelength converter

Country Status (1)

Country Link
JP (1) JP2530927B2 (en)

Also Published As

Publication number Publication date
JPH03273220A (en) 1991-12-04

Similar Documents

Publication Publication Date Title
US4316048A (en) Energy conversion
US8921683B2 (en) Combined solar/thermal (CHP) heat and power for residential and industrial buildings
US3929510A (en) Solar radiation conversion system
US4395582A (en) Combined solar conversion
GB2299448A (en) Thermovoltaic in-situ mirror cell
JPS6257113B2 (en)
TW201703423A (en) Thermophotovoltaic generator
US20100059108A1 (en) Optical system for bifacial solar cell
Coutts et al. A review of recent advances in thermophotovoltaics
CA2399673A1 (en) Thermophotovoltaic device
JPS6230714B2 (en)
JP3080437B2 (en) Optical energy wavelength converter
JP2530927B2 (en) Optical wavelength converter
RU2399118C1 (en) Photoelectric converter based on nonplanar semiconductor structure
JP2526153B2 (en) Optical wavelength converter
CN205545129U (en) Be applied to dish formula reflection profile concentration photovoltaic system 's solar battery array module
Xiong et al. Constructing a Spectral Down Converter to Enhance Cu (In, Ga) Se2 Solar Cell Performance Using Yttrium Aluminum Garnet: Ce3+ Ceramics
JP2609163B2 (en) Photovoltaic power generation method and device
DePoy et al. Thermophotovoltaic spectral control
Andreev et al. Solar thermophotovoltaic converter with Fresnel lens and GaSb cells
JPH0523554U (en) Power generator using sunlight
JPS6122217B2 (en)
JPS595807B2 (en) Hybrid solar collector
Mamadalieva et al. DESIGN FEATURES OF SELECTIVE RADIATION PHOTOTHERMOGENERATOR WITH A FIXED SLIT
JPS59231358A (en) Solar battery hybrid heat collector

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees